Exercises on second quantization and MCSCF

ISTPC summer school, June 2022 — Lecturer: E. Fromager

1 Generalized Brillouin theorem

Like in standard (non-relativistic) quantum chemistry, real algebra will be used throughout the exercise, for

simplicity. We focus on the orbital optimization in the MCSCF wave function that can be parameterized

as follows, \I'Mc(n)> = e F \I’I(}/[C>, where \I’g/IC is a normalized multiconfigurational wave function, K =
{kpPQ}p <0 the collection of real spin-orbital rotation parameters, and & = Z KPQ <€L}Bd@ — &Igdp) is the

P<Q
anti-hermitian operator that controls orbital rotations in second quantization.
a) Show that, if ¥}!C is the converged (energy-minimizing) MCSCF wave function, then the following

stationarity condition is fulfilled,

0 (WMC (k)| | MC (k) )

0=
0KkpQ

2wyt

|abaq, H]|w)C) (1)

= 2((whC|mabap|w'C) - (W' AaLaq|wyC)) =0, (2)

which is known as generalized Brillouin theorem. The purpose of the exercise is to explain the name of
the theorem and establish a clearer connection between Eq. (2) and the Fock operator that is diagonalized

in the Hartree—Fock method.

b) Show that if, for example, @ = A and P = I are virtual (unoccupied in ¥}€) and inactive (always

occupied in W}!C) spin-orbitals, respectively, then Eq. (2) simply reads <‘1Jg/lc‘f[ &Ldz \llg/lc> = 0. Why

do we refer to Eq. (2) as generalized Brillouin theorem?

Comment: If P =1 and Q = U is an active spin-orbital then d}d@ ’\1,18/10> = —AU&}
therefore <\I/%m‘ﬁ&5&1 \IIIOVIC> =0.

If P=U and Q = A then abiq [W)C) = al;aa [W}€) = 0 and therefore (W}C|Halau | WHC) = 0.

‘IIIOVIC> = 0 and

2 Commutators of strings of creation and annihilation operators

a) Verify the relations



and
48] ¢ B[Ac] = [48] ¢ B[ic] - [4Bd], B

where [fl, f?} = AB— BA and [fl, B} = AB + BA are the commutator and anti-commutator operators

of A and B, respectively.
b) Evaluate the anti-commutators [ar, a.7] + [&}, &H R and {&}, a J:| N by applying the rules of second quan-

tization.

c¢) Explain the following simplifications on the basis of Eq. 4)

(ajas,alar] = |ajas,al]ar +al [afas,arl (5)
- _[a}(,a}aJ} ap — b [aL,a}aJ} (6)
- —[@T at| ajap +ab lal.,ay| an —al lag,al] ay+alalar,ay) (7)

Ko4r| Jar, 110K, aQJ +aL Qi (L, Qp| Qj T QpGr|AQr,Qj|y

d) Deduce from question 1. b) that
[alay,alear] = 6,k alar — 0rp aleay. (8)

e) Similarly, show step by step that

lalag, alcalanan| = |ajay,alalan] an + alalan [afas,an] 9)
= [alas, alcal | anan — alcal [an, ajas| an - alcaban [an,alas]  (10)
= - [al.alas| alavan — al; [al,afas] avan

—aleal |an, alay] an — ajcalay [anaja,), (11)
and conclude, by analogy with question 1. ¢), that
labay, alcalanan| = 5k alalanan + 0s1 alcalanan — oy ajcalasan — o afalanas.  (12)

3 Generalized Fock matrix

The purpose of this exercise is to make the stationarity condition of Eq. (1) more explicit.



a) From the second-quantized expression of the Hamiltonian,

~ R 1 T
A=Y hgralar + 3 3" (KLIMN)alabaya,
KL KLMN

where

(X)L (X2)om (X1)en(X2)

hKL:/ngoK(X)ﬁ@L(X) and (KL|MN) :/Xm/dXZ‘pK

Ir1 — 1o
show that, according to Egs. (3), (8), (12), and (1),
> i (6gx YPL — OPLYKQ)
KL
1
+3 Z (KLIMN) (0grTpenm +90rTkpnm — dpnTkom — dpml'kng) =0,
KLMN

or, equivalently,
FQP—FPQ =0, VP <Q,
where

FPQ = thLvLQ + Z <PL|MN>FQLNM
L LMN

is referred to as generalized Fock matrix element,

“labac|wd'®)

Tpg = (W'
and
| <\11340‘a}3agaRa5’\11340>

are the one- and two-electron reduced density matrix elements, respectively.
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b)

Hints: Note that

hrp = hyp = hpL,YPL = YpL, = VLP; (
(KQIMN) = (QK|NM),U'xpnm =Tprmn, (21
(KLIMP) = (MP|KL) = (PM|LK),Tkrom = F*KLQM =I'morx =Touke, (

(

(KL|PN) = (PN|KL),Tking =Tking =TonLk-

HF equations can be recovered within the present MCSCF formalism by using a single determinantal

wave function rather than a multiconfigurational one:

occ.

‘\1/340> ~ ‘@§F> =[] &} Ivac) . (24)
I

Explain why, in this case, ypg and I'pgrs are non-zero only if P, @, R, and S are all occupied spin-

orbitals (that we denote I, J, K, or L) with
Y1s =01y and U'rjkr = YV — VILVIK- (25)
Deduce from Eqgs. (17) and (25) that, in this case, Eq. (16) simply reads

far=0, (26)

where

occ.

far = har + Y ({AJILT) = (AJVIT)) = (ealfler) (27)
J

and A denotes a virtual (unoccupied) spin-orbital in ®§. Is Eq. (26) consistent with the diagonalization

of the regular Fock matrix that is performed in HF calculations?



