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Electronic structure theory

Solving the electronic structure problem for molecules or solids consists in solving
the electronic Schrödinger equation,

ĤΨI = EIΨI .

The electronic wavefunction ΨI ≡ ΨI (r1, r2, . . . , rN ) depends on the position
(and spin) of the (N) electrons.

Ĥ is the Hamiltonian operator.

There is in principle an infinite number of solutions.

The solution with the lowest energy (usually labelled as I = 0) is referred to as the
ground-state solution.

The higher-energy solutions (I > 0) are the excited-state solutions.

In this course, we will work within the Born–Oppenheimer approximation.
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Electronic structure theory
In other words, the positions of the nuclei will be fixed while we are solving the
Schrödinger equation for the electrons.

Vibronic effects will not be discussed.

The N -electron Hamiltonian reads Ĥ = T̂ + Ŵee + V̂ne where

T̂ ≡ − ~2

2me

N∑
i=1

∇2
ri = − ~2

2me

N∑
i=1

(
∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i

)
−→ kinetic energy

Ŵee ≡
N∑
i<j

e2

4πε0 |ri − rj |
× −→ two-electron repulsion

V̂ne ≡
N∑
i=1

vne(ri)× −→ electron-nuclei attraction

where vne(r) = −
nuclei∑
A

ZAe
2

4πε0 |r−RA|

Note that the operators are written in SI units.
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Atomic units

It is convenient to use unitless coordinates and energies where the Bohr radius

a0 =
4πε0~2

mee2
≈ 0.529Å

and twice the ionization energy of the hydrogen atom

EI =
mee

4

2(4πε0)2~2
≈ 13.6 eV

are used as reference:

x → x̃ = x/a0

y → ỹ = y/a0

z → z̃ = z/a0

E → Ẽ = E/(2EI)

This is the system of so-called atomic units (a.u.).
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Atomic units

In practice, the ”tilde” symbol is dropped.

It can be shown that, when atomic units are employed, the Hamiltonian looks like
if “~ = me = e2/(4πε0) = 1”.

As a result, the operators will be written as follows from now on:

T̂ ≡ −1

2

N∑
i=1

∇2
ri = −1

2

N∑
i=1

(
∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i

)

Ŵee ≡
N∑
i<j

1

|ri − rj |
×

v(r) = −
nuclei∑
A

ZA
|r−RA|

.
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1D extended system: linear chain of hydrogen atoms:
~

I
.
.

x
o

.

.U

Nuclear potential energy (in atomic units) for a linear and periodic chain of atoms:

vne(r) ≡ vne(x, y, z) = −
∑
n∈Z

Z√
(x− na)2 + y2 + z2

= vne(x+ a, y, z)

where Z = {0,±1,±2, . . .} and a is the lattice constant.

For simplicity, we will consider a chain of hydrogen atoms (Z = 1) in the following.
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The Chemist’s approach to periodic systems

In order to get some insight into the effect of a periodic nuclear potential on the
wavefunction we will (for now) restrict the discussion to one-electron systems.

By analogy with chemistry, we can use, as a starting point, the concept of linear
combination of atomic orbitals (LCAO).

Let’s start with a single atom at position x = 0:
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Bonding orbital in the diatomic (M = 2)
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Bonding/antibonding orbitals in the diatomic (M = 2)
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Bonding/antibonding densities in the diatomic (M = 2)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

�8 �6 �4 �2 0 2 4 6 8 10

| 
±

(x
)|2

x (a.u.)

 ±(x) =
1p
2⇡

⇣
e�|x|±e�|x�a|

⌘
with a = 3.0 a.u.

| +(x)|2
| �(x)|2

1

Emmanuel Fromager (UdS) Modelling 2: Extended systems in DFT 15 / 46



0

0.02

0.04

0.06

0.08

0.1

�10 �5 0 5 10

n
0
(x

)
=

| 
0
(x

)|2

x (a.u.)

 0(x) =
1p
⇡M

(M�1)/2X

n=�(M�1)/2

e�|x+n⇥a| where a = 3.0 a.u.

