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I. SOME REVIEW PAPERS

DMC and VMC for continuous space [1], [2], [3], [4]

For matrices:

[5]

II. THE VARIATIONAL MONTE CARLO (VMC) METHOD

In VMC, the probability density associated with ΨT is sampled

π(x) =
Ψ2
T (x)∫

dxΨ2
T (x)2

.

The properties are computed as probabilistic averages over sampled configurations.

In the case of the energy, the variational energy Ev is obtained as

Ev =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

=

∫
dx|ΨT |2HΨT

ΨT∫
dx|ΨT |2

that is

Ev =

∫
dxπ(x)EL(x)

and

Evar = 〈EL〉 = lim
N→∞

1

N

N∑
i=1

EL(xi)

Other properties can be computed in a similar way

〈ΨT |O|ΨT 〉
〈ΨT |ΨT 〉

=

∫
dxO(x)π(x) = lim

N→∞

1

N

K∑
i=1

O(xi)
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How to sample Ψ2?

• Use of the drifted brownian motion.

∂f(x, t)

∂t
=

1

2
∇2f(x, t)−∇[b(x)f(x, t)]

The stationary distribution is given by the condition

∂f(x, t)

∂t
= 0

which gives

f(x) =
Ψ2
T∫

dxΨ2
T

Proof. 1
2
∇2f −∇[bf ] = 1

2
∇2Ψ2

T −∇∇ΨT
ΨT

Ψ2
T = 1

2
∇2Ψ2

T − 1
2
∇∇Ψ2

T = 0

The averages can be computed over the set of configurations generated by the drifted

brownian motion.

Nice but practical problem is the residual short-time error due to the finite time-step τ .
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•Use of the Metropolis algorithm

Very important algorithm. It belong to the Top 10 list of the most employed numer-

ical algorith used in science and technology
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A. The Metropolis algorithm

The aim is to compute

I =

∫
E
dxΠ(x)F (x)

where x ∈ E= configuration space (continuous or discrete).

Π(x) probability density, that is

Π(x) ≥ 0 and

∫
E
dx Π(x) = 1

The Metropolis algorithm generates step by step configurations xi in configura-

tion space distributed according to Π(x).

We then have

I = lim
P→∞

1

P

P∑
i=1

F (xi)

In practice, a finite number of configurations are generated and we have

I =
1

P

P∑
i=1

F(xi) +
c√
P

for P large enough

The fundamental quantity of the algorithm is the trial transition probability density

denoted here as P (x→ y). The algorithm is as follows.

METROPOLIS ALGORITHM

At each Monte Carlo step a new state xi+1 is generated from the current state xi by

a two-step procedure:

1) Draw a “trial” state denoted as xT using the trial transition probability density

P (x→ y)

2) Accept the trial state as the new state (xi+1 = xT ) or reject it (xi+1 = xi) with

probability q(xi,xT ) (0 ≤ q ≤ 1) given by

q = Min
[
1,
π(xT )P (xT → xi)

π(xi)P (xi → xT )

]
(1)
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• P (x → y) must be easy to sample. In practice, we (almost) always use a product

of one-dimensional uniform or gaussian probability densisities. A universal choice inspired

by the drifted brownian motion defined above is

P (x→ y) =
1

√
2πτ

d
e−

(x−x0−b(x0)τ)2

2τ

where the drift is

b(x) =
1

2

∇Π

Π

• P (x→ y) must be ergodic (”go everywhere”)

• The Metropolis algorithm converges to π independently on the choice of the trial

transition probability and/or the initial conditions x0. Such quantities only determines the

rate of convergence of the Markov chain towards π.

For a derivation of the Metropolis algorithm in the discrete case, see appendix E
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B. The trial wavefunction

In QMC a great freedom in choosing the functional form of the trial wavefunction

The standard choice: The multi-determinant Slater-Jastrow wavefunction.

ΨT = eJ(r1,...,rN )

Ndet∑
k=1

ckDetk({Φα
i })Detk({Φ

β
i }), (2)

where {Φσ
i }(σ = α, β) is a set of molecular orbitals and eJ is the Jastrow factor. The role of

the Jastrow factor is to impose the exact behavior of the wavefunction in the [rij → 0]-limit

(electron-electron cusp condition) and, also, to incorporate some two-body (electron-electron

and electron-nucleus) and three-body (electron-electron-nucleus) correlations (to describe

the best as possible the shape of the Coulomb hole6). Many different forms for the Jastrow

factor have been introduced. Typically,

J =
∑
i<j

u(rij) +
∑
i

∑
α

v(riα) +
∑
i<j

∑
α

w(rij, riα, rjα)

where rij = |ri − Rα|, and riα = |ri − Rα|. Various forms for the functions u,v, and w have

been tested. For example, the minimal Padé form for u

u(rij) =
arij

1 + brij
.

But many other forms, see appendix I
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C. The trial wavefunction optimization

Aim: To find the ”best” parameters of the trial wavefunction

• Minimization of the variational energy

E(p) =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

where p denotes the set of parameters of ΨT (x,p)

• Minimization of the variance of the Hamiltonian

σ2(p) =
〈ΨT |[H − E(p)]2|ΨT 〉

〈ΨT |ΨT 〉

Motivations:

• Reduce the statistical fluctuations (remember the zero-variance property)

• Reduce the fixed-node error
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III. THE DIFFUSION MONTE CARLO (DMC) METHOD

Very similar to the method presented above. It differs only in the way the local energy

term in the diffusion equation is taken into account.

