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Generalities on Quantum Monte Carlo

QMC = Solving the Schrödinger equation using stochastic methods

A great variety of QMC variants developed and applied in
various scientific communities. May depend on

• Zero-temperature or finite-temperature

• Statistics: Bose, Fermi, or Boltzmann

• Space: Continuous or discrete



A few examples

• Ground- and excited-states of electrons in molecules: (T = 0,
Fermi, continuous space)
• Ro-vibrational spectrum of molecules: (T = 0, Boltzmann,
continuous)
• Superfluidity of He4 liquids (T 6= 0, Bose, continuous space)
• Supraconductivity in the Hubbard model (T = 0 and 6= 0, Fermi,
discrete space)
etc.

Here: Rather general presentation of QMC at T = 0 with one
detailed application to theoretical chemistry (code and results for
ground-state energy of the Helium atom)



Is there a common idea to all these QMC
variants?

YES!

Two ideas in any QMC method:

I. Quantum properties written as path integrals (one way or an
other, explicitly or implicity)

II. Path integrals computed with stochastic (Monte Carlo)
methods



First idea: Quantum properties expressed as
path integrals

As we shall see, path integrals being a sum over paths for electrons
(successive positions in time), in QMC we start from the
time-dependent Schrödinger equation,that is

i~
∂|Ψ(t)〉
∂t

= H|Ψ(t)〉

For H independent on time the solution is written as

|Ψ(t)〉 = e−itH |Ψ(0)〉

where |Ψ(0)〉 is some arbitrary initial state (here, atomic units).

OK! But what the exponential of an operator is?



What we need to know here about operators
and exponential of operators

Operators

For a auto-adjoint (hermitic) matrix (or operator) we have the
following spectral decomposition of the operator

M =
∑
n

λn|un〉〈un|

with |un〉 are the orthonormal eigenvectors of M and λn eigenvalues

M|un〉 = λn|un〉



The set {|un〉} is a (complete) basis set. Let |u〉 be an arbitrary
vector

|u〉 =
∑
n

cn|un〉 =
∑
n

〈un|u〉|un〉 =
[∑

n

|un〉〈un
]
|u〉

The fact that the sum of projectors over orthogonal eigenspaces is
identity is expressed as ∑

n

|un〉〈un| = 1

This important expression is usually called the resolution of the
identity



Exponential of an operator

• Definition

eM =
+∞∑
n=0

1

n!
Mn

To be valid this definition requires that all matrix elements Mij be
a convergent series.

• THE important remark

eA+B 6= eAeB if A and B do not commute

Baker-Campbell-Hausdorff (BCH) formula:

eA+B = eAeB +
1

2
[A,B] +

1

12
[(A− B)[A,B] + ...



The variant of BCH used in QMC

Let us consider a ”small” real parameter τ

e−τ(A+B) = e−τAe−τB + O(τ2)[A,B] + O(τ3) + ...

For τ small enough, the corrections due to the commutator
become negligible.



• Property 1

Mk |un〉 = λn
k |un〉

• Property 2

eM |un〉 = eλn |un〉

Easy to show from the definition of the exponential of an operator
and property 1.



A simple example of non-trivial exponential operator (to be used
later on)

e
∂
∂x =?

e
∂
∂x = translation operator.

Indeed,

e
∂
∂x f (x) =

∑∞
n=0

1
n!
∂nf
∂xn (x) =

∑∞
n=0

1
n!
∂nf
∂xn (x)(x+1−x)n = f (x+1)



A simple example of non-trivial exponential operator (to be used
later on)

e
∂
∂x =?

e
∂
∂x = translation operator.

Indeed,

e
∂
∂x f (x) =

∑∞
n=0

1
n!
∂nf
∂xn (x) =

∑∞
n=0

1
n!
∂nf
∂xn (x)(x+1−x)n = f (x+1)



Derivation of the solution of the
time-dependent Schrödinger equation

Let us now show that the solution of i ∂|Ψ(t)〉
∂t = H|Ψ(t)〉 is

indeed
|Ψ(t)〉 = e−itH |Ψ(0)〉

where Ψ(0) is some arbitrary initial vector of the linear space.