M = 3

1

Emmanuel Fromager (UdS) Modelling 2: Extended systems in DFT 16 / 46



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

�10 �5 0 5 10

n
0
(x

)
=

| 
0
(x

)|2

x (a.u.)

 0(x) =
1p
⇡M

(M�1)/2X

n=�(M�1)/2

e�|x+n⇥a| where a = 3.0 a.u.

M = 5

1

Emmanuel Fromager (UdS) Modelling 2: Extended systems in DFT 17 / 46



0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

�15 �10 �5 0 5 10 15

n
0
(x

)
=

| 
0
(x

)|2

x (a.u.)

 0(x) =
1p
⇡M

(M�1)/2X

n=�(M�1)/2

e�|x+n⇥a| where a = 3.0 a.u.

M = 11

1

Emmanuel Fromager (UdS) Modelling 2: Extended systems in DFT 18 / 46



0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

�15 �10 �5 0 5 10 15

n
0
(x

)
=

| 
0
(x

)|2

x (a.u.)

 0(x) =
1p
⇡M

(M�1)/2X

n=�(M�1)/2

e�|x+n⇥a| where a = 3.0 a.u.

M = 101

1

Emmanuel Fromager (UdS) Modelling 2: Extended systems in DFT 19 / 46



Hückel (or tight-binding) model

Let us try to rationalize our chemical approach from first principles.

How can we generate (approximate) solutions to the Schrödinger equation?

We can project the latter onto a basis of (localized) 1s atomic orbitals:

φn(r) =
1√
π
e−
√

(x−na)2+y2+z2

The (one-electron) Hamiltonian matrix elements are

hnm =
〈
φn

∣∣∣ĥ∣∣∣φm〉 =

∫
dr φ∗n(r)× ĥφm(r),

where ĥ ≡ −1

2
∇2

r + vne(r)×.
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Hückel (or tight-binding) model

EXERCISE [solution available here]

(1) Show that the diagonal elements hnn have the same value (the “α” of Hückel
theory).

(2) Show that the matrix elements hn(n+1) between two neighboring 1s orbitals have
the same value (the “β” of Hückel theory, also denoted “t” or “−t”).

(3) Show that, if we neglect the overlap between non-neighboring 1s orbitals in the
calculation of the Hamiltonian matrix elements, then the latter can be written as follows,

hnm = αδnm + β
(
δn(m+1) + δn(m−1)

)

Comment 1: for sake of simplicity, the overlap between neighboring orbitals is usually
neglected when diagonalizing the one-electron Hamiltonian matrix. In other words, the
orbital basis is assumed to be orthonormal.

Comment 2: α and β are often used as parameters. They might be optimized in order to

reproduce experimental data. In the latter case, they will also simulate (some part of)

the effect of the two-electron repulsion.
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From 3D to 1D

Let us now return to the exact one-electron Schrödinger equation:

−1

2
∇2

rΨ(r) + vne(r)×Ψ(r) = EΨ(r)

The potential exhibits periodicity along the x axis (symmetry property):

vne(x+ a, y, z) = vne(x, y, z)

We would like to transform the initial three-dimensional problem into the following
one-dimensional one,

[
−1

2

d2

dx2
+ v(x)×

]
ϕ(x) = εϕ(x)

where v(x+ a) = v(x).
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From 3D to 1D

EXERCISE

Let us consider the exact wavefunction separation

Ψ(r) ≡ Ψ(x, y, z) = ϕyz(x)× χ(x, y, z),

where the wavefunction ϕyz(x), which is parameterized by the coordinates y and z,
fulfills the following one-dimensional Schrödinger equation,

[
−1

2

d2

dx2
+ vyz(x)×

]
ϕyz(x) = εyzϕyz(x) with vyz(x) = vne(x, y, z).