∂f(x, t)

∂t
=

1

2
∇2f(x, t)−∇[b(x)f(x, t)]− (EL(x)− ET )f(x, t)

The equation of evolution of the local energy part is given by

∂f(x, t)

∂t
= −(EL(x)− ET )f(x, t)

whose solution is

f(x, t) = f(x, t = 0)e−t(EL(x)−ET )

Instead of considering e−t(EL(x)−ET ) as a weight for the drifted brownian trajectories, we

simulate this term as a birth-death process or branching process.

In the branching process the variation of density is reproduced by killing or duplicating

a certain number of times each walker at position x proportionally to e−t(EL(x)−ET )

The stationary density is now

πDMC = ΨTΦ0 (3)

when ET has ben taken equal to E0.

The energy can be computed as

E0 =

∫
Φ0HΨT∫
Φ0ΨT

=

∫
Φ0ΨT

HΨT
ΨT∫

Φ0ΨT

and then

E0 =

∫
dxπDMC(x)EL(x) (4)
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Appendix A: Uniform distribution and random generator

1. Uniform distribution

The uniform distribution over (0, 1) is given by the density

P (x) =

1, if x ∈ (0, 1),

0, if x /∈ (0, 1).
(A1)

In practice, the uniform distribution is realized using a Random Number Generator (RNG).

Most generators are based on the use of a deterministic algorithm “mimicking” random-

ness as best as possible (pseudo-random generators). A common one is the simple linear

congruential generator

xn+1 = (axn + c) mod m (A2)

where x0 is defined as the “seed” of the generator. Note that once the seed has been chosen,

the entire series of “random” numbers can be reproduced. A vast literature is devoted to the

problem of producing randomness as pure as possible (minimization of correlations between

pseudo-random numbers). A popular good quality-RNG has been proposed by L’Ecuyer7

2. L’Ecuyer pseudo-random generator

The L’Ecuyer pseudo-random generator is a combined multiple recursive generator

zn = (xn − yn) mod m1

where xn and yn are

xn = (a1xn−1 + a2xn−2 + a3xn−3) mod m1

yn = (b1yn−1 + b2yn−2 + b3yn−3) mod m2

with coefficients a1 = 0, a2 = 63308, a3 = −183326, b1 = 86098, b2 = 0, b3 = −539608, and

moduli m1 = 231 − 1 = 2147483647 and m2 = 2145483479.

The period is approximately 2185 (about 1056).
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Appendix B: Gausian distribution and random generator

1. One-dimensional gaussian distribution over (−∞,+∞)

As a consequence of the central-limit theorem, the gaussian distribution is ubiquitous in

real applications. The one-dimensional version is defined as

P (x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
(B1)

where µ is the mean of the distribution

µ = 〈x〉 =

∫ +∞

−∞
dx x P (x) (B2)

and σ2 its variance

σ2 = 〈(x− µ)2〉 =

∫ +∞

−∞
dx (x− µ)2 P (x) (B3)

When µ = 0 and σ2 = 1, the distribution is known as the normal distribution.

A simple and widely employed gaussian random generator based on the use of a uni-

form random generator is the Box-Muller algorithm given byx =
√
−2 lnu1 cos(2πu2)

y =
√
−2 lnu1 sin(2πu2)

(B4)

where u1, u2 are two uniform random numbers over (0,1). The two values x and y are

independent and gaussian distributed.

2. Generalization to arbitrary dimension d

P (x) =
1√

(2π)ddetC
exp

[
−1

2

∑
i,j

(x− µ)iC
−1
ij (x− µ)j

]
(B5)

where µ is the mean vector

µi = 〈xi〉 i = 1, d (B6)

and C the d× d covariant matrix given by

Cij = 〈(x− µ)i(x− µ)j〉 (B7)
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To sample this d-dimensional distribution, diagonalize the covariant matrix, factorize the

probability distribution into a product of d one-dimensional gaussian distribution using the

eigensolutions of C, and then sample the 1d distributions independently.
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Appendix C: Stochastic process

1. General stochastic process

Stochastic process X(t) = Series of random variables indexed by a time t.

The fundamental quantities are the n-time probability distributions. In the continuous

case, it is written as

Pn(x1, t1; x2, t2; ...; xn, tn) (C1)

with 0 ≤ t1 ≤ t2 ≤ ... ≤ tn, xi denoting the state, or configuration, of the system at time ti

[typically, x = (r1, r2, ..., rN), N number of particles]. The interpretation of the probability

distribution density is as follows.

Pn(x1, t1; x2, t2; ...; xn, tn)dx1dx2...dxn (C2)

is the probability of finding the system between x1 + dx1 at time t1, x2 + dx2 at time t2, etc

with ∫
dx1dx2...dxnPn(x1, t1; x2, t2; ...; xn, tn) = 1 (C3)

By integrating the n-time distribution over all states at k first times, we can generate (n−k)-

time probability distribution densities

Pn−k(xk+1, tk+1; ...; xn, tn) =

∫
dx1...dxkPn(x1, t1; x2, t2; ...; xn, tn) (C4)

Let us now define the conditional probability densities as follows

Pk|(n−k)(x1, t1; ...; xk, tk|xk+1, tk+1; ...; xn, tn) =
Pn(x1, t1; ...; xk, tk; xk+1, tk+1; ...; xn, tn)

Pk(x1, t1; ...; xk, tk)

(C5)

With this definition

Pk|(n−k)(x1, t1; ...; xk, tk|xk+1, tk+1; ...; xn, tn)dxk+1dxk+2...dxn (C6)

is the probability of finding the system between xk+1 + dxk+1 at time tk+1, ...,xn + dxn at

time tn knowing that the system was at x1 at time t1, x2 at time t2,...,xk at time tk.