Proof. Writing the eigenspectrum of H as

H|φn〉 = En|φn〉

the spectral decomposition of the operator e−itH reads

e−itH =
∑
n

e−itEn |φn〉〈φn|



Taking the time-derivative of e−itH |Ψ(0)〉 we get

∂
[
e−itH |Ψ(0)〉

]
∂t

= −i
∑
n

Ene
−itEn |φn〉〈φn|Ψ(0)〉

= −iH
∑
n

e−itEn |φn〉〈φn|Ψ(0)〉

= −iH
[
e−itH |Ψ(0)〉

]
Denoting |Ψ(t)〉 = e−itH |Ψ(0)〉 we get i ∂|Ψ(t)〉

∂t = H|Ψ(t)〉
End of the proof.



QMC= Imaginary-time quantum dynamics

QMC is based on the remark that, as far as we are interested in
obtaining the (time-independent) eigensolution of H, the time
t plays no fundamental role, it can be just considered as a
parameter.

We have seen that the solution of

i
∂|Ψ(t)〉
∂t

= H|Ψ(t)〉

is

|Ψ(t)〉 =
∑
n

e−itEncn|φn〉 cn = 〈φn|Ψ(0)〉



Now, while the solution of the same equation by taking t → −it
(going from real to imaginary-time in QMC)

∂|Ψ(t)〉
∂t

= −H|Ψ(t)〉

is
|Ψ(t)〉 = e−tH |Ψ(0)〉

|Ψ(t)〉 =
∑
n

cne
−tEn

In both cases, it is possible to extract En and |φn〉 from the
solution.



QMC= Imaginary-time quantum dynamics

Once the solution |Ψ(t)〉 has been obtained the low-lying
spectrum is extracted by looking at the large time behavior of
the solution.

|Ψ(t)〉 =
∑
n

cn|φn〉e−tEn

|Ψ(t)〉 = e−tE0

[
|φ0〉+

∑
n 6=0

e−t(En−E0)
]

|Ψ(t)〉 ∼t large |φ0〉+ O[e−t(E1−E0)]|φ1〉



QMC= path integral formalism

The quantity to be computed is

Ψ(x, t) = 〈x|e−tH |Ψ(t = 0)〉

It can be written as

Ψ(x, t) =

∫
dx0〈x|e−tH |x0〉Ψ(x0, t = 0) =

∫
dx0G (x, x0, t)Ψ(x0, t = 0)

where
G (x, x0, t) = 〈x|e−tH |x0〉

is the (full) time-dependent N-body Green’s function (not
reduced 2-body Green’s function as, for example, in GW).



G (x, x0, t) is the solution of the Schrödinger equation for the initial
condition Ψ(x0, t = 0) = δ(x− x0). Its knowledge is sufficient to
construct the general solution.

Of course, G is not known in the general case!!

To compute it, we shall express it as a path integral



Constructing the path integral presentation of G

The time is divided into N small intervals such that t = Nτ and
the exponential operator is split

e−tH = e−τH−τH...−τH = e−τHe−τH ...e−τH

Now, by inserting the resolution of the identity between each e−τH

we get the (exact) relation for any N

G (x, x0, t) = 〈x|e−tH |x0〉

=

∫
dx1...dxN−1〈x|e−τH |xN−1〉...〈xi+1|e−τH |xi 〉...〈x1|e−τH |x0〉

that is

For any N G (x, x0, t) =

∫
dx1...dxN−1

N−1∏
i=0

G (xi , xi+1, τ) with xN = x



Consider a short-time approximation of G with an error in τ at
least of order 2

G = Gapprox + O(τ2)

G (x, x0, t) =

∫
dx1...dxN−1

N−1∏
i=0

∏
i

[Gapprox + O(τ2)]

and now we take the N →∞-limit with t fixed and τ = t
N

G (x, x0, t) = lim
N→∞

∫
dx1...dxN−1

N−1∏
i=0

Gapprox(xi , xi+1, τ)

This is the path-integral expression of the solution of the
time-dependent Schrödinger equation.



