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These notes provide an introduction to ground-state density-functional theory (DFT) of
electronic systems. For more intensive coverages of the subject, see e.g. the books of Refs. [1–
6]and the review articles of Refs. [7–17].

1 Basic density-functional theory

1.1 The many-body problem

We consider a N -electron system (atom, molecule, or solid) in the Born-Oppenheimer and
non-relativistic approximations. The electronic Hamiltonian in the position representation is, in
atomic units,

H = −1

2

N
∑

i=1

∇2
ri
+

1

2

N
∑

i=1

N
∑

j=1
i 6=j

1

|ri − rj |
+

N
∑

i=1

vne(ri), (1.1)

where vne(ri) = −∑α Zα/|ri −Rα| is the nuclei-electron interaction (Rα and Zα are the posi-
tions and charges of the nuclei). The stationary electronic states are determined by the time-
independent Schrödinger equation

HΨ(x1,x2, ...,xN ) = EΨ(x1,x2, ...,xN ), (1.2)

where Ψ(x1,x2, ...,xN ) is a wave function written with space-spin coordinates xi = (ri, σi)
(with ri ∈ R

3 and σi ∈ {↑, ↓}) which is antisymmetric with respect to the exchange of two
coordinates, and E is the associated energy. The one-electron Hilbert space is thus L2(R3 × {↑
, ↓},C) and the N -electron Hilbert space is given by the N -fold antisymmetric tensor product
H =

∧N L2(R3 × {↑, ↓},C).
Using Dirac notations, the Schrödinger equation (1.2) can be rewritten in a representation-

independent formalism
Ĥ|Ψ〉 = E|Ψ〉, (1.3)

where the Hamiltonian is formally written as

Ĥ = T̂ + Ŵee + V̂ne, (1.4)

with the kinetic-energy operator T̂ , the electron-electron interaction operator Ŵee, and the
nuclei-electron interaction operator V̂ne. These operators can be conveniently expressed in second
quantization (see Appendix A).

The quantity of primary interest is the ground-state energy E0. The variational theorem
establishes that E0 can be obtained by the following minimization

E0 = min
Ψ∈W

〈Ψ|Ĥ|Ψ〉, (1.5)

where the search is over the set of admissible N -electron antisymmetric wave functions Ψ nor-
malized to unity, W = {Ψ ∈ ∧N H1(R3 × {↑, ↓},C) | 〈Ψ|Ψ〉 = 1}, where H1(R3 × {↑, ↓},C) =
{ψ ∈ L2(R3 × {↑, ↓},C) | ∇ψ ∈ (L2(R3 × {↑, ↓},C))3} is the first Sobolev space (ensuring a
finite kinetic energy). DFT is based on a reformulation of the variational theorem in terms of
the one-electron density defined as1

n(r) = N

∫

· · ·
∫

|Ψ(x,x2, ...,xN )|2 dσdx2...dxN , (1.6)

which is normalized to the electron number,
∫

n(r)dr = N .

1In Eq. (1.6), an integration over a spin coordinate σ just means a sum over the two values σ ∈ {↑, ↓}.
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1.2 The universal density functional

1.2.1 The Hohenberg-Kohn theorem

Consider an electronic system obtained by replacing the potential vne(r) by an arbitrary
external local potential v(r) such that the corresponding Hamiltonian T̂+Ŵee+V̂ has a (bound)
N -electron ground state. A ground-state wave function Ψ (there can be several of them if the
ground state is degenerate) can be obtained by solving the Schrödinger equation, from which
the associated ground-state density n(r) can be deduced. Therefore, one has a mapping from
the potential v(r) to the considered ground-state density n(r)

v(r) −−−−−−→ n(r). (1.7)

In 1964, Hohenberg and Kohn [18] showed that this mapping can be inverted, i.e. the ground-
state density n(r) determines the potential v(r) up to an arbitrary additive real-valued constant

n(r) −−−−−−−−−−→
Hohenberg-Kohn

v(r) + const. (1.8)

Proof: The two-step proof by contradiction proceeds as follows (see, e.g., Ref. [2]).
We consider two local potentials v1(r) and v2(r) differing by more than an additive constant,
v1(r) 6= v2(r) + const, and we note E1 and E2 the ground-state energies of the Hamiltonians
Ĥ1 = T̂ + Ŵee + V̂1 and Ĥ2 = T̂ + Ŵee + V̂2, respectively.
(1) Assume that Ĥ1 and Ĥ2 have the same ground-state wave function Ψ, i.e. Ĥ1|Ψ〉 = E1|Ψ〉
and Ĥ2|Ψ〉 = E2|Ψ〉. Then, subtracting these two equations gives