Stochastic process are now classified according to the nature of their n-time probability

distributions.
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2. Fully decorrelated process: The case of the branching process

Fully decorrelated process are the simplest stochastic process we can think of. They

describe a time series of independent random variables. The probability of being between

xk+1 and xk+1 + dxk+1 at time tk+1, knowing that we are at xk at time tk, is independent

on xk (and, then, on all previous states). In terms of conditional probability densities it is

written as (for all possible k)

Pk|1(x1, t1; x2, t2; ...; xk, tk|xk+1, tk+1) = P1(xk+1, tk+1) (C7)

where P1(x, t) is the probability distribution at time t, namely

P1(x, t) =

∫
dx2...dxnPn(x, t; x2, t2; ...; xn, tn) (C8)

Using Eqs.(C5) and (C7) the n-time probability distribution can be written as

Pn(x1, t1; x2, t2, ....) =
∏
k

P1(xk, tk) (C9)

Because of their simplicity and lack of time correlations such process are usually not very use-

ful for modelizing physical situations. As a simple example, we could use them for describing

the dynamics of a Brownian particle (pollen grain in water) when observation times tk are

separated by long time intervals (say, several minutes or more). Another more interesting

exemple is the so-called branching or birth-death process as it is defined in DMC simulations.

Branching process.

We describe now the so-called ”branching” or ”birth-death” process as it is defined in QMC.

It will be used in the Diffusion Monte Carlo (DMC) algorithm presented below. Note

that it is actually a very particular case of more general branching process introduced in

mathematics.

Let us consider a weight w ≥ 0 (we will see that this weight will depend on electronic

configuration). The branching process is defined as

X = E(w + U) (C10)

where U is the uniform random variable over (0,1) and E the integer part. X takes on

integer values. The probability of having n is denoted as

Pn = P (X = n) (C11)

16



Now, it is clear that for a given w, only two values of n with non-zero probability are

possible: nc and nc + 1 where nc ≡ E(w). Now, we have

Pnc+1 = 1− (nc + 1− w) (C12)

Pnc = nc + 1− w (C13)

Of course, as it should be, Pnc+1 + Pnc+1 = 1. Let us compute the mean

n̄ = nc(nc + 1− w) + (nc + 1)(1− (nc + 1− w)) = w (C14)

We thus have

〈X〉 = w (C15)

3. General Markov process

These are the key process used in the vast majority of stochastic simulations. The

probability of being between xk+1 and xk+1 + dxk+1 at time tk+1 is now dependent on

the previous configurations xk but not on the oldest ones xl<k. It is common to say (in a

loosely way) that for a Markov process, the future (at time tk+1) depends on the present

(time tk) but not on the past (times tl<k). More precisely, the Markov hypothesis is

written as

Pk|1(x1, t1; x2, t2, .....,xk, tk|xk+1, tk+1) = P1|1(xk, tk|xk+1, tk+1) (C16)

The fundamental quantity P1|1(xk, tk|xk+1, tk+1) characterizing the Markov process is called

the transition kernel or transition probability density. In what follows we shall use the

convenient notation

P (xk, tk → xk+1, tk+1) = P1|1(xk, tk|xk+1, tk+1) (C17)

It is easy to check that the n-time probability density can now be written as

Pn(x1, t1; ...; xn, tn) = P1(x1, t1)
n−1∏
k=1

P (xk, tk → xk+1, tk+1). (C18)

From Eqs.(C4) and (C5) we have∫
dxk+1P (xk, tk → xk+1, tk+1) = 1 (C19)
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In practice, most of the Markov process used in simulations are invariant under a time shift,

they are said to be homogeneous. In that case

P (xk, tk → xk+1, tk+1) = P (xk → xk+1, tk+1 − tk) (C20)

For simplicity, the time interval will be denoted as t and the transition probability as P (x→

y, t). Because of the time-shift invariance, the one-body density P1(x) is now independent

on time. Let us derive the equation obeyed by P1(x). We have

P (x→ y, t) =
P2(x; y, t)

P1(x)
(C21)

Mutiplying the equation by P1(x) and integrating over x we get∫
dxP1(x)P (x→ y, t) =

∫
dxP2(x; y, t) = P1(y). (C22)

Following a popular tradition, we shall denote, here and in what follows, the stationary

distribution density as π

π(x) = P1(x) (C23)

The equation obeyed by π is thus

∫
dxπ(x)P (x→ y, t) = π(y)

Starting from the distribution π(x) and applying the transition kernel to all x leads to

configurations y also distributed according to π. It clearly illustrates the interpretation of

π as the stationary distribution of the stochastic process.

Let us now adopt an alternative point of view. As already mentioned, the transition

probability density characterizes the Markov process. Considered as the kernel of a linear

operator, the properties of its eigensolutions can be studied. A first remark is that the transi-

tion probability is in general not symmetric, P (x→ y, t) 6= P (y→ x, t). As a consequence,

it is necessary to distinguish between left- and right-eigenvectors and, in addition, the eigen-

values are not necessarily real. However, because P (x→ y, t) ≥ 0 and
∫
dyP (x→ y, t) = 1

it can be shown that the modulus of all eigenvalues ≤ 1 and that the left-eigenstate associ-

ated with the maximal eigenvalue λ = 1 is positive everywhere (Krein-Rutman theorem, a

generalization of the Perron-Frobenius theorem to operators [8) The integral equation∫
dxπ(x)P (x→ y, t) = π(y) (C24)
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is thus recovered where π(x) ≥ 0 is the maximal eigenvector of the transition kernel which

defines the stationary distribution of the stochastic process.