Integral interpreted as a ”path-integral”

Let us call a ”path” the following series (x0, x1, ..., xN) To
integrate over all values of (x1, ..., xN) can be viewed as summing
over all paths starting at x0 of length t



Figure: Pictorial representation of the sum over paths



Searching for a short-time approximation of G

We shall consider a Hamiltonian written under the form

H = −1

2
∇2

x + V (x)

For example, in theoretical chemistry

V =
∑
i ,α

VRα(ri ) +
∑
i<j

1

rij



Searching for a short-time approximation of G

I. The free case (V = 0)

When V = 0 the equation to be solved

∂G0(x, x0, t)

∂t
= −H0G0(x, x0, t) =

1

2
∇2

xG0(x, x0, t)

with G0(x, x0, 0) = δ(x− x0).

This equation is well-known in physics: heat diffusion, free
diffusion equation, etc. Using the Fourier transform of the
equation, the solution can be easily obtained (see, appendix D).

G0(x, x0, t) =
1

√
2πt

d
e−

(x−x0)2

2t

Let us insist that it is a product of one-dimensional gaussian

G0 =
d∏

i=1

1√
2πt

e−
(xi−x0

i )2

2t

where x = (x1, ..., xd).



Searching for a short-time approximation of G

II. The general case, V 6= 0

Based on the fact that

e−τH = e−τ(H0+V ) = e−τH0e−τV + O[τ2]

G (x, x0, τ) = 〈x|e−τH |x0〉 ∼ 〈x|e−τH0e−τV )|x0〉

=

∫
dx′〈x|e−τH0 |x′〉〈x′|e−τV |x0〉

We have
〈x′|e−τV |x0〉 = e−τV (x′)δ(x′ − x0)

So

Gapprox(x, x0, τ) = G0(x, x0, τ)e−τV (x)



Let us summarize

The exact solution of the (imaginary) time-dependent
Schrödinger equation can be written as

Ψ(x, t) =

∫
dx0〈x|e−tH |x0〉Ψ(x0, t = 0) =

∫
dx0G (x, x0, t)Ψ(x0, t = 0)

with

G (x, x0, t) = lim
N→∞ τ=t/N

∫
dx1...dxN−1

N−1∏
i=0

G0(xi , xi+1, τ)e−τ
∑N

i=1 V (xi )

with

G0(xi , xi+1, τ) =
1

√
2πτ

d
e−

(xi−xi+1)2

2τ



In particular at large time,
G (x, x0, t) = φ0(x)φ0(x0)e−tE0 + O[e−t(E1−E0)|φ1〉], so we can
write and

φ0(x) = lim
t→∞

lim
N→∞ τ=t/N

∫
dx1...dxN−1

N−1∏
i=0

G0(xi , xi+1, τ)e−τ
∑N

i=1 V (xi )

A formidable result: The solution of the general

Schrödinger equation is written as a multi-dimensional
integral of a known function!!! ⇒ Computable!!



Formal writing of the Feynman path-integral

∏
G0 =

∏ 1
√

2πτ
d
e−

1
2

∑d
i=1

(xi−xi0)2

τ =
∏ 1
√

2πτ
d
e−

τ
2

∑d
i=1

(
(xi−xi0)

τ

)2

So ∏
G0 = e−

∫ t
0 dsT [x(s)]

where T is the classical kinetic energy functional of the ”path”
(not classical trajectory!)

T =
1

2

∂x(t)

∂t

2

and, similarly ∏
e−V = e−

∫ t
0 dsV [x(s)]



So, finally, we have the formal expression for the ground-state

φ0(x) =
∑
paths

e−
∫ t

0 dsT [x(s)]e−
∫ t

0 dsV [x(s)]



How to compute the path integral?

The use of Brownian trajectories

The quantity

N−1∏
i=0

G0(xi , xi+1, τ) = e−
∫ t

0 dsT [x(s)]

is the probabilily density associated with brownian trajectories

What is a Brownian motion? A one-dimensional brownion
motion is a stochastic process (series of random variables
dependent on a time t, see appendix C) characterized by the
following gaussian probability density distribution:

p(x → x ′, τ) =
1√
2πτ

e−
1
2

(x−x′)2

τ



A realization (path) of the brownian motion can be written as

path = (x0, x1, ..., xi , xi+1, ..)

