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N-electron Schrodinger equation for the ground state

HUo = Eq¥g

where \IJQE\I/()(Xl,XQ,...,XN), X,L'E(I‘i,ai)E(:Ci,yi,zi,gi::lz%) for iZl,Q,...,N,

—  umniversal kinetic energy operator

—  universal two-electron repulsion operator

—  local nuclear potential operator




(Fictitious) non-interacting electrons
e Solving the Schrodinger equation for non-interacting electrons is easy.

e You “just” have to solve the Schrodinger equation for a single electron.

N

. 1
(T—I—Zv(ri) X)CIDO =Py < {—§Vf+v(r)x} wi(x) =egp0i(x), 1=1,2,...
i=1

Proof: a simple solution to the N-electron non-interacting Schrodinger equation is

N
Dy = p1(x1) X pa(x2) X ... X pN(xN) = H ©w;(x;) < Hartree product!




(Real) interacting many-electron problem
Before addressing the true (interacting) problem we should keep in mind that electrons are fermions.

Consequently, they should be described by Siater determinants instead of Hartree products.

Therefore, in the particular case of two electrons, we have

p1(x1)p2(x2) —> Po = = % [@1(X1)<P2(X2) - 801(X2)S02(X1)]-

1
V2| pa(x1)  pa(x2)

p1(x1)  @1(x2) ‘

When computing the two-electron repulsion energy <<I>0 ‘ Wee (I>0> we describe the so-called Hartree

(i.e. electrostatic) and exchange energies.

Finally, ®¢ cannot be the exact solution to the interacting Schrodinger equation [whatever choice is
made for the spin-orbitals {¢;(x)},_; 5 ]

The energy contribution that is missing is referred to as correlation energy.




(Real) interacting many-electron problem

e Describing interacting electrons (Wee % 0) is not straightforward. Indeed, the exact two-electron
solution W (ry, r2) to the interacting Schrodinger equation cannot be written as ¢(r1)¢(r2):

Uo(ry,re) # @(r1)e(ra).

Proof : Let us assume that we can find an orbital ¢(r) such that A (gp(rl)go(rg)) = FEop(r1)p(ra)
for any r; and rs values. Consequently,

Wee (0(r1)e(r2)) = Bop(r)e(rz) — (T +V ) e(r)e(ra).

Using the definition of the operators and dividing by ¢(r1)p(r2) leads to

Vi, e(r2)

—v(r1) —v(ra).

In the limitro — r; =r, itcomes Vr, Ej — 2v(r) = +o0 absurd!
%




Mapping the interacting problem onto a non-interacting one

Is it possible to extract the exact (interacting) ground-state energy from a non-interacting system?
If yes, then it would lead to a huge simplification of the problem.

Nevertheless, the question sounds a bit weird since the two-electron repulsion is completely ignored
In a non-interacting system.

One way to establish a connection between interacting and non-interacting worlds is to use the
electron density as basic variable (instead of the wavefunction).

N
Electron density for a non-interacting system: ng,(r) = Z Z i (r, 0)]?

11 2=1
J—:i:2 v

Electron density for an interacting system:

mag () =N 37 [ dxa . [ dx [ Bolr,o0xanxn)l?

o=+1




Mapping the interacting problem onto a non-interacting one

There is of course no reason to believe that these two densities are equal.

However, we may assume that it is possible to adjust the local potential in the non-interacting system
such that the two densities become equal.

This “magical” potential is known as the Kohn—-Sham (KS) potential.

In summary:

interacting problem non-interacting KS problem

A

Wee 0
v(r) v 3(r)

ny, (r) MgKs (r)

Questions to be answered:
(1) If v¥5(r) exists, is it unique?  ves!

(2) Does the knowledge of ng,(r) gives access (in principle) to Eg?  yes!




Wave function theory

> NZ JdXZ [dXN |\P0(r’ U,XZ, --"XN) |2

o

Eo — <\P0|FI|‘P0>

[dxl dez... JdXN PEX, X, .., Xy) X HY (X}, Xy, ..., Xy)




Wave function theory Density functional theory

Hohenberg-Kohn theorem
- ny(r)

Eo — <\P0|FI|T0>




Wave function theory Density functional theory

1 ()

Eo — <\P0|FI|T0>




Wave function theory Density functional theory

1 ()

|
EO — <\PO|FI| T0> = F [(I)(I)<S] <; — NZ Idxz...[de | DKS(r, 6, %y, ..., Xy) |

Kohn-Sham DFT




Wave function theory Density functional theory

1 ()

|
EO — <\PO|FI| lIJ()) = F [(I)(I)<S] <; — NZ Idxz...[de | DKS(r, 6, %y, ..., Xy) |

Kohn-Sham DFT

Note that E, # (OKS| H|OK5)!




