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Exact exchange and correlation functionals

@ Decomposition into exchange and correlation contributions:
Exc[n] = Ex[n] + Ec[n].
@ Exact density-functional exchange energy:

Ey[n] = <<1>K5[n]‘ Wee ‘@KS [n}> — Euln).

@ Exact correlation functional:

E.[n] F[n] — Ty[n] — Eu[n] — Ex[n]

= (U T+ Wee [¥0]) — (@*[]| T+ Wee

PKS [n]> .
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Uniform coordinate scaling in wavefunctions and densities

@ Let v > 0 be a scaling factor.

@ Applying a uniform coordinate scaling consists in multiplying each space
coordinate by ~:

r=(z,y,2) — r=(72,7Y,72)
dr =dzdydz — ~*dr

@ Uniform coordinate scaling applied to the density:

n(r) = |ny(r) =~"n(yr)

@ Uniform coordinate scaling applied to an N-electron wavefunction [spin is
unaffected by the scaling]:

3N
2

U(ri,re,...,rn) — Y(ri,ro,...,rx)=7v 2 ¥(yri,yre,...,7rn)
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Uniform coordinate scaling in wavefunctions and densities

(1) Show that, if n integrates to N, then n. also integrates to N.

(2) Show that, if ¥ is normalized, then ¥, is also normalized.

(3) Show that the density of ¥ equals n if and only if the density of U, equals n,.
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Exact scaling relations for

@ We want to see how (some) universal density functionals are affected by the
uniform coordinate scaling.

@ We start with the simplest one, namely the Hartree functional Ew[n].

Show that the following scaling relation is fulfilled,

Euln,| = vEuln].

@ It can also be shown that the non-interacting kinetic energy and exact exchange
energy functionals fulfill the following scaling relations:

TS [n"/] = 72TS [TL} )
Ex[ny] = ~Ex[n].

For that purpose, write the variational principle for the KS Hamiltonian

T+ SN, v®5[n](r;) %, consider trial wavefunctions ¥ with density n [we denote

¥ — n] and conclude that T3 [n] = ‘gnin (U|T'|¥). Deduce that OX5[n] = ®*5[n,].
—n
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Adiabatic connection formalism

@ Let us consider the partially-interacting Schrédinger equation

N
(T AW + 30 (1) % >q, _ B,

i=1

where 0 < A < 1.

@ The potential v*(r) is adjusted such that the ground-state density constraint
ng (r) =n(r) is fulfilled for any value of X in the range 0 < A < 1.

@ Note that both Schrodinger and Kohn—-Sham equations are recovered when A =1
and A = 0, respectively.

@ Varying X\ continuously from 0 to 1 establishes a (so-called adiabatic) connection
between the real (interacting) and fictitious (non-interacting) Kohn—Sham worlds.
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Adiabatic connection formalism

A 293

(1) Prove the Hellmann—Feynman theorem % = <\IJA aa}i \I/)‘>,

N
where H =T + AWee + > 0™ (1:) x.

i=1
(2) Deduce that

En] = /1 L2~ )] ax - (0= w2=0)
o dA

/ (i

) — (9| W

\Iﬂzoﬂ dA
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