In the preceding section we have derived an integral equation allowing to compute the

stationary density π when the transition kernel is known. Let us now consider the problem

of the computation of the kernel itself. The fundamental equation for P (x→ y, t) is a simple

consequence of the Markov hypothesis. It is obtained by observing that if we introduce an

arbitrary intermediate time u ∈ (0, t) and consider the probability of going from x to y in

a time t we must have

P (x→ y, t) =

∫
dzP (x→ z, u)P (z→ y, t− u) (C25)

It is known under the name of Chapman-Kolmogorov equation. A much more interest-

ing form is its local form relating time and space derivatives.

Let us derive such an equation in the one-dimensional case. The generalization to an

arbitrary dimension is elementary. The following derivation follows closely that of [9] Let

h(x) be an arbitrary smooth function and consider the time derivative of the transition

probability. We can write∫
dyh(y)

∂P (x→ y, t)

∂t
=

∫
dyh(y) lim

∆t→0

P (x→ y, t+ ∆t)− P (x→ y, t)

∆t

Applying the Chapman-Kolmogorov equation we have∫
dyh(y)

∂P (x→ y, t)

∂t
= lim

∆t→0

1

∆t

[ ∫
dyh(y)

∫
dzP (x→ z, t)P (z → y,∆τ)−

∫
dyh(y)P (x→ y, t)

]
Changing the name of the dummy variable y into z in the last integral of the RHS and using∫
dyP (z → y,∆t) = 1 then∫

dyh(y)
∂P (x→ y, t)

∂t
= lim

∆t→0

1

∆t

[ ∫
dzP (x→ z, t)

∫
dyP (z → y,∆τ)[h(y)− h(z)]

]
Now, we introduce a Taylor expansion of h(y) around z:

h(y) = h(z) +
∞∑
n=1

h(n)(z)
(y − z)n

n!

and defining the “jump moments”

D(n)(z) =
1

n!
lim

∆t→0

∫
dy(y − z)nP (z → y,∆τ)
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we get ∫
dyh(y)

∂P (x→ y, t)

∂t
=

∫
dzP (x→ z, t)

∞∑
n=1

D(n)(z)h(n)(z)

Integrating by parts n times we get∫
dzh(z)

[∂P (x→ z, t)

∂t
−
∞∑
n=1

(
− ∂

∂z

)n
[D(n)(z)P (x→ z, t)]

]
= 0

and finally this integral being valid for any h the equation for the transition probability can

be written as
∂P (x→ y, t)

∂t
=
∞∑
n=1

(
− ∂

∂y

)n
[D(n)(y)P (x→ y, t)] (C26)

In its general d-dimensional version it writes

∂P (x→ y, t)

∂t
=
∞∑
n=1

(−1)n
∑
j1...jn

∂n

∂yj1 · · · ∂yjn

[
D

(n)
j1,...,jn

(y)P (x→ y, t)
]
. (C27)

This equation is known under the name of Kramers-Moyal expansion (of the master

equation). Here, the “jump moments” are defined as

D
(n)
j1,...,jm

(y) =
1

n!
lim

∆t→0

1

∆t

〈 n∏
µ=1

[Yjµ(t+ ∆t)− Yjµ(t)]

〉∣∣∣∣∣
Yk(t)=yk

. (C28)

This equation is known under the name of Kramers-Moyal expansion (of the master

equation). Let us now discuss the Markovian process at the heart of QMC approaches

presented below.

4. Markovian process at work in QMC

• Free diffusion or brownian process.

The free diffusion process is invariant by space translation and thus, D(1) = 0. It is defined

by a constant diagonal diffusion matrix D
(2)
ij = 1

2
and D(n>2) = 0

In one dimension the Kramers-Moyal expansion is written as

∂P (x→ y, t)

∂t
=

1

2

∂2

∂y2
P (x→ y, t) (C29)
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with initial condition, P (x → y, t = 0) = δ(x − y) This equation is known under the name

of free diffusion (or heat) equation. By using a Fourier transform the gaussian solution

of this equation is easily obtained. We have

p(x→ y, t) =
1√
2πt

e−
(y−x)2

2t (C30)

In d dimensions the solution is a product of independent one-dimensional gaussian distribu-

tions for each coordinate

p(x→ y, t) =
d∏
i=1

1√
2πt

e−
(yi−xi)

2

2t =
1

√
2πt

d
e−

(y−x)2

2t (C31)

Using the gaussian transition probability density, brownian trajectories can be generated

step-by-step. From Eq.(C31) it is seen that the quantities (yi−xi)√
t

are independent and

normally distributed. y can thus be obtained from x by drawing a gaussian number for each

coordinate
(yi − xi)√

t
= ηi i = 1, d (C32)

where η is a normal random vector. The previous expression can be rewritten as

yi = xi +
√
tηi i = 1, d (C33)

This last equation is the simplest example of a discretized form of the so-called Stochastic

Differential Equation (SDE) associated with a diffusion process.

• Drifted diffusion or drifted Brownian motion. As we shall see later, QMC methods

are based on a more general version of the free Brownian motion where a drift part is

introduced to enhance the Monte Carlo convergence (importance sampling). In this case,

both D(1) and D(2) are non-vanishing. The first jump moment is known as the drift vector

b(x) = D(1)(x) (C34)

In this case, the equation of evolution (KM expansion) is known as the Fokker-Planck

equation. It is written as

∂P (x→ y, t)

∂t
=

1

2
∇2
yP (x→ y, t)−∇y[b(y)P (x→ y, t)] (C35)
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In the case of a constant drift vector b this equation can still be solved using a Fourier

transform, we get

P (x→ y, t) =
1

√
2πt

d
e−

(y−x−b t)2

2t (C36)

Stochastic trajectories are generated using the discretized SDE

yi = xi + bi(x1, ..., xd)t+
√
tηi i = 1 to d (C37)

In the case of a general drift b(x), no analytical solution exists. However, it is still possible

to generate trajectories by using a small enough time-step τ instead of an arbitrary time

t as above. For that, we need to introduce a short-time approximation of the transition

probability. When the time-step is sufficiently small, the variation of position is small and

at leading order the drift vector can be considered as constant. The transition probability

density is thus approximated as

P (x→ y, τ) =
1

√
2πt

d
exp−(y − x− b(x)τ)2

2τ
(C38)

This qualitative statement can be made more rigorous by looking at the small time-step

limit of the exact solution of the Fokker-Planck equation, Eq.(C35). Having a short-time

gaussian expression for the transition probability, stochastic trajectories can be generated

according to

yi = xi + bi(x)τ +
√
τηi i = 1, d (C39)

Note that the equations for each component are now coupled through the drift vector.