Note that the above equation describes a one-dimensional periodic problem since
vyz(x+ a) = vyz(x).
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From 3D to 1D

(1) Show that the complementary wavefunction χ fulfills

(
− 1

2

∂2χ(x, y, z)

∂x2
+

1

ϕyz(x)

[
−1

2

∂2

∂y2
− 1

2

∂2

∂z2

](
ϕyz(x)χ(x, y, z)

)
− 1

ϕyz(x)

∂ϕyz(x)

∂x

∂χ(x, y, z)

∂x

)
+ εyz × χ(x, y, z) = Eχ(x, y, z).

(2) Show that, if (i) we neglect the variation in both y and z of ϕyz, and (ii) χ does not
vary with x, then the above equation becomes

[
−1

2

∂2

∂y2
− 1

2

∂2

∂z2

]
χ(y, z) + εyz × χ(y, z) ≈ Eχ(y, z).
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Periodicity in the wavefunction
Our task is now to solve

[
−1

2

d2

dx2
+ v(x)×

]
ϕ(x) = εϕ(x) where v(x+ a) = v(x).

Let us warm up with the free particle problem [v(x) = 0]:

(i) the solution reads ϕ(x) = Cϕ e
ikx and its energy ε(k) = k2/2 is a function of k.

(ii) Note that
1

d2ε(k)

dk2

= 1 is the mass of the electron in atomic units∗.

(iii) The variation of ε(k) with k, which will be modified by the nuclear potential,
is referred to as the dispersion relation.

∗ In SI units, ε(k) =
~2k2

2me
thus leading to m−1

e =
1

~2
d2ε(k)

dk2
.
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Periodicity in the wavefunction

In the presence of the atoms the wavefunction will have the more general form

ϕ(x) =

∫ +∞

−∞
dk Cϕ(k) eikx

The function Cϕ(k) is the Fourier transform of the wavefunction ϕ.

Maths: Note that ϕ(x) = 0 ∀x ⇔ Cϕ(k) = 0 ∀k.
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Periodicity in the wavefunction

EXERCISE [partial solution available here]

Let us introduce the Fourier transform of the nuclear potential:

v(x) =

∫ +∞

−∞
dk Cv(k) eikx

(1) Show that the periodicity condition, v(x+ a) = v(x) ∀x, implies

Cv(k)
(

1− eika
)

= 0 ∀k.

(2) Deduce that the potential can be written as

v(x) =
∑

K∈ 2π
a

Z

VK e
iKx ≡

+∞∑
m=−∞

Cv

(
2πm

a

)
ei

2πm
a

x.

The ensemble of K values is called the reciprocal lattice space.
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Periodicity in the wavefunction

(3) Show, from the Fourier transform expressions of the potential and the wavefunction,
that the Schrödinger equation can be rewritten as follows

(
k2

2
− ε
)
Cϕ(k) +

∑
K∈ 2π

a
Z

VK Cϕ(k −K) = 0, ∀k (1)

or, equivalently (k → k −K′),

(
(k −K′)2

2
− ε

)
Cϕ(k −K′) +

∑
K”∈ 2π

a
Z

V(K”−K′) Cϕ(k −K”) = 0, ∀k, ∀K′ (2)

(4) Check that the free-particle solutions are recovered from Eq. (1).
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Periodicity in the wavefunction

(5) Show that, if Eq. (2) is solved for a given and fixed k value, it becomes equivalent
to the following diagonalization problem

H(k)X(k) = ε(k)X(k) (3)

where

X(k) ≡ XK′(k) = Cϕ(k −K′)

H(k) ≡ HK′K”(k) =
(k −K′)2

2
δK′K” + V(K”−K′)

(6) Eq. (3) has in principle an infinite number of solutions
{
X(n)(k)

}
n

with the

corresponding energies
{
ε(n)(k)

}
n

where n is a quantum number. Show that the

corresponding wavefunction reads

ϕ(n)(k, x) =
∑

K′∈ 2π
a

Z

C(n)
ϕ (k −K′)ei(k−K

′)x (4)

Emmanuel Fromager (UdS) Modelling 2: Extended systems in DFT 29 / 46



Interlude on the first Brillouin zone

ϕ(n)(k, x) =
∑

K′∈ 2π
a

Z

C(n)
ϕ (k −K′)ei(k−K

′)x

Note that

ϕ(n)

(
k +

2π

a
, x

)
=

∑
K”∈( 2π

a
Z− 2π

a )

C(n)
ϕ (k −K”)ei(k−K”)x

=
∑

K′∈ 2π
a

Z

C(n)
ϕ (k −K′)ei(k−K

′)x

= ϕ(n)( k , x).