The brownian process is a so-called Markov process (see,
appendix C) in the sense that going from xi at time ti to xi+1 at
time ti+1 does not depend on what the values of x taken in times
preceding ti (that is, ..., xi−2, xi−1)

Mathematically, it means that the probability of the path

P(x0, t = 0; x1, t1 = τ, ...., xN , tN = Nτ) factorizes as

Proba of path = p(x0 → x1, τ)p(x1 → x2, τ)...p(xN−1 → xN , τ)



Here,
N−1∏
i=0

G0(xi , xi+1, τ)

is the probability density of a Brownian in d-dimension (each
coordinate being independent).



How to generate Brownian trajectories?

Very easy! The probability density to simulate

p(x i0 → x i , τ) =
1√
2πτ

e−
1
2

(xi−xi0)2

τ

The distribution of the normal law (gaussian with zero mean and
variance=1) is

P(g) =
1√
2π

e−
g2

2

Here, the normal law is obeyed by

g =
x i − x i0√

τ



Now, we rewrite this equality as

x i = x i0 +
√
τg

where g is a random number drawn with the normal distribution
(easy to simulate, for example using the Box-Muller algorithm, see
appendix B).

This is the simplest example of a stochastic differential
equation (overdamped Langevin-type stochastic equation)



Some brownian ”walkers” in 1D starting at x = 0
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Monte Carlo calculation of the path integrals
using brownian paths

φ0(x) =
∑

brownian paths arriving at x

e−
∫ +∞

0 dsV [X(s)]

but calculating the integral by drawing brownian
trajectories is just hopeless!!

The quantity e−
∫ +∞

0 dsV [X(s)] varies too wildly as a
function of the paths



Why?

Paths generated are blind with respect to the coulombic
potential, they visit the configuration space uniformly.

⇒ we need to ”guide” the brownian trajectories in regions of
importance for the exact wavefunction Φ0(x).

This is beautifully realized in QMC using a trial wavefunction, ΨT .



Introducing the trial wavefunction into the
imaginary-dynamics

The time-dependent Schrödinger equation in imaginary-time

∂Ψ(x, t)

∂t
= −HΨ(x, t) =

1

2
∇2Ψ(x, t)− V (x)Ψ(x, t)

ΨT (x) = approximate trial wavefunction
Let us introduce a new density

f (x, t) ≡ ΨT (x)Ψ(x, t) (1)

Multiplying each side of the Schrödinger equation by ΨT , we get

∂f (x, t)

∂t
= −ΨT (x)H

1

ΨT (x)
f (x, t)



After simple algebra, see appendix F, we get

−ΨT (x)H
1

ΨT (x)
=

1

2
∇2 −∇[b(x).]− EL(x)

where the drift vector is given by

b(x) =
∇ΨT

ΨT

and the local energy

EL(x) =
HΨT

ΨT

New equation of evolution

∂f (x, t)

∂t
=

1

2
∇2f (x, t)−∇[b(x)f (x, t)]− EL(x)f (x, t)



Regarding the path integral representation of the solution, we are
exactly in the same situation as before except that

• the ”bare” potential V (x) is replaced by the ”screened” potential
EL(x) = HψT

ψT

• the free diffusion equation

∂Ψ

∂t
=

1

2
∇2Ψ

is replaced by a new diffusion equation including a drift vector

∂f

∂t
=

1

2
∇2f −∇[bf ]



The short-time approximation of the bare equation

G = 〈x|eτ
1
2
∇2.|x0〉e−τV (x) =

1
√

2πτ
d
e−

(x−x0)2

2τ e−τV (x)

becomes (see derivation in appendix G)

G = 〈x|eτ
1
2
∇2.−τ∇[b.]|x0〉e−τEL(x) =

1
√

2πτ
d
e−

(x−x0−b(x0)τ)2

2τ e−τEL(x)

As seen, the effect of the drift term is to just to translate the
new point of a quantity b(x0)τ .

e
∂
∂x = translation operator ; e−τb(x0)∇f (x) = f (x− b(x0)τ)



So the expression

φ0(x) ∼
∑

brownian paths arriving at x

e−
∫ +∞

0 dsV [x(s)]

is replaced now by

φ0(x)ΨT (x) ∼
∑

driftedbrownian paths arriving at x

e−
∫ +∞

0 dsEL[x(s)]

See, the detailed derivation in appendix H.



Two wonderful effects!