Introduction to Kohn-Sham density-functional theory

The Nobel Prize in Chemistry 1998
Walter Kohn - Facts

Walter Kohn
Born: 9 March 1923, Vienna, Austria

Died: 19 April 2016, Santa Barbara, CA, USA

Affiliation at the time of the award: University of California, Santa Barbara, CA, USA
Prize motivation: "for his development of the density-functional theory"
Field: theoretical chemistry

Prize share: 1/2
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Three things to remember before we start ...

e The following expression for the expectation value of the one-electron potential energy in terms of the
electron density will be used intensively in the rest of this lecture:

N
<\IJ ;v(ri)x > = /]1%3 dr v(r)ng(r) = (v|nyg)

e Note that a constant shift v(r) — v(r) — p in the local potential does not affect the ground-state
wavefunction (and therefore it does not atfect the ground-state density):




Three things to remember before we start ...

e Rayleigh—-Ritz variational principle: the exact ground-state energy is a lower bound for the
expectation value of the energy. The minimum is reached when the trial quantum state |¥) equals
the ground state |¥):

Eo = min (Y| H|¥) _ (Wo|H|To)
v (P) (Wo|Wo)

Proof: VW, |¥) =Y C;[¥;) and (V|H|¥) - Eo(¥[¥) =Y |CI|2(EI . Eo) > 0.
>0 1>0

e The ground state is usually normalized ((\Ifo |Wo) = 1) so that the variational principle can be

rewritten as follows,

Eq = i U|H W) = (Uo|H|U
0 \y,<gl|1qr}>:1< |H|W) = (Vo |H|¥o)

e Comment: If |[¥g) is not degenerate, any normalized state |¥) that is not equal to |¥g) is such that
(U|H|¥)>Ey.




First Hohenberg—Kohn theorem
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First Hohenberg—Kohn theorem

e Notethat v — ¥y — Ej

— N = Ny,

e HK1: Hohenberg and Kohn* have shown that, in fact, the ground-state electron density fully
determines (up to a constant) the local potential v. Therefore

no —->v— VYo — Ep

e In other words, the ground-state energy is a functional of the ground-state density: Eg = E[no].

Proof (part 1):

Let us consider two potentials v and v’ that differ by more than a constant, which means that v(r) — v/ (r)
varies with r. In the following, we denote W and W, the associated ground-state wavefunctions with
energies Eg and E|), respectively.

*P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).




First Hohenberg—Kohn theorem

If g = U then

N
(fu(ri) — v’(ri)) x Wq qu(ri) X Wy — o' (r;) x ¥
i=1 i=1

N N
<T—|— Weeo -+ Zv(ri)x> Uy — <T—|— Weeo -+ Zv’(rﬂx) \116

1=1
EoUo — ELU)

=1

(Eo — E{j) x ¥

so that, in the particular case ri; =r2 =... =rpy =r, we obtain

v(r) —v'(r) = (Eo — E})/N —  constant (absurd !)

Therefore Vo and W(, cannot be equal.




First Hohenberg—Kohn theorem

Proof (part 2): Let us now assume that W and ¥(, have the same electron density ng.

According to the Rayleigh—Ritz variational principle

N

EO<<%T+W%+ZU(1~Z-)>< %> and E) <

1=1
N 7
'

E{ + (v —v'|no)

thus leading to

0< Eg—E)j—(v—2"|np) <0

*P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

N
<\If0 T+ Wee + Y _v'(ri)x
=1

\ .

W

)

~~

Eo — (v —v'|ng)

absurd !




Second Hohenberg—Kohn theorem

HK2: The exact ground-state density ng(r) of the electronic Hamiltonian

N
I:I[’Une] = T + Wee + Z’Une(ri)x
1=1

minimizes the energy density functional FE[n] = F[n] + / dr vpe(r)n(r),
R3

where the Hohenberg-Kohn universal functional F'[n] is defined as

Fln] = (O[n]|T + Wee|¥[n]),

and the minimum equals the exact ground-state energy Ejy:

min E[n] = E[ng] = Eo

n

Comment: we know from HK1 that n(r) — vn|/(r) — VYv[n]] = ¥n]

-~

ground-state wavefunction with density n.