(V̂1 − V̂2)|Ψ〉 = (E1 − E2)|Ψ〉, (1.9)

or, in position representation,

N
∑

i=1

[v1(ri)− v2(ri)]Ψ(x1,x2, ...,xN ) = (E1 − E2)Ψ(x1,x2, ...,xN ), (1.10)

which implies v1(r) − v2(r) = const, in contradiction with the initial hypothesis. Note that,
to eliminate Ψ in Eq. (1.10), it is assumed that Ψ(x1,x2, ...,xN ) 6= 0 for at least one fixed set
of spin coordinates (σ1, σ2, ..., σN ) and for “almost” all spatial coordinates (r1, r2, ..., rN ) (i.e.,
except possibly on a set of zero measure). This is in fact true for “reasonably well behaved”
potentials. In this case, we thus conclude that two local potentials differing by more than an
additive constant cannot share the same ground-state wave function.
(2) Let then Ψ1 and Ψ2 be (necessarily different) ground-state wave functions of Ĥ1 and Ĥ2, re-
spectively, and assume that Ψ1 and Ψ2 have the same ground-state density n(r). The variational
theorem leads to the following inequality

E1 = 〈Ψ1|Ĥ1|Ψ1〉 < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ2+ V̂1− V̂2|Ψ2〉 = E2+

∫

[v1(r)−v2(r)] n(r)dr, (1.11)

where the strict inequality comes from the fact that Ψ2 cannot be a ground-state wave function
of Ĥ1, as shown in the first step of the proof. Symmetrically, by exchanging the role of systems
1 and 2, we have the strict inequality

E2 < E1 +

∫

[v2(r)− v1(r)] n(r)dr. (1.12)
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Adding Eqs. (1.11) and (1.12) gives the inconsistent result

E1 + E2 < E1 + E2, (1.13)

which finally leads to the conclusion that there cannot exist two local potentials differing by
more than an additive constant which have the same ground-state density. Note that this proof
does not assume non-degenerate ground states (contrary to the original Hohenberg-Kohn proof).
�

So, the ground-state density n(r) determines the potential v(r), which in turn determines the
Hamiltonian, and thus everything about the many-body problem. In other words, the potential
v is a unique (up to an additive constant) functional of the ground-state density n, and all other
properties as well. The ground-state wave function Ψ for the potential v(r) is itself a functional
of n, denoted by Ψ[n], which was exploited by Hohenberg and Kohn to define the universal (i.e.,
independent from the external potential) density functional

F [n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉, (1.14)

which can be used to define the total electronic energy functional

E[n] = F [n] +

∫

vne(r)n(r)dr, (1.15)

for the specific external potential vne(r) of the system considered. Note that, for degenerate
ground states, Ψ[n] is not unique but stands for any degenerate ground-state wave function.
However, all Ψ[n] give the same F [n], which is thus a unique functional of n. Note also that
the Hohenberg-Kohn functional in Eq. (1.14) is only defined for N -electron densities n that are
ground-state densities associated with some local potential, the so-called set of v-representable
densities which we will denote by A.

Hohenberg and Kohn further showed that the density functional E[n] satisfies a variational
property: the ground-state energy E0 of the system considered is obtained by minimizing this
functional with respect to v-representable densities

E0 = min
n∈A

{

F [n] +

∫

vne(r)n(r)dr

}

, (1.16)

the minimum being reached for a ground-state density n0(r) corresponding to the potential
vne(r).

The existence of a mapping from a ground-state density to a local potential, the existence
of the universal density functional, and the variational property with respect to the density
constitutes the Hohenberg-Kohn theorem.

Exercise 1 : For the special case of Coulombic potentials vne(r) there is a simple argument
due to E. Bright Wilson showing that the ground-state density n0(r) fully determines vne(r).
Can you find it yourself?

Exercise 2 : Prove the variational property [Eq. (1.16)] of the density functional E[n].
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1.2.2 Levy-Lieb constrained-search formulation

In 1979 Levy [19,20], and later Lieb [21], proposed to redefine the universal density functional
F [n] using a constrained-search formulation

F [n] = min
Ψ∈W
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉 = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉, (1.17)

where Ψ → n means that the wave function Ψ is constrained to yield the fixed density n [via
Eq. (1.6)]. For a given density n, the minimizing wave function is denoted by Ψ[n] (possibly
non unique in case of degeneracy). This so-called Levy-Lieb functional F [n] does not require the
existence of a local potential associated with the density. It is an extension of the Hohenberg-
Kohn functional: it is defined on the larger set of N -electron densities coming from a wave
function Ψ ∈ W, the so-called set of N -representable densities which we will denote by D. It
turns out that the set D is known explicity: D = {n ∈ L1(R3) | n ≥ 0,

∫

n(r)dr = N,
√
n ∈

H1(R3)}.
The variational property of the total electronic energy functional can easily be demonstrated

using the constrained-search formulation. One starts from the usual variational theorem and
decomposes the minimization over Ψ in two steps: a constrained minimization over Ψ giving a
fixed density n, followed by a minimization over n,

E0 = min
Ψ∈W

〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

= min
n∈D

min
Ψ∈W
Ψ→n

〈Ψ|T̂ + Ŵee + V̂ne|Ψ〉

= min
n∈D

{

min
Ψ∈W
Ψ→n

〈Ψ|T̂ + Ŵee|Ψ〉+
∫

vne(r)n(r)dr

}

= min
n∈D

{

F [n] +

∫

vne(r)n(r)dr

}

, (1.18)

and again the minimum is reached for a ground-state density n0(r) corresponding to the potential
vne(r).