The stationary density π of the process can be obtained by solving ∂P (x→y,t)
∂t

= 0 that is

1

2
∇2π −∇(bπ) = 0

It is easily seen that this equality is fulfilled when

b(x) =
1

2

∇π(x)

π(x)
(C40)

Markov process with drift can thus be used to sample a given distribution π(x) (for example,

the Boltzmann distribution π(x) = e−βE(x)

Z
). For that, we choose a drift vector according
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to Eq.(C40) (here, b = −β
2
∇E(x)) and we generate trajectories using the stochastic differ-

ential equation, Eq.(C37). Note that with such a scheme a (small) bias on the stationary

distribution related to the use of a small but finite time-step is present. In contrast, it is

not the case with the Metropolis algorithm presented in the next section.

• Other Markov process. There exist a great variety of Markovian process. Let us just

say a few words about two important examples.

i) The Lévy flight: A generalization of the browian motion allowing large moves

Probability distribution:

f(x;µ, c) =

√
c

2π

e−
c

2(x−µ)

(x− µ)3/2

where x > µ, µ = location parameter, and c =scale parameter.

“Heavy-tailed” probability distribution (large values of x have non-negligible probability

to occur). Note that < x2 >=∞ (mean), < x2 >=∞ (variance)!!

Kramers-Moyal equation derived above

∂P (x→ y, t)

∂t
=
∞∑
n=1

(
− ∂

∂y

)n
[D(n)(y)P (x→ y, t)]

becomes here

∂P (x→ y, t)

∂t
= −(− ∂α

∂yα
)[D(2)(y)P (x→ y, t)]− ∂

∂y
[D(1)P (x→ y, t)]

with fractional derivative (0 < α ≤ 2).

An intense activity aout the modelization of the paths followed by animals or humans when

searching for food, hunting, (or even searching for lost keys on the beach...) has been

developed. See, for example, the influential work by H. Eugene Stanley and collaborators

of 1999 (“Optimizing the success of random searches”10).

ii) The Poisson process: A simple example of discrete Markov process
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Poisson process of intensity λ (λ > 0. Equation of evolution of discrete variable X

p(X = n)(t+ ∆t)− p(X = n)(t)

∆t
= p(X = n− 1)(t)− p(X = n)(t)

when ∆t goes to zero, the probability distribution is given by

P(X = n, t) = e−λt
(λt)n

n!
, n integer

5. Stochastic process with memory effects (beyond Markov ones)

. Being almost never used in realistic simulations, they will not discussed here.
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Appendix D: Derivation of G0 by Fourier transform

The equation obeying G0(x,x′, t) is

∂G0(x,x′, t)

∂t
=

1

2
∇2

xG0(x,x′, t)

with G0(x,x′, 0) = δ(x− x′).

Let use the Fourier representation of G0

G0(x,x′, t) =

∫
dkeik(x−x′)G̃(k, t)

Injecting into the equation, we have

∂G̃(k, t)

∂t
= −k2

2
G̃(k, t)

with

G̃(k, 0) = 1

The solution reads

G̃(k, t) = e−
k2

2
t

and

G0(x,x′, t) =

∫
dke

t
2

[
k−i (x−x′)

t

]2

e−
1
2

(x−x′)2
t

G0(x,x′, t) =
1√
2πt

e−
(x−x′)2

2t
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Appendix E: Derivation of the Metropolis algorithm, convergence properties,

and statistical error

1. Derivation in the discrete case

• Def. 1 Probability distribution πi ≥ 0 i=1,N and
∑

i πi = 1

• Def. 2 transition probability (or stochastic matrix) Pi→j:

i. Pi→j ≥ 0

ii.
N∑
j=1

Pi→j = 1 (independent on i)

• Def. 3 Ergodic transition probability

∀i0 ∀i there exist a non-zero probability that after a finite number of steps starting

from i0 we end at i.

• Def. 4 Stationary (or invariant) distribution π:

∑
i

πiPi→j = πj

Metropolis algorithm

Let P T
i→j being a trial ergodic transition probability, then Pi→j defined as follows

Pi→j = P T
i→jMin(1, Rij) j 6= i

Pi→i = P T
i→i +

∑
k 6=i

P T
i→k(1−Min(1, Rik)) j = i

with Rij =
πjP

T
j→i

πiPTi→j

is an ergodic transition probability admitting πi as stationary distribution.

Proof:
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1. Pi→j is a transition probability

• Pi→j ≥ 0 obvious

•
N∑
j=1

Pi→j =
∑
j 6=i

Pi→j + Pi→i

=
∑
j 6=i

P T
i→j + P T

i→i

= 1

2. Stationary distribution

We have to show:
∑

i πiPi→j = πj

For that we first show that {Pi→j; πi} obeys detailed balance

πiPi→j = πjPj→i ∀(i, j)

Proof:

• i=j obvious

• i 6=j: the ratio of the two sides of the previous equality is

πjPj→i
πiPi→j

=
RijMin(1, Rji)

Min(1, Rij)
.