Second Hohenberg and Kohn theorem

Proof:

e for any density n(r), ¥[n] is well defined according to HK1 and

(U[n]|Hlvne][¥[n]) > Eo

(W[n][T+ Wee W [n]) + /RS dr vne(r) gy (£) > Fo

7

~~

N —
Fn] n(r)

thus leading to| E[n] > Eq

e When n(r) equals the exact ground-state density no(r):
no(r) — ovne(r) — VY[ng] = Y]vne] = Yo

Eno] = (Uo|T + Wee o) + /

5 dr 'Une(r)nO(r) — <\IJO|T + Wee + Vne|\IJO> = Eo
R




Kohn—-Sham DFT (KS-DFT)

e The HK theorems apply to non-interacting electrons:

interacting problem non-interacting KS problem

0
v [n](r)

CI)KS [n]

Tun] = <<I>Ks[n]‘T|(I>KS[n]>

ngKs [, (r) = n(r)

e KS decomposition of the universal HK functional:

Fn] = Ts[n] + Fuxc[n]

W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

yn(r)n(r’)

1
with  Fpyxc[n] = = / / drdr
2 Jr3 JRr3 lr —r/|

+ Fxc[n].




Mathematical interlude: functional derivative

Let f:x+— f(z) bea function of x. The derivative of f at z = z¢ is obtained from the Taylor
expansion (dz is a small variation of z around x)

f(zo +02) = flao) + <
T

Let S :n+—— S[n] bea functional of the density n. The functional derivative of S at n = ng is by

6S
definition a function of r that is denoted [no]. The latter is obtained from the Taylor expansion

on(r)

(0n(r) is a small variation of the density around ng):

6S 1 , 528 ,
S[no+on| = S[no]—i—/RS dr 5r(r) [no] ><5n(r)—|—§ /R3 /R3 drdr S (r)on(r’) [no|xon(r)én(r’)+...

Example: S[n] 52?;) [no] = 2no(r)




Lieb maximization

e Let us introduce the partially-interacting universal HK functional:

FA\[n] = <\I!>‘[n]‘T  AWeo qﬂ[n]> ,

N
where 0 < A <1 and ¥*[n] is the ground-state wavefunction of T + AWee + Z v [n](r;) %
i=1

with density n, ie.|ngxp, (r) =n(r) |

e Notethat F*=![n] = F[n] and F*=%[n] = Ts[n].

e Introducing F'*[n] is convenient for treating both interacting A = 1 and non-interacting A = 0
problems simultaneously (and for connecting them ...).




Lieb maximization

e Variational HK theorem for a partially-interacting system with any local potential v and ground-state
energy E*[v]:

n

Yo, E ]:min{Fk[nH/dm(r)n(r)} & Yo,Vn, EMo] < FA[n]—I—/drv(r)n(r)

& Yo, Vn, FA[n]ZEA[v]—/drv(r)n(r)

v

& |Vn, Fn :maX{EA[v]— / drv(r)n(r)}

e The maximizing potential is v*[n]!

e If v and n were just numbers (not functions of r): F*(n) = max {]-"A (v, n)} = FA (fu>‘ (n), n)

where F*(v,n) = E*(v) — vn.

OF*(v,n)
ov

OF(n)

=0 =

v=v*(n)

e Stationarity condition:




e We deduce from the stationarity condition of the maximizing potential v* [n] that

S§F [n]

_—’U}\n r.
Sy = l®)

e Let us return to the real system we are interested in with nuclear potential v,e and ground-state
density no.

A:l[

e Since vpe = v no], the KS potential we are looking for is

v*S[no] (r)
r) + (v*=Inol(r) = v* [no] (1))

)
SFA=1 [no] B 5F>‘:O[n0] >
on(r) on(r)

)

Une(r) + <

6F[no] 5Ts[no]>
on(r) on(r)

0 Exixc[no]




Self-consistent KS equations

(~5 72+ vne(r) + e 100]) s ) — 68165 g

o) = 3 [k o)

J::t% i=1

Important conclusion: if we know the xc functional E«.[n|, we can determine the ground-state density
self-consistently (and therefore the ground-state energy), in principle exactly.

In KS-DFT, the physical ground-state enerqy reads

Eo = Ta[no] + Eitxclno] + /R drvne(r)no(r),

where Ti[ng] = <<I>%<S’T‘<I>(I)<S> =