1. The wild potential V (x) is replaced by a smoothly varying
potential EL(x)

Zero-variance property: the variation of EL(x) and, thus, the
statistical fluctuations vanishes when ΨT = Φ0

2. The drifted brownian motion becomes

xi+1 = xi + b(xi )τ +
√
τgauss

The effect of the drift b

b =
∇ ΨT

ΨT

is to push the configurations from the region where ΨT is small
toward the region where ΨT is large



Now...Using gaussian trial wavefuction

ΨT (x) = e−
x2

2 b = ∇ ΨT
ΨT

= −x
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Computing the energy

φ0(x)ΨT (x) ∼
∑

paths x(t)=x

e−
∫ +∞

0 dsEL[x(s)]

H being an auto-adjoint operator we can write

E0 =

∫
dxHΦ0(x)ΨT (x)∫
dxφ0(x)ΨT (x)

=

∫
dxφ0(x)HΨT (x)∫
dxφ0(x)ΨT (x)

and then

E0 =

∫
dxEL(x)

[
Φ0(x)ΨT (x)

]
∫
dx
[
Φ0(x)ΨT (x)

]
E0 = lim

t→∞

∑
paths x(t)=any x EL(x(t))

[
e−

∫ t
0 dsEL[x(s)]]∑

paths x(t)=any x

[
e−

∫ t
0 dsEL[x(s)]

]



Helium atom

x = (r1, r2)

ΨT = (1 + αr12)e−γ(r1+r2)

Drift and local energy:

u(r12) =
α

1 + αr12

b1 =
∇1ΨT

ΨT
= −γ r1

r1
+ u(r12)

r12

r12

b2 =
∇2ΨT

ΨT
= −γ r2

r2
+ u(r12)

r21

r12

EL = (γ − 2)(
1

r1
+

1

r2
) +

1

r12
− γ2 + u(r12)

[
− 2

r12
+ γ

r12

r12
(
r1

r1
− r2

r2
)
]

Hartree-Fock energy: -2.8616..
Exact non-relativistic energy (CBS) -2.90372...



Full code (working as it is!!) for the Helium
atom in 3 pages!

program qmc

parameter(m_max=200)

real x0(3,2),xold(3,2),xnew(3,2),drift(3,2)

real h(m_max),s(m_max)

double precision random

print*,’N?’

read*,n_paths

tau=0.0375

alpha=0.35

gam=2.



do i=1,2 ! electrons 1 and 2

do l=1,3 ! x y z

call random_number(random)

x0(l,i)=random-0.5

enddo

enddo

h=0.

s=0.

do i_path=1,n_paths

do i=1,2

do l=1,3

xold(l,i)=x0(l,i)

enddo

enddo

prod=1. ! initialization of prod =\prod_{i=1}^{m_max} exp(-tau E_loc(i))



do j=1,m_max ! stochastic path t=0 to t=m_max*tau

call compute_drift(xold,b,gam,alpha)

do i=1,2

do l=1,3

xnew(l,i)=xold(l,i)+drift(l,i)*tau+sqrt(tau)*gauss() ! stochastic diff. eq.

enddo

enddo

eloc=compute_elocal(xnew,gam,alpha) ! local energy

prod=prod*exp(-tau*eloc)

h(j)=h(j)+prod*eloc

s(j)=s(j)+prod

xold=xnew

enddo ! end of the stochastic path

enddo ! loop over paths

do j=1,m_max

write(*,*)’time’, j*tau,’Energy=’,h(j)/s(j)

write(33,*)j*tau,h(j)/s(j)

enddo

end



subroutine compute_drift(x,b,gam,alpha)

real x(3,2),b(3,2),r(2)

do i=1,2

r(i)=sqrt(x(1,i)**2+x(2,i)**2+x(3,i)**2)

do l=1,3

b(l,i)=-gam*x(l,i)/r(i)

enddo

enddo

r12=sqrt((x(1,1)-x(1,2))**2+(x(2,1)-x(2,2))**2+(x(3,1)-x(3,2))**2)

u=alpha/(1.+alpha*r12)

do l=1,3

b(l,1)=b(l,1)+u*(x(l,1)-x(l,2))/r12

b(l,2)=b(l,2)+u*(x(l,2)-x(l,1))/r12

enddo

end



function compute_elocal(x,gam,alpha)

real x(3,2),r(2)

r(1)=sqrt(x(1,1)**2+x(2,1)**2+x(3,1)**2)

r(2)=sqrt(x(1,2)**2+x(2,2)**2+x(3,2)**2)

r12=sqrt((x(1,1)-x(1,2) )**2+ (x(2,1)-x(2,2) )**2 + (x(3,1)-x(3,2) )**2)

elocal= (gam-2.)*(1./r(1) + 1./r(2)) + 1./r12 -gam**2

u=alpha/(1.+alpha*r12)

prod=0.