The ground-state energy and density can then be in principle obtained by minimizing over
the density n(r), i.e. a simple function of 3 variables, which is a tremendous simplification
compared to the minimization over a complicated many-body wave function Ψ. However, the
explicit expression of F [n] in terms of the density is not known, and the direct approximations
for F [n] that have been tried so far turn out not to be accurate enough, especially for the kinetic
energy part T [n] included in F [n]

F [n] = T [n] +Wee[n], (1.19)

where T [n] = 〈Ψ[n]|T̂ |Ψ[n]〉 and Wee[n] = 〈Ψ[n]|Ŵee|Ψ[n]〉. Note that the decomposition of
Eq. (1.19) is well defined if the minimizing wave function Ψ[n] is unique (up to an irrelevant
phase factor).

Remark:

Valone [22] and Lieb [21] generalized the constrained-search approach from pure states to en-
semble density matrices Γ̂, resulting in a new universal density functional referred to as the
density-matrix (DM) density functional or Lieb density functional

FDM[n] = min
Γ̂∈DDM

Γ̂→n

Tr[(T̂ + Ŵee)Γ̂], (1.20)
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where Tr denotes the trace2 and the minimization is done over admissible N -electron en-
semble density matrices Γ̂ ∈ DDM = {Γ̂ =

∑

iwi|Ψi〉〈Ψi|, 0 ≤ wi ≤ 1,
∑

iwi = 1,Ψi ∈
W, 〈Ψi|Ψj〉 = δi,j} yielding the fixed density n. This density functional is defined over the
same set of N -representable densities and it is always lower than the Levy-Lieb density func-
tional, i.e. FDM[n] ≤ F [n], with equality if the minimizing wave function Ψ[n] in Eq. (1.17)
is non-degenerate. Introducing the ground-state energy E0[v] as a functional of the external
potential v, Lieb showed that this functional is the Legendre-Fenchel transform of E0[v]

FDM[n] = sup
v∈V

(

E0[v]−
∫

v(r)n(r)dr

)

, (1.21)

where the space of potentials is V = L3/2(R3)+L∞(R3). The density functional FDM[n] has the
mathematical advantage of being convex. However, in the rest of these notes, we will only use
the Levy-Lieb density functional.

1.3 The Kohn-Sham method

1.3.1 Decomposition of the universal functional

Faced with the difficulty of approximating directly F [n], Kohn and Sham (KS) [23] proposed
to decompose F [n] as

F [n] = Ts[n] + EHxc[n], (1.22)

where Ts[n] is the non-interacting kinetic-energy functional which can be defined with a constrained-
search formulation

Ts[n] = min
Φ∈S
Φ→n

〈Φ|T̂ |Φ〉 = 〈Φ[n]|T̂ |Φ[n]〉, (1.23)

where the minimization is done over single-determinant wave functions Φ ∈ S = {Φ = ψ1 ∧
ψ2 ∧ · · · ∧ ψN | ψi ∈ H1(R3 × {↑, ↓},C), 〈ψi|ψj〉 = δi,j} yielding the fixed density n. For a given
density n, the (non necessarily unique) minimizing single-determinant wave function is called
the KS wave function and is denoted by Φ[n]. The remaining functional EHxc[n] in Eq. (1.22)
is called the Hartree-exchange-correlation functional.

Even though the wave function is restricted to be a single-determinant wave function in
Eq. (1.23), the functional Ts[n] is still defined over the entire set of N -representable densities D.
This is because because any N -representable density can be obtained from a single-determinant
wave function. Therefore, the decomposition in Eq. (1.22) does not introduce any approximation.
The idea of the KS method is then to use the exact expression of Ts[n] by reformulating the
variational property of F [n] in terms of single-determinant wave functions Φ

E0 =min
n∈D

{

F [n] +

∫

vne(r)n(r)dr

}

,

=min
n∈D

{

min
Φ∈S
Φ→n

〈Φ|T̂ |Φ〉+ EHxc[n] +

∫

vne(r)n(r)dr

}

=min
n∈D

min
Φ∈S
Φ→n

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

=min
Φ∈S

{

〈Φ|T̂ + V̂ne|Φ〉+ EHxc[nΦ]
}

, (1.24)

2The trace of an operator Â is defined as Tr[Â] =
∑

n〈Ψn|Â|Ψn〉 where {Ψn} is an orthonormal basis of states.
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the minimizing single-determinant KS wave function giving the exact ground-state density n0(r).
Thus, the exact ground-state energy and density can in principle be obtained by minimizing over
single-determinant wave functions only. Even though a wave function has been reintroduced
compared to Eq. (1.18), it is only a single-determinant wave function Φ and therefore it still
represents a tremendous simplification over the usual variational theorem involving a multi-
determinant wave function Ψ. The advantage of Eq. (1.24) over Eq. (1.18) is that a major part
of the kinetic energy can be treated explicitly with the single-determinant wave function Φ, and
only EHxc[n] needs to be approximated as a functional of the density.

