EUR Master "Chemistry of Complex Systems"

Exam in theory of extended systems (DFT part)

March 2020

one-hour exam

Neither documents nor calculators are allowed.

1. Questions on the lecture material (9 points)

- a) [3 pts] Give the expression of the density-functional Hartree energy $E_{\rm H}[n]$. Is it a universal functional of the density? Within the local density approximation (LDA), a density functional S[n] is written as $S[n] = \int d\mathbf{r} \ s(n(\mathbf{r}))n(\mathbf{r})$, where s is a function of the density at position \mathbf{r} . Is $E_{\rm H}[n]$ an LDA-type functional?
- b) [3 pts] Does the Hartree functional describe the two-electron repulsion in molecules and solids exactly?If not, what are the missing contributions (discuss briefly their physical meaning)?
- c) [3 pts] We consider, for simplicity, the expression in one dimension of the Kohn–Sham (KS) potential at the LDA level of approximation: $v_{\text{LDA}}^{\text{KS}}(x) \equiv v(x) + \int dx' \frac{n(x')}{|x'-x|} + \frac{\partial \varepsilon_{\text{xc}}(n)}{\partial n} \Big|_{n=n(x)}$, where v(x) is the nuclear potential with periodicity a [*i.e.*, v(x+a) = v(x)] in the extended system under study. We know from Bloch's theorem that, when the two-electron repulsion is neglected, the (one-electron) solutions to the Schrödinger equation can be written as $\varphi_{l,k}(x) = e^{ikx} \times u_{l,k}(x)$ where l is a quantum number and $u_{l,k}(x)$ has the periodicity a of the lattice. Does Bloch's theorem also hold for the KS orbitals? Hint: Show that the density $n(x) \equiv \sum_{l,k}^{\text{occupied}} |\varphi_{l,k}(x)|^2$, and therefore the KS-LDA potential, is periodic. Conclude.

2. Problem: Hohenberg–Kohn theorem for N-centered ensembles (12 points)

The purpose of this exercise is to prove that the fundamental gap is a functional of the so-called N-centered ensemble density. The formulation of a Kohn–Sham density-functional theory (KS-DFT) in this context is then contemplated.

Let us consider an \mathcal{N} -electron system where \mathcal{N} can take three different positive integer values: N (which is the so-called central number of electrons), N - 1, or N + 1. The corresponding normalized ground-state wavefunctions $\Psi_{\mathcal{N}}$ fulfill the regular Schrödinger equation $\widehat{H}[v]\Psi_{\mathcal{N}} = E_{\mathcal{N}} \times \Psi_{\mathcal{N}}$, where the \mathcal{N} -electron Hamiltonian operator reads $\left| \hat{H}[v] = \hat{T} + \hat{W}_{ee} + \sum_{i=1}^{\mathcal{N}} v(\mathbf{r}_i) \times \right|, \hat{T}$ and \hat{W}_{ee} being the kinetic and two-electron repulsion energy operators, respectively, and $v(\mathbf{r})$ is the local nuclear potential.

- a) [2 pts] Let us consider a potential $v'(\mathbf{r})$ that differ from $v(\mathbf{r})$ by more than a constant. We denote $\Psi'_{\mathcal{N}}$ and $E'_{\mathcal{N}}$ the \mathcal{N} -electron ground-state wavefunction and energy that are obtained by solving the Schrödinger equation with the Hamiltonian $\hat{H}[v']$. Show that $\Psi'_{\mathcal{N}}$ cannot be solution to the Schrödinger equation with the Hamiltonian $\hat{H}[v]$. Hint: Assume that $\hat{H}[v]\Psi'_{\mathcal{N}} = \mathscr{E}'_{\mathcal{N}}\Psi'_{\mathcal{N}}$ and deduce that $\left(\hat{H}[v] \hat{H}[v']\right)\Psi'_{\mathcal{N}} = (\mathscr{E}'_{\mathcal{N}} E'_{\mathcal{N}}) \times \Psi'_{\mathcal{N}} = \sum_{i=1}^{\mathcal{N}} \left(v(\mathbf{r}_i) v'(\mathbf{r}_i)\right) \times \Psi'_{\mathcal{N}}$, thus leading to $v(\mathbf{r}) v'(\mathbf{r}) = (\mathscr{E}'_{\mathcal{N}} E'_{\mathcal{N}})/\mathcal{N}$ when $\mathbf{r}_1 = \mathbf{r}_2 = \ldots = \mathbf{r}_{\mathcal{N}} = \mathbf{r}$. Conclude.
- b) [1 pt] Explain briefly, in the light of question 2. a), why $\langle \Psi'_{\mathcal{N}} | \hat{H}[v] | \Psi'_{\mathcal{N}} \rangle > E_{\mathcal{N}}$.
- c) [1 pt] Let ξ be a real number in the range $0 \le \xi \le 1/2$. We denote $E(\xi)$ the so-called N-centered ensemble energy, which is defined as follows: $E(\xi) = \xi \times (E_{N+1} + E_{N-1}) + (1 - 2\xi) \times E_N$. Explain why the slope $\frac{dE(\xi)}{d\xi}$ of the N-centered ensemble energy, which is referred to as the fundamental gap, characterizes the ability of the system under study to conduct electricity.
- d) [1 pt] Show that, according to question 2. b),

$$\xi \left(\left\langle \Psi_{N+1}' | \hat{H}[v] | \Psi_{N+1}' \right\rangle + \left\langle \Psi_{N-1}' | \hat{H}[v] | \Psi_{N-1}' \right\rangle \right) + (1 - 2\xi) \left\langle \Psi_{N}' | \hat{H}[v] | \Psi_{N}' \right\rangle > E(\xi).$$
(1)

e) [2 pts] We now introduce the so-called N-centered ensemble density:

$$n(\mathbf{r}) = \xi \times \left(n_{\Psi_{N+1}}(\mathbf{r}) + n_{\Psi_{N-1}}(\mathbf{r}) \right) + (1 - 2\xi) \times n_{\Psi_N}(\mathbf{r}).$$

$$\tag{2}$$

Show that, according to Eq. (1), $E'(\xi) + (v - v'|n') > E(\xi)$, where $(v|n) \equiv \int d\mathbf{r} \ v(\mathbf{r})n(\mathbf{r})$; $E'(\xi)$ and n' are the N-centered ensemble energy and density generated from the potential v', respectively.

- f) [1 pt] Similarly we have $E(\xi) + (v' v|n) > E'(\xi)$. Show that it is absurd to assume that the densities n and n' are equal. Conclude.
- g) [2 pts] Let $F^{\xi}[n'] = E'(\xi) (v'|n')$. Show that, for a fixed ξ value, $F^{\xi}[n']$ is a universal functional of the *N*-centered ensemble density n' and prove, by referring to question 2. e), the following variational principle: $E(\xi) = \min_{n'} \left\{ F^{\xi}[n'] + (v|n') \right\}.$
- h) [2 pts] Explain how, in the light of the previous questions, one could derive a Kohn–Sham DFT for N-centered ensembles. How different and useful would it be compared to the regular (N-electron) formulation of KS-DFT?