do l=1,3

prod=prod+(x(l,1)-x(l,2))/r12*(x(l,1)/r(1)-x(l,2)/r(2))

enddo

elocal=elocal-2.*u/r12 + gam*u*prod

end



!Box Muller gaussian generator

function gauss()

double precision random

twopi=2.*acos(-1.)

call random_number(random)

u=log(random)

call random_number(random)

gauss=sqrt(-2.*u)*cos(twopi*random)

end
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Pauli principle

We have shown how to solve with QMC the Schrödinger equation

HΨ(r1, ..., rN) = EΨ(r1, ..., rN)

using electrons spatial positions only.

What about the spin?

In the usual spin-space formalism

Ψ(r1, σ1; r2, σ2; ..., rNσN) σ = α or β

Ψ→ −Ψ when exchanging any pair of electrons (ri , σi )↔ (rj , σj)



• Ground-state of He atom

Ψ ∼
∣∣∣∣1s(r1)α 1s(r2)α
1s(r1)β 1s(r2)β

∣∣∣∣
• Ground-state of Li atom

Ψ ∼

∣∣∣∣∣∣
1s(r1)α 1s(r2)α 2s(r3)α
1s(r1)β 1s(r2)β 2s(r3)β
2s(r1)α 2s(r2)α 2s(r3)α

∣∣∣∣∣∣



In a pure-space formalism

Ψ(rα1 , .., r
α
Nα ; rβ1 , .., r

β
Nβ

) with N = Nα + Nβ

Ψ→ −Ψ when exchanging any pair of spin-like electrons rσi ↔ rσj



• He atom
Ψ ∼ 1s(r1)1s(r2)

• Lithium atom (electrons 1 and 2 chosen to be α, electron 3 to be
β)

Ψ ∼
∣∣∣∣ 1s(r1) 1s(r2)

2s(r1) 2s(r2)

∣∣∣∣ 1s(r3)

But
Ψ ∼ 1s(r1)1s(r2)1s(r3)

Three electrons in the 1s for the Lithium atom!!! Not allowed
!! But such a state exists, it is a bosonic state!!



In theory, everything works as it is!!

Let us come back to the exact solution

ΨT (x)φ0(x) ∼t→∞
∑

paths x(t)=x

e−
∫ t

0 dsEL[x(s)]

At finite t and not imposing x

〈ΨT |e−tH |x0〉 =
∑

paths x(t)=any x

e−
∫ t

0 dsEL[x(s)]



If ΨT is properly antisymmetrized:

〈ΨT |e−tH |x0〉 =
∑
n

e−Ent〈φn|ΨT 〉φn(x0)

with φn are either bosonic or fermionic However,

〈φbosonn |ΨT 〉 = 0

so ∑
n

e−E
fermion
n t〈φfermion

n |ΨT 〉φfermion
n (x0)

and at large time the fermionic ground-state is obtained

What is the problem?



ΨT antisymmetric can vanish !!

For example, when two spin-like electrons are at the same position.

At these locations the drift vector

b =
∇ ΨT

ΨT

diverges.

The zeroes of ΨT are called the nodes (nodal hypersurfaces in
dimension 3d − 1) of the trial wavefunction.

The nodes play the role of repulsive barriers for the walkers



⇒ Walkers are trapped for ever in domains delimited by
the nodes!
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What problem do we solve exactly?