In practice, EHxc[n] is written as

EHxc[n] = EH[n] + Exc[n], (1.25)

where EH[n] is the Hartree energy functional

EH[n] =
1

2

∫∫

n(r1)n(r2)

|r1 − r2|
dr1dr2, (1.26)

representing the classical electrostatic repulsion energy for the charge distribution n(r), and
Exc[n] is the exchange-correlation energy functional that remains to approximate. Assuming
that the KS wave function Φ[n] is unique (up to a phase factor), the latter functional can be
further decomposed as

Exc[n] = Ex[n] + Ec[n], (1.27)

where Ex[n] is the exchange energy functional

Ex[n] = 〈Φ[n]|Ŵee|Φ[n]〉 − EH[n], (1.28)

and Ec[n] is the correlation energy functional

Ec[n] = 〈Ψ[n]|T̂ + Ŵee|Ψ[n]〉 − 〈Φ[n]|T̂ + Ŵee|Φ[n]〉 = Tc[n] + Uc[n], (1.29)

which contains a kinetic contribution Tc[n] = 〈Ψ[n]|T̂ |Ψ[n]〉−〈Φ[n]|T̂ |Φ[n]〉 and a potential con-
tribution Uc[n] = 〈Ψ[n]|Ŵee|Ψ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉. The exchange and correlation functionals
are always negative, i.e. Ex[n] ≤ 0 and Ec[n] ≤ 0.

1.3.2 The Kohn-Sham equations

The single-determinant wave function Φ is constructed from a set of N orthonormal occupied
spin-orbitals {ψi(x)}i=1,...,N . To enforce Ŝz symmetry, each spin-orbital is factorized as ψi(x) =
ϕi(r)χσi

(σ) where ϕi(r) is a spatial orbital and χσi
(σ) = δσi,σ is a spin function (σi is the spin of

the spin-orbital i). Alternatively, when this is convenient, we will sometimes reindex the spatial
orbitals, {ϕi(r)} → {ϕiσ(r)}, including explicitly the spin σ in the index. Writing the total
electronic energy in Eq. (1.24) in terms of spin-orbitals and integrating over the spin variables,
we obtain

E[{ϕi}] =
N
∑

i=1

∫

ϕ∗
i (r)

(

−1

2
∇2 + vne(r)

)

ϕi(r)dr+ EHxc[n], (1.30)

where the density is expressed in terms of the orbitals as

n(r) =
N
∑

i=1

|ϕi(r)|2 . (1.31)
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The minimization over Φ can then be recast into a minimization of E[{ϕi}] with respect to the
spatial orbitals ϕi(r) with the constraint of keeping the orbitals orthonormalized. Using the
method of Lagrange multipliers, we introduce the following Lagrangian

L[{ϕi}] = E[{ϕi}]−
N
∑

i=1

εi

(
∫

ϕ∗
i (r)ϕi(r)dr− 1

)

, (1.32)

where εi is the Lagrange multiplier associated to the normalization condition of ϕi(r)
3. The

Lagrangian should then be stationary with respect to variations of the orbitals ϕi(r)
4

δL
δϕ∗

i (r)
= 0, (1.33)

where δL/δϕ∗
i (r) is the functional derivative of L with respect to ϕ∗

i (r). Calculating this func-
tional derivative gives (see Appendix B for an introduction to functional derivatives)

(

−1

2
∇2 + vne(r)

)

ϕi(r) +
δEHxc[n]

δϕ∗
i (r)

= εiϕi(r), (1.34)

where the term δEHxc[n]/δϕ
∗
i (r) can be expressed as, using the chain rule,

δEHxc[n]

δϕ∗
i (r)

=

∫

δEHxc[n]

δn(r′)
δn(r′)
δϕ∗

i (r)
dr′. (1.35)

Noting that δn(r′)/δϕ∗
i (r) = ϕi(r)δ(r−r

′) [from Eq. (1.31)], and defining the Hartree-exchange-
correlation potential vHxc(r) as the functional derivative of EHxc[n] with respect to n(r)

vHxc(r) =
δEHxc[n]

δn(r)
, (1.36)

which is itself a functional of the density, we then arrive at the KS equations

(

−1

2
∇2 + vne(r) + vHxc(r)

)

ϕi(r) = εiϕi(r). (1.37)

The orbitals satisfying Eq. (1.37) are called the KS orbitals. They are the eigenfunctions of the
KS one-electron Hamiltonian

hs = −1

2
∇2 + vs(r), (1.38)

where

vs(r) = vne(r) + vHxc(r), (1.39)

is the KS potential, and εi are then the KS orbital energies. Note that Eq. (1.37) constitutes a
set of coupled self-consistent equations since the potential vHxc(r) depends on all the occupied
orbitals {ϕi}i=1,...,N through the density [Eq. (1.31)]. At convergence, the orbitals obtained by

