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Exact exchange and correlation functionals

Decomposition into exchange and correlation contributions:

Exc[n] = Ex[n] + Ec[n].

Exact density-functional exchange energy:

Ex[n] =
〈

ΦKS[n]
∣∣∣ Ŵee

∣∣∣ΦKS[n]
〉
− EH[n].

Exact correlation functional:

Ec[n] = F [n]− Ts[n]− EH[n]− Ex[n]

= 〈Ψ[n]| T̂ + Ŵee |Ψ[n]〉 −
〈

ΦKS[n]
∣∣∣ T̂ + Ŵee

∣∣∣ΦKS[n]
〉
.
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Uniform coordinate scaling in wavefunctions and densities

Let γ > 0 be a scaling factor.

Applying a uniform coordinate scaling consists in multiplying each space
coordinate by γ:

r ≡ (x, y, z) → γr ≡ (γx, γy, γz)

dr = dxdydz → γ3dr

Uniform coordinate scaling applied to the density:

n(r) → nγ(r) = γ3n(γr)

Uniform coordinate scaling applied to an N -electron wavefunction [spin is
unaffected by the scaling]:

Ψ(r1, r2, . . . , rN ) → Ψγ(r1, r2, . . . , rN ) = γ
3N
2 Ψ(γr1, γr2, . . . , γrN )
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Uniform coordinate scaling in wavefunctions and densities

EXERCISE

(1) Show that, if n integrates to N , then nγ also integrates to N .

(2) Show that, if Ψ is normalized, then Ψγ is also normalized.

(3) Show that the density of Ψ equals n if and only if the density of Ψγ equals nγ .
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Exact scaling relations for Ts [n] and Ex[n]

We want to see how (some) universal density functionals are affected by the
uniform coordinate scaling.

We start with the simplest one, namely the Hartree functional EH[n].

EXERCISE

Show that the following scaling relation is fulfilled,

EH[nγ ] = γEH[n].

It can also be shown that the non-interacting kinetic energy and exact exchange
energy functionals fulfill the following scaling relations:

Ts [nγ ] = γ2Ts [n] ,

Ex[nγ ] = γEx[n].
EXERCISE

For that purpose, write the variational principle for the KS Hamiltonian

T̂ +
∑N
i=1 v

KS[n](ri)×, consider trial wavefunctions Ψ with density n [we denote

Ψ→ n] and conclude that Ts [n] = min
Ψ→n

〈Ψ|T̂ |Ψ〉. Deduce that ΦKS
γ [n] = ΦKS[nγ ].
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Adiabatic connection formalism

Let us consider the partially-interacting Schrödinger equation

(
T̂ + λŴee +

N∑
i=1

vλ(ri)×

)
Ψλ = EλΨλ,

where 0 ≤ λ ≤ 1.

The potential vλ(r) is adjusted such that the ground-state density constraint
nΨλ(r) = n(r) is fulfilled for any value of λ in the range 0 ≤ λ ≤ 1.

Note that both Schrödinger and Kohn–Sham equations are recovered when λ = 1
and λ = 0, respectively.

Varying λ continuously from 0 to 1 establishes a (so-called adiabatic) connection
between the real (interacting) and fictitious (non-interacting) Kohn–Sham worlds.

Emmanuel Fromager (UdS) EUR: Theory of extended systems 6 / 7



Adiabatic connection formalism

EXERCISE

(1) Prove the Hellmann–Feynman theorem
dEλ

dλ
=

〈
Ψλ

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣Ψλ

〉
,

where Ĥλ = T̂ + λŴee +

N∑
i=1

vλ(ri)×.

(2) Deduce that

Ec[n] =

∫ 1

0

d

dλ

[
Eλ − (vλ|n)

]
dλ−

〈
Ψλ=0

∣∣∣Ŵee

∣∣∣Ψλ=0
〉

=

∫ 1

0

[〈
Ψλ
∣∣∣Ŵee

∣∣∣Ψλ
〉
−
〈

Ψλ=0
∣∣∣Ŵee

∣∣∣Ψλ=0
〉]

dλ
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