Walkers remain for ever in domains of constant sign for ΨT

(”nodal pockets”)

φ0(x)ΨT (x) =
∑
paths

e−
∫
dsEL > 0

The Schrödinger equation is solved with the additional constraint
that the solution has the same sign as ΨT [Fixed-node
(FN) approximation]

HΨFN = EFNΨFN

Note that there is a variational property

EFN ≥ E0
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Exact QMC simulations: The sign problem

If we want to avoid this problem, we must take a non-vanishing
trial wavefunction (that is, a bosonic-type wavefunction) and add
an antisymmetric weight into the averages to project out on
the fermionic ground-state.
For example, bosinization of ΨT

Ψboson
T =

√
Ψ2

T + ε

and weight

w =
ΨT

Ψboson
T

= w+ − w−



〈ΨT |e−tH |x0〉 =
∑
paths

e−
∫ t

0 dsEL[x(s)]w(t)

which gives

〈ΨT |e−tH |x0〉 =
∑
paths

[
e−

∫ t
0 dsEL[x(s)]w+(t)− e−

∫ t
0 dsEL[x(s)]w−(t)

]

It can be easily shown that the fluctuations of the sign of the
average make the simulation wildely unstable To solve this
problem is considered as one of the most important problem of
computational physics



Some references on Variational Monte Carlo (VMC) and
Diffusion Monte Carlo (DMC)

• For continous systems

1) W.M.C Foulkes, L. Mitas, R.J. Needs, G. Rajagopal Quantum Monte Carlo
simulations of solids Rev. Mod. Phys., vol=73, 33-83 (2001)(2001)

2) J. Kolorenc and L. Mitas, Rep. Prog. Phys. vol.74, 026502 (2011)

3) C.J. Umrigar Observations on variational and projector Monte Carlo methods J.
Chem. Phys., vol=143, 164105 (2015)

4) J. Toulouse, R. Assaraf, and C. J. Umrigar, Introduction to the variational and
diffusion Monte Carlo methods, Advances in Quantum Chemistry, Elsevier,series =
Electron Correlation in Molecules – ab initio Beyond Gaussian Quantum Chemistry,
vol. 73,285 (2016).

• For finite matrices

1) M. Caffarel and R. Assaraf, A pedagogical introduction to quantum Monte Carlo
Lecture Notes in Chemistry, editor=M. Defranceschi and C. Le Bris, Springer, 45,
(2000)



The Variational Monte Carlo (VMC) method

In VMC, the probability density associated with ΨT is sampled

π(x) =
Ψ2

T (x)∫
dxΨ2

T (x)2
.

The properties are computed as probabilistic averages over
sampled configurations.
In the case of the energy, the variational energy Ev is obtained as

Ev =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

=

∫
dx|ΨT |2 HΨT

ΨT∫
dx|ΨT |2

that is

Ev =

∫
dxπ(x)EL(x)



Evar = 〈EL〉 = lim
N→∞

1

N

N∑
i=1

EL(xi )

Other properties can be computed in a similar way

〈ΨT |O|ΨT 〉
〈ΨT |ΨT 〉

=

∫
dxO(x)π(x) = lim

N→∞

1

N

K∑
i=1

O(xi )



How to sample Ψ2?

• Use of the drifted brownian motion.

∂f (x, t)

∂t
=

1

2
∇2f (x, t)−∇[b(x)f (x, t)]

The stationary distribution is given by the condition

∂f (x, t)

∂t
= 0

which gives

f (x) =
Ψ2

T∫
dxΨ2

T



Proof.
1
2∇

2f −∇[bf ] = 1
2∇

2Ψ2
T −∇

∇ΨT
ΨT

Ψ2
T = 1

2∇
2Ψ2

T −
1
2∇∇Ψ2

T = 0

The averages can be computed over the set of configurations
generated by the drifted brownian motion.

Nice but practical problem is the residual short-time error due to
the finite time-step τ .



•Use of the Metropolis algorithm

Very important algorithm.

It belong to the Top 10 list of the most employed numerical
algorith used in science and technology



The Metropolis algorithm

The aim is to compute

I =

∫
E
dxπ(x)F (x)

where x ∈ E= configuration space (continuous or discrete).
π(x) probability density, that is

π(x) ≥ 0 and

∫
E
dx π(x) = 1

The Metropolis algorithm generates step by step
configurations xi in configuration space distributed according
to π(x).
We then have

I = lim
P→∞

1

P

P∑
i=1

F (xi )



In practice, a finite number of configurations are generated and we
have

I =
1

P

P∑
i=1

F(xi) +
c√
P

for P large enough

The fundamental quantity of the algorithm is the trial transition
probability density denoted here as P(x→ y).