(5)

Conclusion: The solutions to the k-dependent Schrödinger equation (3) are periodic in
k with the period 2π

a
. Therefore we only need to solve Eq. (3) for k values that belong

to an interval of length 2π
a

. We usually consider the range −π
a
< k ≤ +π

a
, which is

referred to as the first Brillouin zone.
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Periodicity in the wavefunction

(7) Bloch’s theorem states that the wavefunction can be written as follows,

ϕ(n)(k, x) = eikx × u(n)(k, x)

where u(n)(k, x+ a) = u(n)(k, x) ← periodicity of the lattice!

Show that this theorem is indeed recovered from Eq. (4).

Let us recall our chemical approach:

u(n)(k, x) ←− lim
M→+∞

 1√
πM

(M−1)/2∑
n=−(M−1)/2

e−|x+n×a|


eikx

k=0−→ +1 for any x (bonding!)

eikx
k=π

a−→ +1 for x = 0 and − 1 for x = a (antibonding!)
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Periodicity of the density

ϕ(n)(k, x) = eikx × u(n)(k, x)

Note that, unlike the wave function, the density has the periodicity of the lattice:

∣∣∣ϕ(n)(k, x)
∣∣∣2 =

∣∣∣eikx∣∣∣2 × ∣∣∣u(n)(k, x)
∣∣∣2 =

∣∣∣u(n)(k, x)
∣∣∣2 ,

so that

∣∣∣ϕ(n)(k, x+ a)
∣∣∣2 =

∣∣∣u(n)(k, x+ a)
∣∣∣2 =

∣∣∣u(n)(k, x)
∣∣∣2 =

∣∣∣ϕ(n)(k, x)
∣∣∣2 .
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One-electron picture of the many-electron problem
The one-electron picture consists in (i) calculating the energy levels of a single
electron and (ii) distributing all the electrons among them (Aufbau principle).

HOMO '6(r), "6

'1(r), "1

'2(r), "2

'3(r),'4(r),'5(r), "3 = "4 = "5

'7(r), "7

'8(r), "8

LUMO

2

As you know, this picture does not give an exact description of the true electronic
structure because of the two-electron repulsion. It becomes formally exact in
Kohn–Sham DFT as, in this case, the one-electron picture reproduces the exact
ground-state density.
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Concept of band structure

MORE REALISTIC BAND GAPS FROM META- . . . PHYSICAL REVIEW B 93, 205205 (2016)
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FIG. 2. Comparison of vXC’s of bulk Si along the Si-Si bond
for SCAN, LDA, and GGA. The Si atoms are located at r = 0 and
r = 2.35Å. The vertical dashed line is a numerical artifact and does
not affect the band structure.

differ in small details. Similar to Fig. 1, the vXC’s of SCAN
for bulk Si also have small bumps. Though the meta-GGA is a
higher rung functional on the Jacob’s ladder than the GGA, the
improvement in vXC is small going from GGA to meta-GGA,
unlike going from LDA to GGA. The differences between the
KS meta-GGA gaps and the PBE gaps in Table I are small as
a consequence.

The band structures of Si and GaAs calculated with PBE
and SCAN are plotted in Figs. 3 and 4. The KS(KLI) SCAN
band structure is very close to the PBE band structure, due to
the corresponding vXC being similar to the PBE vXC. The gKS
SCAN band structure has the same overall shape as that of the
PBE and the KS(KLI), and the main difference is in the band
gap.