Remarking that Rij = 1/Rji and distinguising between the two cases correspond-

ing to Rij ≥ 1 and Rij < 1, we easily verify that this ratio is equal to 1.

Finally, using the detailed balance relation we get

∑
i

πiPi→j =
∑
i

πjPj→i = πj

thus, πi is the stationary distrbution.

2. Convergence of the Metropolis algorithm

Let us precise the way the distribution converges to the stationary one.

Let f (k) be a distribution, that is a set of N positive real numbers. The application of

the stochastoc matrix to this distribution is written as

f
(k+1)
i =

∑
j

f
(k)
j Pj→i ≡ Pf

(k)
i
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We have the following property

lim
n→∞

f
(n)
i ∼ P nf

(0)
i = πi ∀f (0)

The different steps of the proof are as follows.

• Let us associate to Pi→j a symmetric real matrix defined as follows

Mij =
√
πiPi→j

1
√
πj

Let us insist that the stochastic matrix is in general not symmetric.

• It is easy to check that
√
π is eigenstate of M with eigenvalue 1∑

j

Mij
√
πj =

√
πi

• We also see that

P nf (0) =
√
πMnf

(0)

√
π

• Let us now use the spectral decomposition of M . For large n, Mn becomes the

projector in the eigenspace associated with the largest eigenvalue. Due to its particular

structure, it can be shown that M has eigenvalues λi such that 0 ≤ |λi| ≤ 1 and in

the case where π does not vanish, the associated eigenspace is not degenerate. As a

consequence

P nf (0) = c π

where c is the overlap between the initial distribution f (0)/
√
π and the eigenstate

√
π

of matrix M .

3. The statistical error

The Metropolis algorithm is a simple and efficient algorithm for generating states dis-

tributed according to an arbitrary density. However, the price to pay for such a simplicity

is the fact that the successive states produced are correlated. Accordingly, some care is

needed when estimating the statistical error associated with the arithmetic averages com-

puted. First of all, it is important to check that we are not in the transient regime associated
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with the initial configuration used. Second we have to estimate the correlation time of the

Markov chain.

Let f(x) a quantity whose expectation value is to be computed, I(f) =
∫
dxπ(x)f(x) A

unbiased estimator of the expectation value is the arithmetic sum

f̄n =
1

n

n∑
i=1

f(xi) (E1)

where n is a finite number of configurations drawn with the Metropolis algorithm. Note that

f̄n is a random variable and that its value depends on the series of random numbers used

to generate the successive states of the sum. Unbiased means here that if the finite sum is

computed an infinite number of times with different random realizations, then

〈f̄n〉 =
1

n

n∑
i=1

〈f(xi)〉 = I(f) (E2)

Due to the central limit theorem valid for Markov process, we know that for sufficiently

large n the distribution of the random variable f̄n becomes gaussian

P (f̄) =
1√

2πσ2
n

e
− (f̄n−〈fn〉)2

2σ2
n

where

σ2
n = 〈f̄n

2〉 − 〈f̄n〉
2

(E3)

Now, a practical way to compute the error bar is to realize a certain number of independent

calculations of f̄n and to estimate the variance of the distribution P (f̄). Let Nb the number of

independent calculations, we denote f̄n
k
k = 1, Nb, the values obtained for each calculation.

Unbiased estimates of the mean and variance are

〈f̄n〉 =
1

Nb

Nb∑
k=1

f̄n
k

and

σ2
n =

1

Nb − 1

Nb∑
k=1

(f̄n
k − 〈f̄n〉)

2

An estimate of the statistical error δf on the estimate of I(f) is then δf =

√
σ2
n√

Nb
, that is

δf =
1√

Nb(Nb − 1)

√√√√ Nb∑
k=1

(f̄n
k − 〈f̄n〉)

2
(E4)
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In practical calculations, the Nb calculations are never fully independent and some correla-

tion are introduced. Such correlations can be explicited as follows. By inserting (E2) into

(E3) we get

σ2 =
1

n
[c0 + 2

n−1∑
i=1

(1− i

n
)ci]

where

ci = 〈fkfk+i〉 − 〈fk〉〈fk+i〉

(time translation implies independence on k). Calculation of the ci can be performed by

estimating the various correlators from the Nb realizations. Formula (E4) can be easily

generalized using such correlators. For a discussion of such aspects, see for example11.
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Appendix F: Derivation of the importance-sampled diffusion equation

∂Ψ(x, t)

∂t
=

1

2
∇2Ψ(x, t)− V (x)Ψ(x, t) (F1)

Let ΨT (x) the (time-independent) trial wavefunction and introduce the mixed density f as

follows

f(x, t) ≡ ΨT (x)Ψ(x, t)

Let us multiply each side of the equation by ΨT we have

∂f

∂t
=

1

2
ΨT∇2 f

ΨT

− V f

Let us compute ∇2 f
ΨT

.