The algorithm is as follows.

METROPOLIS ALGORITHM

At each Monte Carlo step a new state xi+1 is generated from the
current state xi by a two-step procedure:

1) Draw a “trial” state denoted as xT using the trial transition
probability density P(x→ y)

2) Accept the trial state as the new state (xi+1 = xT ) or reject it
(xi+1 = xi ) with probability q(xi , xT ) (0 ≤ q ≤ 1) given by

q = Min
[
1,
π(xT )P(xT → xi )

π(xi )P(xi → xT )

]
(2)



• P(x→ y) must be easy to sample. In practice, we (almost)
always use a product of one-dimensional uniform or gaussian
probability densisities. A universal choice inspired by the drifted
brownian motion defined above is

P(x→ y) =
1

√
2πτ

d
e−

(x−x0−b(x0)τ)2

2τ

where the drift is

b(x) =
1

2

∇π
π

• P(x→ y) must be ergodic (”go everywhere”)



• The Metropolis algorithm converges to π independently on the
choice of the trial transition probability and/or the initial
conditions x0.

Such quantities only determines the rate of convergence of the
Markov chain towards π.

For a derivation of the Metropolis algorithm in the discrete case,
see appendix E



The trial wavefunction

In QMC a great freedom in choosing the functional form of the
trial wavefunction
The standard choice: The multi-determinant Slater-Jastrow
wavefunction.

ΨT = eJ(r1,...,rN)
Ndet∑
k=1

ckDetk({Φα
i })Detk({Φβ

i }), (3)

where {Φσ
i }(σ = α, β) is a set of molecular orbitals and eJ is the

Jastrow factor.



The role of the Jastrow factor is to impose the exact behavior of
the wavefunction in the [rij → 0]-limit (electron-electron cusp
condition) and, also, to incorporate some two-body
(electron-electron and electron-nucleus) and three-body
(electron-electron-nucleus) correlations (to describe the best as
possible the shape of the Coulomb hole[?]). Many different forms
for the Jastrow factor have been introduced. Typically,

J =
∑
i<j

u(rij) +
∑
i

∑
α

v(riα) +
∑
i<j

∑
α

w(rij , riα, rjα)

where rij = |ri − Rα|, and riα = |ri − Rα|. Various forms for the
functions u,v , and w have been tested. For example, the minimal
Padé form for u

u(rij) =
arij

1 + brij
.

But many other forms, see appendix H.



The trial wavefunction optimization

Aim: To find the ”best” parameters of the trial wavefunction
• Minimization of the variational energy

E (p) =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

where p denotes the set of parameters of ΨT (x,p)
• Minimization of the variance of the Hamiltonian

σ2(p) =
〈ΨT |[H − E (p)]2|ΨT 〉

〈ΨT |ΨT 〉

Motivations:
• Reduce the statistical fluctuations (remember the zero-variance
property)
• Reduce the fixed-node error



The Diffusion Monte Carlo (DMC) method

Very similar to the method presented above. It differs only in the
way the local energy term in the diffusion equation is taken into
account.

∂f (x, t)

∂t
=

1

2
∇2f (x, t)−∇[b(x)f (x, t)]− (EL(x)− ET )f (x, t)

The equation of evolution of the local energy part is given by

∂f (x, t)

∂t
= −(EL(x)− ET )f (x, t)

whose solution is

f (x, t) = f (x, t = 0)e−t(EL(x)−ET )

Instead of considering e−t(EL(x)−ET ) as a weight for the drifted
brownian trajectories, we simulate this term as a birth-death
process or branching process.



In the branching process the variation of density is reproduced by
killing or duplicating a certain number of times each walker
at position x proportionally to e−t(EL(x)−ET )

The stationary density is now

πDMC = ΨTΦ0 (4)

when ET has ben taken equal to E0.
The energy can be computed as

E0 =

∫
Φ0HΨT∫
Φ0ΨT

=

∫
Φ0ΨT

HΨT
ΨT∫

Φ0ΨT

and then

E0 =

∫
dxπDMC (x)EL(x) (5)
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