Though the gKS meta-GGA band gaps improve over the
PBE gaps in general, it is disappointing that gKS meta-GGA
gaps for Ge, InN, and CdO still vanish. However, it is possible
for meta-GGAs to open the gap for gapless materials in GGA.
gKS SCAN has [57] a 0.4 eV gap for β-MnO2, which is
gapless in GGA, and the value is close to the experimental
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FIG. 3. The band structure of Si calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.
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FIG. 4. The band structure of GaAs calculated with PBE, gKS
SCAN, and KS(KLI) SCAN.

value 0.3 eV. The M06L metaGGA was reported to open the
gap of Ge at 0.14 eV [11,58].

The improvement of the band gap occurs since, unlike the
KS gap, the gKS gap is an approximation to the fundamental
gap of the meta-GGA. A Janak-type [59] theorem has been
proven for the OEP [9], and it states that the gKS gap
approximately equals the fundamental gap for the same
functional, assuming fixed orbitals. This assumption does not
apply to finite systems, but it is true for periodic systems,
since the charge density and the orbitals of a periodic system
undergo only an infinitesimal change when the number of
electrons changes by one.

GGA band gaps should be compared with the OEP meta-
GGA band gaps for a fair comparison between approximated
functionals, since the OEP meta-GGA band gap is the KS gap.
The SCAN functional is the only functional that satisfies all
the known exact conditions, but the KS(KLI) SCAN gaps do
not have significant improvements over the PBE gaps. This is
probably due to the fact that the GGA and SCAN OEP gaps
closely approximate the exact KS gap, which underestimates
the fundamental gap. This has been illustrated in Fig. 5,
where the errors of the EXX+RPA(OEP) KS gaps [56] are
also plotted. EXX+RPA (exact exchange plus random phase
approximation for correlation) is a high-level (fifth rung)
method, and its OEP gaps are expected to be very close to those
of the corresponding exact KS potential. Figure 5 shows that
both PBE and KS SCAN gaps are already good approximations
to the exact KS gap.

Some of the gKS band gaps of MS2 and TPSS are smaller
than the corresponding OEP band gaps. We do not find this
behavior in other functionals. Many of the KS(KLI) TPSS
calculations fail to converge. This is probably a numerical
issue in the calculation of ∇(∂eXC/∂τσ ), due to the complicated
functional form of TPSS.

The energy functional of the exact DFT has deriva-
tive discontinuities %XC at integer electron numbers [7],
where %XC = Eg − EKS

g . The exact KS potential jumps up
by the positive constant %XC as the electron number crosses
the value that makes the solid electrically neutral. LDA and
GGA miss much or all of the derivative discontinuity due to the
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More realistic band gaps from meta-generalized gradient approximations: Only in a generalized
Kohn-Sham scheme

Zeng-hui Yang, Haowei Peng, Jianwei Sun, and John P. Perdew
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Unlike the local density approximation (LDA) and the generalized gradient approximation (GGA), calculations
with meta-generalized gradient approximations (meta-GGA) are usually done according to the generalized
Kohn-Sham (gKS) formalism. The exchange-correlation potential of the gKS equation is nonmultiplicative,
which prevents systematic comparison of meta-GGA band structures to those of the LDA and the GGA. We
implement the optimized effective potential (OEP) of the meta-GGA for periodic systems, which allows us to
carry out meta-GGA calculations in the same KS manner as for the LDA and the GGA. We apply the OEP to
several meta-GGAs, including the new SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)]. We find that
the KS gaps and KS band structures of meta-GGAs are close to those of GGAs. They are smaller than the more
realistic gKS gaps of meta-GGAs, but probably close to the less-realistic gaps in the band structure of the exact
KS potential, as can be seen by comparing with the gaps of the EXX+RPA OEP potential. The well-known grid
sensitivity of meta-GGAs is much more severe in OEP calculations.
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I. INTRODUCTION

Semiconductor devices play an important role in modern
technologies, and the rapid development of electronic structure
theory methods has made computational design of such
devices possible. The band gap and the band structure are
undoubtedly the most important properties of semiconductors,
since these are the properties that distinguish semiconductors
from other periodic systems [1]. Computational evaluation of
the band gap and the band structure is thus a topic of active
research.

