EUR Master "Chemistry of Complex Systems"

Exam in theory of extended systems (*DFT part***)**

March 2020

one-hour exam

Neither documents nor calculators are allowed.

1. Questions on the lecture material (9 points)

- a) **[3 pts]** Give the expression of the density-functional Hartree energy $E_H[n]$. Is it a universal functional of the density? Within the local density approximation (LDA), a density functional $S[n]$ is written as $S[n] = \int d\mathbf{r} s(n(\mathbf{r}))n(\mathbf{r})$, where *s* is a *function* of the density at position **r**. Is $E_H[n]$ an LDA-type functional?
- b) **[3 pts]** Does the Hartree functional describe the two-electron repulsion in molecules and solids exactly? If not, what are the missing contributions (discuss briefly their physical meaning)?
- c) **[3 pts]** We consider, for simplicity, the expression in *one dimension* of the Kohn–Sham (KS) potential at the LDA level of approximation: $v_{\text{LDA}}^{\text{KS}}(x) \equiv v(x) + \int dx' \frac{n(x')}{|x'-x'|}$ $\frac{n(x')}{|x'-x|} + \frac{\partial \varepsilon_{\rm xc}(n)}{\partial n}$ *∂n* $\Big|_{n=n(x)}$, where $v(x)$ is the nuclear potential with periodicity *a* [*i.e.*, $v(x+a) = v(x)$] in the extended system under study. We know from Bloch's theorem that, when the two-electron repulsion is neglected, the (one-electron) solutions to the Schrödinger equation can be written as $\varphi_{l,k}(x) = e^{ikx} \times u_{l,k}(x)$ where *l* is a quantum number and $u_{l,k}(x)$ has the periodicity a of the lattice. Does Bloch's theorem also hold for the KS orbitals? **Hint:** Show that the density $n(x) \equiv$ occupied \sum *l,k* $|\varphi_{l,k}(x)|^2$, and therefore the KS-LDA potential, is periodic. Conclude.

2. Problem: Hohenberg–Kohn theorem for *N***-centered ensembles (12 points)**

The purpose of this exercise is to prove that the fundamental gap is a functional of the so-called Ncentered ensemble density. The formulation of a Kohn–Sham density-functional theory (KS-DFT) in this context is then contemplated.

Let us consider an $\mathcal N$ -electron system where $\mathcal N$ can take three different positive integer values: *N* (which is the so-called central number of electrons), $N-1$, or $N+1$. The corresponding normalized ground-state wavefunctions $\Psi_{\mathcal{N}}$ fulfill the regular Schrödinger equation $\left|\hat{H}[v]\Psi_{\mathcal{N}}=E_{\mathcal{N}}\times\Psi_{\mathcal{N}}\right|$ where the

 $\mathcal{N}\text{-electron Hamiltonian operator reads } \left| \hat{H}[v] = \hat{T} + \hat{W}_{\text{ee}} + \sum_{\mathbf{p}} \hat{W}_{\text{ee}} \right|$ $\mathcal N$ *i*=1 $v(\mathbf{r}_i) \times \vert, \hat{T}$ and \hat{W}_{ee} being the kinetic and two-electron repulsion energy operators, respectively, and $v(\mathbf{r})$ is the local nuclear potential.

- a) [2 pts] Let us consider a potential $v'(\mathbf{r})$ that differ from $v(\mathbf{r})$ by more than a constant. We denote $\Psi'_{\mathcal{N}}$ and $E'_{\mathcal{N}}$ the \mathcal{N} -electron ground-state wavefunction and energy that are obtained by solving the Schrödinger equation with the Hamiltonian $\hat{H}[v']$. Show that $\Psi'_{\mathcal{N}}$ cannot be solution to the Schrödinger equation with the Hamiltonian $\hat{H}[v]$. **Hint**: Assume that $\hat{H}[v]\Psi'_{\mathcal{N}} = \mathscr{E}'_{\mathcal{N}}\Psi'_{\mathcal{N}}$ and deduce that $(\hat{H}[v] - \hat{H}[v'])\Psi'_{\mathcal{N}} =$ $(\mathscr{E}'_{\mathcal{N}} - E'_{\mathcal{N}}) \times \Psi'_{\mathcal{N}} = \sum_{i=1}^{\mathcal{N}} \left(v(\mathbf{r}_i) - v'(\mathbf{r}_i) \right) \times \Psi'_{\mathcal{N}}$, thus leading to $v(\mathbf{r}) - v'(\mathbf{r}) = (\mathscr{E}'_{\mathcal{N}} - E'_{\mathcal{N}}) / \mathcal{N}$ when $\mathbf{r}_1 = \mathbf{r}_2 = \ldots = \mathbf{r}_N = \mathbf{r}$. Conclude.
- b) [1 pt] Explain briefly, in the light of question 2. a), why $\langle \Psi'_{N} | \hat{H} [v] | \Psi'_{N} \rangle > E_{\mathcal{N}}$.
- c) **[1 pt]** Let ξ be a real number in the range $0 \leq \xi \leq 1/2$. We denote $E(\xi)$ the so-called *N*-centered ensemble energy, which is defined as follows: $E(\xi) = \xi \times (E_{N+1} + E_{N-1}) + (1 - 2\xi) \times E_N$. Explain why the slope $\frac{dE(\xi)}{d\xi}$ of the *N*-centered ensemble energy, which is referred to as the fundamental gap, characterizes the ability of the system under study to conduct electricity.
- d) **[1 pt]** Show that, according to question 2. b),

$$
\xi\bigg(\langle\Psi'_{N+1}|\,\hat{H}[v] \,|\Psi'_{N+1}\rangle + \langle\Psi'_{N-1}|\,\hat{H}[v] \,|\Psi'_{N-1}\rangle\bigg) + (1-2\xi)\langle\Psi'_{N}|\,\hat{H}[v] \,|\Psi'_{N}\rangle > E(\xi). \tag{1}
$$

e) **[2 pts]** We now introduce the so-called *N*-centered ensemble density:

$$
n(\mathbf{r}) = \xi \times \left(n_{\Psi_{N+1}}(\mathbf{r}) + n_{\Psi_{N-1}}(\mathbf{r}) \right) + (1 - 2\xi) \times n_{\Psi_{N}}(\mathbf{r}). \tag{2}
$$

Show that, according to Eq. (1), $E'(\xi) + (v - v'|n') > E(\xi)$, where $(v|n) \equiv \int d\mathbf{r} v(\mathbf{r})n(\mathbf{r}); E'(\xi)$ and n' are the *N*-centered ensemble energy and density generated from the potential v' , respectively.

- f) **[1 pt]** Similarly we have $E(\xi) + (v' v|n) > E'(\xi)$. Show that it is absurd to assume that the densities n and n' are equal. Conclude.
- g) [2 pts] Let $F^{\xi}[n'] = E'(\xi) (v'|n')$. Show that, for a fixed ξ value, $F^{\xi}[n']$ is a universal functional of the *N*-centered ensemble density n' and prove, by referring to question 2. e), the following variational principle: $E(\xi) = \min_{n'}$ $\{F^{\xi}[n'] + (v|n')\}.$
- h) **[2 pts]** Explain how, in the light of the previous questions, one could derive a Kohn–Sham DFT for *N*-centered ensembles. How different and useful would it be compared to the regular (*N*-electron) formulation of KS-DFT?