∇ f

ΨT

=
∇f
ΨT

− f∇ΨT

Ψ2
T

It is convenient to use the drift vector

b =
f∇ΨT

ΨT

So we have ∇ f
ΨT

= 1
ΨT

[
∇f − fb

]
Then

∇2 f

ΨT

= −∇ΨT

Ψ2
T

[
∇f − fb

]
+

1

ΨT

[
∇2f −∇fb− f∇b

]
and

ΨT∇2 f

ΨT

= −b
[
∇f − fb

]
+∇2f −∇fb− f∇b = fb2 +∇2f − 2b∇− f∇b

Now, using

b∇f = ∇(bf)−∇bf

we finally get

ΨT∇2 f

ΨT

= ∇2f − 2∇(bf) + (∇b + b2)f

The time equation becomes

∂f

∂t
=

1

2
∇2f −∇(bf) +

[1

2
(∇b + b2)

]
− V f (F2)
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Now, the local energy is given as

EL =
−1

2
∇2

ΨT

+ V = −1

2
(∇b + b2) + V

So we get the final equation of evolution for f

∂f

∂t
=

1

2
∇2f −∇(bf)− ELf
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Appendix G: Short-time approximation for the drifted brownian

We want to show that

G = 〈x|eτ
1
2
∇2.−τ∇[b.]|x0 ∼τ→0

1
√

2πτ
d
e−

(x−x0−b(x0)τ)2

2τ

With an error O[τ 2], we can ”break” the exponential

eτ
1
2
∇2.−τ∇[b.] ∼ eτ

1
2
∇2.e−τ∇[b.]

Then, we introduce the resolution of the identity between the exponentials

G =

∫
dx1〈x|eτ

1
2
∇2.|x1〉〈x1|e−τ∇[b.]|x0〉

=

∫
dx1

1
√

2πτ
d
e−

(x−x1)2

2τ 〈x1|e−τ∇[b.]|x0〉 (G1)

Let us denote

Gb = 〈x|e−t∇[b.]|x0〉

Gb(t) obeys the equation
∂Gb

∂t
= −∇[bGb]

with

Gb(0) = δ(x− x0)

At small time, it can be shown that it is possible to consider the drift constant [= b(x0) = b0]

on the time interval, the varying part of the drift entering at a subleading order in τ .

The drift being constant, we need to solve

∂Gb

∂t
= −b0∇[Gb]

Taking the Fourier transform of the equation, we get

∂G̃b(k, t)

∂t
= ib0kG̃b(k, t)

that is

G̃b(k, t) = eib0kt

In real space, we get

Gb(t) = δ[x− tb0]
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Finally, injecting into the previous form into Eq. G1 and integrating we get

G ∼ 1
√

2πτ
d
e−

(x−x0−b(x0)τ)2

2τ

Appendix H: Derivation of the path-integral formula for the mixed density

φ0(x)ΨT (x)

G(x,x0, t) = 〈x|e−tH |x0〉

G(x,x0, t) = lim
N→∞ τ= t

N

∫
dx1...dxN−1

N−1∏
i=0

G(xi,xi+1, τ)

Now, introducing the trial wave function ΨT we get

1

ΨT (x0)
G(x,x0, t)ΨT (x) = lim

N→∞

∫
dx1...dxN−1

N−1∏
i=0

[ΨT (xi+1)

ΨT (xi)
G(xi,xi+1, τ)

]
Using the definition of the exponential of an operator it is easy to show that

ΨT (xi+1)

ΨT (xi)
G(xi,xi+1, t) =

ΨT (xi+1)

ΨT (xi)
〈xi+1|e−tH |xi〉 = 〈xi+1|etL|xi〉

where the operator L is defined as

L = −ΨTH
1

ΨT

Now, see derivation in appendix G

〈xi+1|eτL|xi〉 ∼τ→0= 〈xi+1|eτ
1
2
∇2.−τ∇[b.]|xi〉e−τEL(xi) =

1
√

2πτ
d
e−

(xi+1−xi−b(xi)τ)2

2τ e−τEL(xi)

We, then, write

1

ΨT (x0)
G(x,x0, t)ΨT (x) = lim

N→∞

∫
dx1...dxN−1

N−1∏
i=0

1
√

2πτ
d
e−

(xi+1−xi−b(xi)τ)2

2τ

N−1∏
i=0

e−τEL(xi)

At large t

1

ΨT (x0)
G(x,x0, t)ΨT (x) =

φ0(x0)

ΨT (x0)
φ0(x)ΨT (x)e−tE0 +O[e−t(E1−E0)]

which finally gives, up to some unessential prefactor

φ0(x)ΨT (x) ∼
∑

driftedbrownian paths arriving at x

e−
∫ +∞
0 dsEL[x(s)]
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Appendix I: Trial wavefunctions for molecules

• The multi-determinant Slater-Jastrow wavefunction.. See main text.

• Use of a backflow term. In trial wavefunctions including backflow, the electron coor-

dinate ri is replaced by a quasi-particle (dressed) coordinate r̄i = ri +
∑

j 6=i η(rij)(ri − rj)

and is introduced in Slater forms. Physically, this backflow displacement is supposed to

reproduce the characteristic “flow pattern” where the quantum fluid is pushed out of the

way in front of a moving particle and fills in the space behind it. For more details, see Ref.12

• Resonating VB form and geminal forms. Let Φ be the pairing function (geminal) which

takes into account the correlation between two electrons with opposite spin. If the system

is unpolarized and the state is a spin singlet, the antisymmetrized geminal product (AGP)

wavefunction is

ΨAGP (r1, . . . , rN) = Â[Φ(r↑1, r
↓
2)Φ(r↑3, r

↓
4) · · ·Φ(r↑N−1, r

↓
N)], (I1)

where Â is an operator that antisymmetrizes the product in the square brackets and the

geminal is a singlet:

Φ(r↑, r↓) = φ(r↑, r↓)
1√
2

(| ↑↓〉 − | ↓↑〉) , (I2)

implying that φ(r, r′) is symmetric under a permutation of its variables. Given this condi-

tions, one can prove that the spatial part of the ΨAGP can be written in a very compact

form:

ΨAGP (r1, . . . , rN) = det(Aij), (I3)

where Aij is a N
2
× N

2
matrix defined as:

Aij = φ(r↑i , r
↓
j). (I4)

For more details, see Ref.13

• Perturbatively selected Configuration Interaction expansion. In quantum chemistry

Configuration Interaction (CI) expansions are widely used. They allow a systematic im-

provement of the wavefunction through increase of the number of determinants and of the

basis set used. In QMC the use of CI expansions is problematic due to the very large number
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of determinants. Indeed, at each Monte Carlo iteration -and there can be as many as one bil-

lion of such elementary steps- the first and second derivatives (Laplacian) must be computed

for the current electronic configuration. However, despite these drawbacks, CI expansions

have nevertheless been recently employed in QMC. It is possible only because 1) the CI

expansion is reduced by a suitable selection of the most important determinants14,15 2) effi-

cient techniques have been developed to make the CI expansion computable in a reasonable

time.16–18. Some applications can be found in Ref.15,19.