The fundamental band gap is a ground-state property, and
it is defined as Eg = I − A, where I is the ionization energy
and A is the electron affinity. I and A are ground-state energy
differences. Eg is also an excited-state property since it is
the unbound limit of the exciton series. Eg is very difficult to
calculate for periodic systems, since there is no systematic way
of adding/removing one electron to/from the solid in a periodic
calculation, and the bulk limit can only be approached by the
calculation of very big clusters. Many-body methods such as
the GW method [2] calculate Eg and the quasiparticle band
structure accurately, but the computational cost is high.

The density-functional theory (DFT) [3–5] is a formally
exact electronic structure method for the ground-state energy
and electron density with an excellent balance of accuracy and
computational efficiency, which is achieved by mapping the
real interacting system to a fictitious Kohn-Sham (KS) system
of noninteracting electrons with a multiplicative effective
exchange-correlation (xc) potential (the functional derivative
of the exchange-correlation energy with respect to the density).
The exact Kohn-Sham potential yields the exact density but
not the exact quasiparticle band structure and gap. Though the
exact energy functional of the DFT is unknown, there exists a
plethora of approximations, which has been ordered into the
“Jacob’s ladder” [6] hierarchy. The first and the second rungs of
the Jacob’s ladder are the local density approximation (LDA)
and the generalized gradient approximation (GGA), and
they severely underestimate the fundamental gap in periodic
systems. For periodic systems, KS DFT cannot calculate Eg

from its definition, and one commonly approximates Eg with
the KS gap EKS

g = ϵKS
LUMO − ϵKS

HOMO, where ϵKS
HOMO and ϵKS

LUMO
are the KS orbital energies of the highest occupied orbital and
of the lowest unoccupied orbital, respectively. However, EKS

g

is not equal to Eg even with the exact functional, due to the
derivative discontinuity (DD) [7]. The band gap problem has
been an obstacle in the application of DFT to periodic systems.

The generalized Kohn-Sham (gKS) [8] scheme is a different
formulation of the DFT, which allows a nonmultiplicative but
still Hermitian xc potential operator. The gKS gap E

gKS
g =

ϵ
gKS
LUMO − ϵ

gKS
HOMO can be a better approximation to Eg than

is the KS gap [9]. The third rung of the Jacob’s ladder,
the meta-generalized gradient approximation (meta-GGA), is
commonly implemented in the gKS scheme according to the
method of Neumann, Nobes, and Handy (also denoted as gKS
in this paper) [10]. The gKS meta-GGA band gap of periodic
systems improves [11] over the KS GGA gaps as expected. In
this work we find that, with the recently proposed strongly
constrained and appropriately normed (SCAN) functional
[12,13], the gKS meta-GGA gap corrects about 20%–50%
of the difference between the experimental fundamental gap
and the GGA KS gap.

Due to the restriction in the functional form of GGA, a GGA
cannot perform well for finite systems and periodic systems
at the same time [14]. On the other hand, the functional form
of meta-GGA can satisfy more exact conditions and has a
wider range of applicability than the GGA form. The SCAN
functional is a nonempirical functional that satisfies all known
exact constraints appropriate to a semilocal functional, and
is expected to perform well for systems with very different
kinds of bonds. The computational accuracies of the SCAN
functional for many properties improve over those of the
GGAs, with only marginal increase of computational cost
[12]. We find that SCAN also improves band gaps, but the
comparison is between meta-GGA gKS gaps and GGA KS
gaps, which are not the same quantity. It is unclear whether
the KS gap itself is improved, or just the gKS gap is improved.
One needs to do meta-GGA calculations in the KS scheme to
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Simplification of the many-electron problem

The exact ground-state electronic structure is in principle described by a
many-electron wavefunction Ψ0 (x1,x2, . . . ,xN ).

When it comes to describe an extended system, where the number of electrons N
may go to infinity, it is natural to wonder if the wave function is actually a well
defined and reachable mathematical object.