3It turns out that it is not necessary to include the orthogonalization conditions
∫
ϕ∗

i (r)ϕj(r)dr = 0 for i 6= j
in Eq. (1.32). Indeed, we will find that the minimizing orbitals ϕi(r) are eigenfunctions of a self-adjoint operator,
which implies that we can always find an orthogonal set of orbitals

4Here, the orbitals are assumed to take complex values, so that it is as if ϕi(r) and ϕ∗
i (r) were taken as

independent functions. We then write the stationary equation for variations with respect to ϕ∗
i (r) only, the

second stationary equation for variations with respect to ϕi(r) is just the complex conjugate of the first one.
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solving Eq. (1.37) must be the same as the orbitals used to construct vHxc(r). The operator hs
defines the KS system which is a system of N non-interacting electrons in an effective external
potential vs(r) ensuring that its ground-state density n(r) is the same as the exact ground-state
density n0(r) of the physical system of N interacting electrons. The exact ground-state energy
E0 is then obtained by injecting the KS orbitals in Eq. (1.30). Note that Eq. (1.37) also permits
to define virtual KS orbitals {ϕa}a≥N+1.

Note that to define the potential vHxc(r) in Eq. (1.36) a form of differentiability of EHxc[n]
has been assumed. This can in fact only hold on a restricted set of densities. This is known as
the v-representability problem. Also, note that the KS potential in Eq. (1.39) is defined only
up to an additive constant. For atomic and molecular ground-state densities, we choose the
constant so that the potential vanishes at infinity, vs(∞) = 0.

Following the decomposition of EHxc[n] in Eq. (1.25), the potential vHxc(r) is decomposed as

vHxc(r) = vH(r) + vxc(r), (1.40)

where vH(r) = δEH[n]/δn(r) is the Hartree potential and vxc(r) = δExc[n]/δn(r) is the exchange-
correlation potential. Likewise, following the decomposition of Exc[n] in Eq. (1.27), the potential
vxc(r) can be decomposed as

vxc(r) = vx(r) + vc(r), (1.41)

where vx(r) = δEx[n]/δn(r) is the exchange potential and vc(r) = δEc[n]/δn(r) is the correlation
potential. Thus, the Kohn-Sham equations are similar to the Hartree-Fock equations, with the
difference that they involve a local exchange potential vx(r) instead of a nonlocal one, and an
additional correlation potential.

Exercise 3 : Show that the expression of the Hartree potential is

vH(r) =

∫

n(r′)
|r− r′|dr

′. (1.42)

1.3.3 Practical calculations in an atomic basis

In practical calculations for molecular systems, we usually work in a basis of M atomic
functions {χν}, e.g. Gaussian-type basis functions centered on the nuclei. We then expand the
orbitals as

ϕi(r) =
M
∑

ν=1

cνi χν(r), (1.43)

and thus calculating the orbitals amounts to calculating the orbital coefficients cνi. Inserting
Eq. (1.43) into the KS equations

hsϕi(r) = εiϕi(r), (1.44)

multiplying on the left by χ∗
µ(r) and integrating over r, we arrive at

M
∑

ν=1

Fµν cνi = εi

M
∑

ν=1

Sµν cνi, (1.45)
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where Fµν =
∫

χ∗
µ(r)hsχν(r)dr are the elements of the KS Fock matrix and Sµν =

∫

χ∗
µ(r)χν(r)dr

are the elements of the overlap matrix of the basis functions.

The Fock matrix is calculated as

Fµν = hµν + Jµν + Vxc,µν , (1.46)

where hµν are the one-electron integrals

hµν =

∫

χ∗
µ(r)

(

−1

2
∇2 + vne(r)

)

χν(r)dr, (1.47)

Jµν is the Hartree potential contribution

Jµν =

∫

χ∗
µ(r)vH(r)χν(r)dr =

M
∑

λ=1

M
∑

γ=1

Pγλ(χµχν |χλχγ), (1.48)

with the density matrix

Pγλ =
N
∑

i=1

cγic
∗
λi, (1.49)

and the two-electron integrals (in chemists’ notation)

(χµχν |χλχγ) =

∫∫

χ∗
µ(r1)χν(r1)χ

∗
λ(r2)χγ(r2)

|r1 − r2|
dr1dr2, (1.50)

and Vxc,µν is the exchange-correlation potential contribution

Vxc,µν =

∫

χ∗
µ(r)vxc(r)χν(r)dr. (1.51)

In Eq. (1.51), the exchange-correlation potential vxc(r) is evaluated at the density calculated as

n(r) =
M
∑

γ=1

M
∑

λ=1

Pγλχγ(r)χ
∗
λ(r). (1.52)

Exercise 4 : Check Eq. (1.52) and prove the second equality in Eq. (1.48).