• Valence Bond trial wavefunction. The use of Valance Bond (VB) wavefunctions is very

attractive in quantum chemistry. Indeed, VB forms give a simple and very appealing inter-

pretation of the electronic structure in terms of Lewis pairs (bound pairs, lone pair, etc. ).

Unfortunately, from a technical point of view VB wavefunctions are made of non-orthogonal

determinants, a point which dramatically increases the computational effort (passing from

a standard N3 law to a N ! law). A number of QMC works using VB wavefunctions have

been presented, see Ref.20–22

• Multi-Jastrow form The so-called Multi-Jastrow is obtained by replacing the global

Jastrow form into local Jastrows attached to one-particle molecular orbitals. Using such

local forms allows to describe the electron-electron correlation in a more specific way (elec-

tron correlation is different into a 1s orbitals, 3d orbitals, polarizable lone pairs, etc.) See23.

• etc. (any home-made approximate wavefunction can be easily used in QMC). Describe

various type of wavefunctions that can be used
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Appendix J: Optimization of the trial wavefunction

1. The problem

When accurate results are searched for, we need to reduce the two following errors:

(1) The statistical fluctuations related to the finite number of Monte Carlo steps

(2) The fixed-node bias related to the use of an approximate nodal hypersurface.

Both errors can be decreased by optimizing the parameters of the trial wavefunction.

Different criteria can be used to define the “quality” of a trial wavefunction. The two most

employed:

• Minimization of the variational energy

E(p) =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

where p denotes the set of parameters of ΨT (x,p)

• Minimization of the variance of the Hamiltonian

σ2(p) =
〈ΨT |[H − E(p)]2|ΨT 〉

〈ΨT |ΨT 〉

a. The correlated approach

The most natural idea to optimize the trial wavefunction is to minimize the total energy

evaluated for a finite number of configurations Nc drawn in a preliminary Variational Monte

Carlo step:

E(p) ' 1

Nc

Nc∑
i=1

EL(xi)

In practice, such a idea is difficult to realize for two reasons:

(1) For a finite number of walkers E(p) is not bounded from below and the minimizer can

change parameters in a wird way so that to concentrate the wavefunction around one or a

few points having a very low local energy.

(2) The stationary distribution, Ψ2
T (x,p) depends on parameters p, and thus new con-

figurations must be redrawn at each change of parameters. The variational energy being

calculated for a finite number of points, the energy curve E(p) is then noisy and it is a

tricky situation for the minimizer.
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Practical solution:

(1) When a not too large number of configurations is used (a few thousand’s) it is much

preferable to minimize the variance since it is a quantity bounded from below (σ2 ≥ 0) for

any finite number of configurations.

(2) To avoid the noisy character of E(p) or σ2(p) a fixed set of configurations can be used

and a correlated approach introduced?

σ2(p) =
1
Nc

∑Nc
i=1 wi(EL − E)2(xi,p)

1
Nc

∑Nc
i=1 wi

where Nc number of configurations and wi =
Ψ2
T (xi,p)

Ψ2
T (xi,p0)

. The configurations are drawn once

for all according to Ψ2
T (xi,p0). In such conditions the energy curve is no longer noisy and

standard minimizers (for example, quasi-Newton) can be employed.

Note that σ2(p) is a reasonable estimate of

〈ΨT |(H − E)2|ΨT 〉
〈ΨT |ΨT 〉

only if the weights remain all close to one. It is thus important to quantify this aspect in

some way, for example by introducing

η =
1

Nc

(
∑

iwi)
2∑

iwi
2

When η is close to one, the number of configurations playing a role is close to Nc and the

estimation of the energy/variance is reasonable. In contrast, when only a few configurations

contribute, η is close to zero and a new set of reference points must absolutely be drawn.

b. The linear method

The linear method has been recently introduced by Umrigar et al.24 and is presently one

of the most efficient approach to optimize a large number of parameters (both linear and

non-linear).

The method is based on the minimization of the variational energy. Let us call Np the

number of parameters. The method consists in introducing a linear Taylor expansion around

the current parameters p0.

ΨT (x,p) = ΨT (x,p0) +

Np∑
i=1

(p− p0)iΨi (J1)

38



where the functions Ψi are defined as

Ψi =
∂ΨT (x,p0)

∂pi

Functions Ψi are now considered as a basis for the trial wavefunction and the energy is

minimized in this basis set. Remarking that the Ψi are not orthogonal, the problem to solve

is thus a generalized eigenvalue problem

H∆p = ES∆p (J2)

where H and S are the Hamiltonian and overlap matrices, respectively.

Hij = 〈Ψi|H|Ψj〉 and Sij = 〈Ψi|Ψj〉

These quantities can be calculated in a VMC calculation using Ψ2
0 as stationary distribution

Hij = 〈Ψi

Ψ0

HΨj

Ψ0

〉Ψ2
0

and

Sij = 〈Ψi

Ψ0

Ψj

Ψ0

〉Ψ2
0
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