From a practical point of view, this is for sure not the way to go.

State-of-the-art methods in condensed matter physics do not rely on
many-electron wavefunctions.

They use reduced quantities instead.

The most famous one (in the physics community) is the time-ordered one-electron
Green function G(x, t1;x′, t2).

Another important (and simpler) quantity is the electron density

n(r) = −i
∑
σ=± 1

2

lim
t2→t1,t1<t2

G(x, t1;x, t2), where x ≡ (r, σ).

The latter is the basic variable in density-functional theory.
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The time-ordered one-electron Green function

G(x, t1; x′�, t2) =
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The time-ordered one-electron Green function

−i⟨Ψ0 |Ψ̂(x, t1)Ψ̂†(x′�, t2) |Ψ0⟩

G(x, t1; x′�, t2) =

t1 > t2
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The time-ordered one-electron Green function

−i⟨Ψ0 |Ψ̂(x, t1)Ψ̂†(x′�, t2) |Ψ0⟩

G(x, t1; x′�, t2) =

i2 = − 1

t1 > t2
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The time-ordered one-electron Green function

−i⟨Ψ0 |Ψ̂(x, t1)Ψ̂†(x′�, t2) |Ψ0⟩

G(x, t1; x′�, t2) =

Creates an electron at  
position/spin �  at time �  x′� t2

t1 > t2
Removes an electron from  
position/spin �  at time �  x t1
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The time-ordered one-electron Green function

−i⟨Ψ0 |Ψ̂(x, t1)Ψ̂†(x′�, t2) |Ψ0⟩

G(x, t1; x′�, t2) =

Creates an electron at  
position/spin �  at time �  x′� t2

t1 > t2
Removes an electron from  
position/spin �  at time �  x t1
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The time-ordered one-electron Green function

−i⟨Ψ0 |Ψ̂(x, t1)Ψ̂†(x′�, t2) |Ψ0⟩

G(x, t1; x′�, t2) =

Creates an electron at  
position/spin �  at time �  x′� t2

Electron affinity

t1 > t2
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The time-ordered one-electron Green function

−i⟨Ψ0 |Ψ̂(x, t1)Ψ̂†(x′�, t2) |Ψ0⟩

G(x, t1; x′�, t2) =

i⟨Ψ0 |Ψ̂†(x′�, t2)Ψ̂(x, t1) |Ψ0⟩

Creates an electron at  
position/spin �  at time �  x′� t2

Electron affinity

t1 > t2

t1 < t2
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The time-ordered one-electron Green function

−i⟨Ψ0 |Ψ̂(x, t1)Ψ̂†(x′�, t2) |Ψ0⟩

G(x, t1; x′�, t2) =

i⟨Ψ0 |Ψ̂†(x′�, t2)Ψ̂(x, t1) |Ψ0⟩

Creates an electron at  
position/spin �  at time �  x′� t2

Removes an electron from  
position/spin �  at time �  x t1

Electron affinity

t1 > t2

t1 < t2
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The time-ordered one-electron Green function

−i⟨Ψ0 |Ψ̂(x, t1)Ψ̂†(x′�, t2) |Ψ0⟩

G(x, t1; x′�, t2) =

i⟨Ψ0 |Ψ̂†(x′�, t2)Ψ̂(x, t1) |Ψ0⟩

Creates an electron at  
position/spin �  at time �  x′� t2

Removes an electron from  
position/spin �  at time �  x t1

Electron affinity

Ionization

t1 > t2

t1 < t2
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The time-ordered one-electron Green function

G(x, t1; x, t2) =

i⟨Ψ0 |Ψ̂†(x, t1)Ψ̂(x, t1) |Ψ0⟩
t2

t2>t1→ t1

If  �  …x = x′�
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The time-ordered one-electron Green function

G(x, t1; x, t2) =

i⟨Ψ0 |Ψ̂†(x, t1)Ψ̂(x, t1) |Ψ0⟩ = i n(x) Density!
t2

t2>t1→ t1
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