Eq. (1.45) is a self-consistent generalized eigenvalue equation that must be solved iteratively
for finding the KS orbital coefficients and KS orbital energies. The converged density matrix
can then be used to obtain the total electronic energy

E =
M
∑

µ=1

M
∑

ν=1

Pνµhµν +
1

2

M
∑

µ=1

M
∑

ν=1

PνµJµν + Exc, (1.53)

where Exc is calculated with the density in Eq. (1.52).

In the simplest approximations (see Section 3), the exchange-correlation energy functional
has a local form

Elocal
xc =

∫

f(n(r))dr, (1.54)
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where f(n(r)) has a complicated nonlinear dependence on the density n(r). For example, in the
local-density approximation (LDA) (see Section 3.1), the exchange energy is

ELDA
x = Cx

∫

n(r)4/3dr, (1.55)

where Cx is a constant, and the exchange potential is

vLDA
x (r) =

4

3
Cxn(r)

1/3. (1.56)

Therefore, the integrals in Eq. (1.51) and Eq. (1.54) cannot be calculated analytically, but are
instead evaluated by numerical integration

Vxc,µν ≈
∑

k

wk χ
∗
µ(rk)vxc(rk)χν(rk), (1.57)

and
Elocal

xc ≈
∑

k

wk f(n(rk)), (1.58)

where rk and wk are quadrature points and weights. For example, for polyatomic molecules, the
multicenter numerical integration scheme of Becke [24] is generally used.

1.3.4 Extension to spin density-functional theory

For dealing with an external magnetic field, DFT has been extended from the total density
to spin-resolved densities [25,26]. Without external magnetic fields, this spin density-functional
theory is in principle not necessary, even for open-shell systems. In practice, however, the depen-
dence on the spin densities allows one to construct approximate exchange-correlation functionals
that are more accurate, and is therefore almost always used for open-shell systems.

The spin density nσ(r) for σ ∈ {↑, ↓} is defined as

nσ(r) = N

∫

· · ·
∫

|Ψ(rσ,x2, ...,xN )|2 dx2...dxN , (1.59)

and integrates to the number of σ-spin electrons, i.e.
∫

nσ(r)dr = Nσ. The universal density
functional is now defined as [27]

F [n↑, n↓] = min
Ψ∈W

Ψ→n↑,n↓

〈Ψ|T̂ + Ŵee|Ψ〉, (1.60)

where the search is over wave functions Ψ ∈ W with N = N↑ + N↓ electrons and which yield
fixed spin densities. A KS method is obtained by decomposing F [n↑, n↓] as

F [n↑, n↓] = Ts[n↑, n↓] + EH[n] + Exc[n↑, n↓], (1.61)

where Ts[n↑, n↓] is defined with a constrained search over (spin-unrestricted) Slater determinants
Φ

Ts[n↑, n↓] = min
Φ∈S

Φ→n↑,n↓

〈Φ|T̂ |Φ〉, (1.62)

and EH[n] is the Hartree energy which is a functional of the total density n = n↑ + n↓ only
[Eq. (1.26)], and Exc[n↑, n↓] is the spin-resolved exchange-correlation energy functional. Writ-
ing the spatial orbitals of the spin-unrestricted determinant as ϕi↑(r) and ϕi↓(r) (with indices
explicitly including spin now for clarity), we have now the spin-dependent KS equations

(

−1

2
∇2 + vne(r) + vH(r) + vxc,σ(r)

)

ϕiσ(r) = εiσϕiσ(r), (1.63)
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with the spin-dependent exchange-correlation potential

vxc,σ(r) =
δExc[n↑, n↓]
δnσ(r)

, (1.64)

and the spin density

nσ(r) =

Nσ
∑

i=1

|ϕiσ(r)|2 . (1.65)

It turns out that the spin-dependent exchange functional Ex[n↑, n↓] can be exactly expressed
in terms of the spin-independent exchange functional Ex[n] [28]

Ex[n↑, n↓] =
1

2
(Ex[2n↑] + Ex[2n↓]) , (1.66)

which is known as the spin-scaling relation and stems directly from the fact the ↑- and ↓-spin
electrons are uncoupled in the exchange energy. Therefore, any approximation for the spin-
independent exchange functional Ex[n] can be easily extended to an approximation for the
spin-dependent exchange functional Ex[n↑, n↓]. Unfortunately, there is no such relation for the
correlation functional.

Exercise 5 : Prove the spin-scaling relation of Eq. (1.66).

Obviously, in the spin-unpolarized case, i.e. n↑ = n↓ = n/2, this spin-dependent formalism
reduces to the spin-independent one.

