Uniform coordinate scaling and adiabatic connection formalism in density-functional theory

Emmanuel Fromager

Laboratoire de Chimie Quantique, Université de Strasbourg, France

fromagere@unistra.fr

Exact exchange and correlation functionals

• Decomposition into *exchange* and *correlation* contributions:

 $E_{\rm xc}[n] = E_{\rm x}[n] + E_{\rm c}[n].$

• *Exact* density-functional exchange energy:

$$E_{\rm x}[n] = \left\langle \Phi^{\rm KS}[n] \middle| \hat{W}_{\rm ee} \middle| \Phi^{\rm KS}[n] \right\rangle - E_{\rm H}[n].$$

• *Exact* correlation functional:

$$\begin{aligned} E_{\rm c}[n] &= F[n] - T_{\rm s}[n] - E_{\rm H}[n] - E_{\rm x}[n] \\ &= \left\langle \Psi[n] \right| \hat{T} + \hat{W}_{\rm ee} \left| \Psi[n] \right\rangle - \left\langle \Phi^{\rm KS}[n] \right| \hat{T} + \hat{W}_{\rm ee} \left| \Phi^{\rm KS}[n] \right\rangle. \end{aligned}$$

æ

Uniform coordinate scaling in wavefunctions and densities

- Let $\gamma > 0$ be a scaling factor.
- Applying a uniform coordinate scaling consists in multiplying each space coordinate by γ:

$$\mathbf{r} \equiv (x, y, z) \quad \rightarrow \quad \gamma \mathbf{r} \equiv (\gamma x, \gamma y, \gamma z)$$
$$d\mathbf{r} = dx dy dz \quad \rightarrow \quad \gamma^3 d\mathbf{r}$$

• Uniform coordinate scaling applied to the *density*:

$$n(\mathbf{r}) \rightarrow n_{\gamma}(\mathbf{r}) = \gamma^3 n(\gamma \mathbf{r})$$

• Uniform coordinate scaling applied to an *N*-electron *wavefunction* [spin is unaffected by the scaling]:

$$\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N) \quad \rightarrow \quad \Psi_{\gamma}(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N) = \gamma^{\frac{3N}{2}} \Psi(\gamma \mathbf{r}_1,\gamma \mathbf{r}_2,\ldots,\gamma \mathbf{r}_N)$$

A B F A B F

EXERCISE

- (1) Show that, if n integrates to N, then n_{γ} also integrates to N.
- (2) Show that, if Ψ is normalized, then Ψ_{γ} is also normalized.
- (3) Show that the density of Ψ equals n if and only if the density of Ψ_{γ} equals n_{γ} .

Exact scaling relations for $T_{\mathrm{s}}\left[n ight]$ and $E_{\mathrm{x}}[n]$

- We want to see how (some) universal density functionals are affected by the uniform coordinate scaling.
- We start with the simplest one, namely the Hartree functional $E_{\rm H}[n]$.

EXERCISE

Show that the following scaling relation is fulfilled,

 $E_{\mathrm{H}}[n_{\gamma}] = \gamma E_{\mathrm{H}}[n].$

• It can also be shown that the non-interacting kinetic energy and exact exchange energy functionals fulfill the following scaling relations:

$$\begin{array}{lll} T_{\rm s}\left[n_{\gamma}\right] &=& \gamma^2 T_{\rm s}\left[n\right], \\ E_{\rm x}[n_{\gamma}] &=& \gamma E_{\rm x}[n]. \end{array}$$

EXERCISE

For that purpose, write the variational principle for the KS Hamiltonian $\hat{T} + \sum_{i=1}^{N} v^{\text{KS}}[n](\mathbf{r}_i) \times$, consider trial wavefunctions Ψ with density n [we denote $\Psi \to n$] and conclude that $T_{\text{s}}[n] = \min_{\Psi \to n} \langle \Psi | \hat{T} | \Psi \rangle$. Deduce that $\Phi_{\gamma}^{\text{KS}}[n] = \Phi^{\text{KS}}[n_{\gamma}]$.

Adiabatic connection formalism

• Let us consider the *partially-interacting* Schrödinger equation

$$\left(\hat{T} + \lambda \hat{W}_{\rm ee} + \sum_{i=1}^{N} v^{\lambda}(\mathbf{r}_i) \times \right) \Psi^{\lambda} = E^{\lambda} \Psi^{\lambda},$$

where $0 \leq \lambda \leq 1$.

- The potential $v^{\lambda}(\mathbf{r})$ is adjusted such that the ground-state density constraint $n_{\Psi^{\lambda}}(\mathbf{r}) = n(\mathbf{r})$ is fulfilled for any value of λ in the range $0 \le \lambda \le 1$.
- Note that both Schrödinger and Kohn–Sham equations are recovered when $\lambda = 1$ and $\lambda = 0$, respectively.
- Varying λ continuously from 0 to 1 establishes a (so-called adiabatic) connection between the real (interacting) and fictitious (non-interacting) Kohn–Sham worlds.

イロン イ理 とくほ とくほ とう

EXERCISE

(1) Prove the Hellmann–Feynman theorem
$$\frac{\mathrm{d}E^{\lambda}}{\mathrm{d}\lambda} = \left\langle \Psi^{\lambda} \middle| \frac{\partial \hat{H}^{\lambda}}{\partial \lambda} \middle| \Psi^{\lambda} \right\rangle,$$
where $\hat{H}^{\lambda} = \hat{T} + \lambda \hat{W}_{\mathrm{ee}} + \sum_{i=1}^{N} v^{\lambda}(\mathbf{r}_{i}) \times.$

(2) Deduce that

$$E_{c}[n] = \int_{0}^{1} \frac{d}{d\lambda} \left[E^{\lambda} - (v^{\lambda}|n) \right] d\lambda - \left\langle \Psi^{\lambda=0} \middle| \hat{W}_{ee} \middle| \Psi^{\lambda=0} \right\rangle$$
$$= \int_{0}^{1} \left[\left\langle \Psi^{\lambda} \middle| \hat{W}_{ee} \middle| \Psi^{\lambda} \right\rangle - \left\langle \Psi^{\lambda=0} \middle| \hat{W}_{ee} \middle| \Psi^{\lambda=0} \right\rangle \right] d\lambda$$

æ

<ロト < 団ト < 団ト < 団ト