E_{X} : Bloch's theorem (pash'al solution) (5) For a fixed k value we have to solve $\left[\frac{(k-k')}{k} \mathcal{L} \int_{-\infty}^{\infty} C_{\rho}(k-k') + \frac{\sum_{k''} V_{k',k'}}{k'_{k,k'}} C_{\rho}(k-k'') = 0 \leftarrow \mathcal{E}_{q}[2]$ * We introduce the k-dependent vector X(k) whose components are $X(k)$ with $k' \in \frac{2\pi}{a}$ $\frac{1}{2}$ i.e. $X(k) = \left| \frac{C_{\varphi}(k+2\pi)}{C(k+2\pi)} \right|$ $C_{\varphi}(\mathbf{k})$ $\frac{H_{CS} \text{rech}}{has \text{an}}$ $\frac{C_{\varphi}(k-2\pi)}{C_{\varphi}(k-2\pi)}$ $C_{\rho}(k-k^{\prime})$ infinite dimension $(\text{dimension of }L)$ * Eq. (2) can be rewritten as follows $[(k_{-}k)^{2}-\sum K_{k}(k)+\sum_{k^{\prime}}V_{k^{\prime}}(k)=0$ $\left(\sum_{k|n} \delta_{k|k|n} (k - k')^{2} \chi_{k|n}(k)\right) - \epsilon \chi_{k|n}(k)$ $\sum_{k''} \left[\left(\frac{k}{2} k'' + \frac{1}{2} \right)^2 \frac{1}{2} k'' + \frac{1}{2} \frac{1}{2} \frac{1}{2} k'' \left(\frac{k}{2} \right) \right] = \sum_{k''} \left(\frac{k}{2} \right)^2$ 11 definition H $k'k''$ (k) + Hamiltonian matrix element
 $\left(\frac{H(k)}{4}X(k)\right)_{k'} = \mathcal{E}\left[\frac{X}{4}(k)\right]_{k'}$ $\forall k'$ Hamiltonian metrix $\Leftrightarrow \quad \boxed{\frac{\mu(k)}{k}(k)} = \frac{\sum(k)}{k}}$ $\in \mathbb{q}[3]$

 $Eq.(3)$ is solved for a given k value. Thoefore, $E = E(k)$ will depend $m k$. (6) Eg. (3) is an eigenvalue equation. The number of solutions is 'the rank of the Hamiltonian matrix (infinite here). We l_{L} denote $\chi^{(h)}(h)$ one solution: $H(k)$ $X^{(k)}(k) = \mathcal{E}^{(h)}(k)$ $X^{(h)}(k)$ $\overline{}$ nolecular orbital" molements orbital energy The components of this rector in the chemists language will be $\left\{\frac{C_{\varphi}^{(n)}(k-k')}{k} \right\}_{k \in \frac{2\pi}{n} \mathbb{Z}}$ **/** What is the one-electron wavefunction that corresponds to these coefficients? He start from the general expression $\Psi(x) = \int^{100} dk' C_{\varphi}(k) e^{ik'x}$ The only colfficients $C_g(k')$ that are in fact needed to express a solution to the Schiodings equation are $C_{\pmb{\varphi}}(\pmb{k}$) C_{φ} (k - K) where k is fixed and K varies in $\frac{2\pi}{n}$ The solution $\varphi^{(n)}(k)$ x) which is ^a function of ^x where ^h and ^k are fixed is obtained from the following simplification $\int d\mathbf{k}'$ \longrightarrow k^{\prime} = $k - k^{\prime}$ k' ϵ $\frac{2\pi}{\alpha}$ $\frac{1}{2}$ In other words, the only values of k' in IR that are needed to express a solution to the Schoolingo equation are represed as $k - \frac{2Dm}{a}$ where $h\in$ \mathcal{U}_{1} .

Thus leading to $\frac{\varphi^{(n)}(k, z)}{s} = \frac{\sum_{k' \in \frac{2\pi}{a} } C_{\varphi}^{(k)}(k - k') e^{i(k - k')} z}{k' \varepsilon \frac{2\pi}{a} 2}$ $E_9.14$ fixed (7) According to Eq. (4) $\varphi^{(h)}(k,x) = \sum_{k \in \mathbb{Z}} \frac{C^{(h)}(k-k)}{\varphi^{(h)}(k-k)} e^{ikx} e^{-ik'x}$ $= e^{ikx}\sum_{k' \in 2\pi} C_{\varphi}^{(h)}(k,k') e^{-ik'x}$ $\lim_{k \to 0}$ Note that $\mu^{(h)}(k,x)$ is periodic: $u^{(n)}(k, x+a) = \sum_{k|e}^{n} \frac{C^{(n)}(k,k') e^{-ik'x} e^{-ik'x}}{e^{k'x} e^{-ik'x}}$ $sin \alpha$ $k' = 2\pi m'$ where $m' \in \mathbb{Z}$ we have $e^{-jk'\alpha} = e^{-k\alpha}$ $= +1$ There $\mu^{(n)}(k, x_{+}a) = \mu^{(n)}(k, x_{+})$