1.4 The generalized Kohn-Sham method

An important extension of the KS method is the so-called generalized Kohn-Sham (GKS)
method [29], which recognizes that the universal density functional F [n] of Eq. (1.17) can be
decomposed in other ways than in the KS decomposition of Eq. (1.22). In particular, we can
decompose F [n] as

F [n] = min
Φ∈S
Φ→n

{

〈Φ|T̂ |Φ〉+ EH[nΦ] + S[Φ]
}

+ S̄[n], (1.67)

where S[Φ] is any functional of a single-determinant wave function Φ ∈ S leading to a mini-
mum in Eq. (1.67), and S̄[n] is the corresponding complementary density functional that makes
Eq. (1.67) exact. Defining the S-dependent GKS exchange-correlation functional as

ES
xc[Φ] = S[Φ] + S̄[nΦ], (1.68)

we can express the exact ground-state energy as

E0 = min
Φ∈S

{

〈Φ|T̂ + V̂ne|Φ〉+ EH[nΦ] + ES
xc[Φ]

}

, (1.69)

and any minimizing single-determinant wave function in Eq. (1.69) gives a ground-state density
n0(r). Similarly to the KS equations [Eq. (1.37)], Eq. (1.69) leads to the one-electron GKS
equations

(

−1

2
∇2 + vne(r) + vH(r) + vS̄(r)

)

ϕiσ(r) +
δS[Φ]

δϕ∗
iσ(r)

= εiσϕiσ(r), (1.70)
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where vS̄(r) = δS̄[n]/δn(r) is a local potential and δS[Φ]/δϕ∗
iσ(r) generates a one-electron (pos-

sibly nonlocal) operator.

In the special case S[Φ] = 0, we recover the KS exchange-correlation density functional

ES=0
xc [Φ] = Exc[nΦ]. (1.71)

Due to the freedom in the choice of S[Φ], there is an infinity of GKS exchange-correlation
functionals ES

xc[Φ] giving the exact ground-state energy via Eq. (1.69). This freedom and the
fact that Φ carries more information than nΦ gives the possibility to design more accurate
approximations for the exchange-correlation energy.

Of course, by starting from the density functional F [n↑, n↓] in Eq. (1.60), this GKS method
can be extended to the spin-dependent case, leading to GKS exchange-correlation functionals of
the form ES

xc[Φ] = S[Φ] + S̄[n↑,Φ, n↓,Φ].
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2 Exact expressions and constraints for the exchange and correlation

functionals

2.1 The exchange and correlation functionals in terms of the exchange and correlation

holes

2.1.1 The exchange and correlation holes

Let us consider the pair density associated with the wave function Ψ[n] defined in Eq. (1.17)

n2(r1, r2) = N(N − 1)

∫

· · ·
∫

|Ψ[n](x1,x2, ...,xN )|2 dσ1dσ2dx3...dxN , (2.1)

which is a functional of the density, and is normalized to the number of electron pairs,
∫∫

n2(r1, r2)dr1dr2 = N(N − 1). It is proportional to the probability density of finding two
electrons at positions (r1, r2) with all the other electrons anywhere. The pair density is useful
to express the expectation of the electron-electron interaction operator

〈Ψ[n]|Ŵee|Ψ[n]〉 = 1

2

∫∫

n2(r1, r2)

|r1 − r2|
dr1dr2. (2.2)

Mirroring the decomposition of the Hartree-exchange-correlation energy performed in the KS
method [Eq. (1.25)], the pair density can be decomposed as

n2(r1, r2) = n(r1)n(r2) + n2,xc(r1, r2). (2.3)

The product of the densities n(r1)n(r2) corresponds to the case of independent electrons and
the exchange-correlation pair density n2,xc(r1, r2) represents the modification of the pair density
due to exchange and correlation effects between the electrons. It can be further written as

n2,xc(r1, r2) = n(r1)nxc(r1, r2), (2.4)

where nxc(r1, r2) is the exchange-correlation hole. It can be interpreted as the modification due
to exchange and correlation effects of the conditional probability of finding an electron at r2

knowing that one has been found at r1. The positivity of n2(r1, r2) implies that

nxc(r1, r2) ≥ −n(r2). (2.5)

Moreover, we have the following sum rule

∫

nxc(r1, r2)dr2 = −1. (2.6)

Exercise 6 : Prove the sum rule of Eq. (2.6).

We can separate the exchange and correlation contributions in the exchange-correlation hole.
For this, consider the pair density n2,KS(r1, r2) associated with the KS single-determinant wave
function Φ[n] defined in Eq. (1.23). It can be decomposed as

n2,KS(r1, r2) = n(r1)n(r2) + n2,x(r1, r2), (2.7)
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where n2,x(r1, r2) is the exchange pair density, which is further written as

n2,x(r1, r2) = n(r1)nx(r1, r2), (2.8)

where nx(r1, r2) is the exchange hole. Just like the exchange-correlation hole, the exchange hole
satisfies the conditions

nx(r1, r2) ≥ −n(r2), (2.9)

and
∫

nx(r1, r2)dr2 = −1. (2.10)

Moreover, by writing the exchange hole in terms of the one-electron KS density matrix n1,σ(r1, r2) =
∑Nσ

j=1 ϕ
∗
jσ(r2)ϕjσ(r1),

nx(r1, r2) = −
∑

σ∈{↑,↓}
|n1,σ(r1, r2)|2/n(r1), (2.11)

we see that it is always negative
nx(r1, r2) ≤ 0. (2.12)

From Eqs. (1.28), (2.2), (2.7), and (2.8), it can be seen that the exchange energy functional can
be written in terms of the exchange hole

Ex[n] =
1

2

∫∫

n(r1)nx(r1, r2)

|r1 − r2|
dr1dr2, (2.13)

leading to the interpretation of Ex as the electrostatic interaction energy of an electron and its
exchange hole. It is also useful to write the exchange energy functional as

Ex[n] =

∫

n(r1)εx[n](r1)dr1, (2.14)

where εx[n](r1) is the exchange energy per particle

εx[n](r1) =
1

2

∫

nx(r1, r2)

|r1 − r2|
dr2, (2.15)

which is itself a functional of the density. In approximate exchange density functionals, the
quantity εx[n](r1) is usually what is approximated.

Exercise 7 : Show that, for finite systems, εx[n](r) ∼
r→+∞

−1/(2r).

The correlation hole is defined as the difference

nc(r1, r2) = nxc(r1, r2)− nx(r1, r2), (2.16)

and, from Eqs. (2.6) and (2.10), satisfies the sum rule
∫

nc(r1, r2)dr2 = 0, (2.17)

which implies that the correlation hole has negative and positive contributions5. The potential
contribution to the correlation energy can be written in terms of the correlation hole

Uc[n] =
1

2

∫∫

n(r1)nc(r1, r2)

|r1 − r2|
dr1dr2. (2.18)

In order to express the total correlation energy Ec[n] = Tc[n] + Uc[n] in a form similar to
Eq. (2.18), we need to introduce the adiabatic-connection formalism.

5Therefore, the correlation hole is really a “hole” only in some region of space, and a “bump” in other regions.
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2.1.2 The adiabatic connection

The idea of the adiabatic connection is to have a continuous path between the non-interacting
KS system and the physical system while keeping the ground-state density constant. An infinity
of such paths are possible, but the one most often considered consists in switching on the
electron-electron interaction linearly with a coupling constant λ ∈ R. The Hamiltonian along
this adiabatic connection is

Ĥλ = T̂ + λŴee + V̂ λ, (2.19)

where V̂ λ is the external local potential operator imposing that the ground-state density is the
same as the ground-state density of the physical system for all λ. The Hamiltonian (2.19) reduces
to the KS non-interacting Hamiltonian for λ = 0 and to the physical Hamiltonian for λ = 1.

Just as for the physical system, it is possible to define a universal functional associated with
the system of Eq. (2.19) for each value of the parameter λ

F λ[n] = min
Ψ∈W
Ψ→n

〈Ψ|T̂ + λŴee|Ψ〉 = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉, (2.20)

the minimizing wave function being denoted by Ψλ[n]. Clearly, for λ = 1 we recover the physical
universal functional, F λ=1[n] = F [n], while for λ = 0, assuming that the KS wave function is
non-degenerate, we recover the non-interacting kinetic energy functional F λ=0[n] = Ts[n]. The
functional F λ[n] can be decomposed as

F λ[n] = Ts[n] + Eλ
H[n] + Eλ

xc[n], (2.21)

where Eλ
H[n] is the Hartree energy functional associated with the interaction λŴee and is simply

linear in λ

Eλ
H[n] =

1

2

∫∫

n(r1)n(r2)
λ

|r1 − r2|
dr1dr2 = λEH[n], (2.22)

and Eλ
xc[n] is a remaining exchange-correlation functional. It can be decomposed as a sum of an

exchange contribution, which is also linear in λ,

Eλ
x [n] = 〈Φ[n]|λŴee|Φ[n]〉 − Eλ

H[n] = λEx[n], (2.23)

and a correlation contribution, which is nonlinear in λ,

Eλ
c [n] = 〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉 − 〈Φ[n]|T̂ + λŴee|Φ[n]〉. (2.24)

Taking the derivative of Eq. (2.24) with respect to λ and using the Hellmann-Feynman
theorem for the wave function Ψλ[n]6, we obtain

∂Eλ
c [n]

∂λ
= 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉, (2.25)

Integrating over λ from 0 to 1, and using Eλ=1
c [n] = Ec[n] and Eλ=0

c [n] = 0, we arrive at the
adiabatic-connection formula for the correlation energy functional of the physical system

Ec[n] =

∫ 1

0
dλ 〈Ψλ[n]|Ŵee|Ψλ[n]〉 − 〈Φ[n]|Ŵee|Φ[n]〉. (2.26)

6In this context, the Hellmann-Feynman theorem states that in the derivative ∂Fλ[n]
∂λ

= 〈 ∂Ψ
λ[n]
∂λ

|T̂ +

λŴee|Ψ
λ[n]〉 + 〈Ψλ[n]|Ŵee|Ψ

λ[n]〉 + 〈Ψλ[n]|T̂ + λŴee|
∂Ψλ[n]

∂λ
〉 the first and third terms involving the derivative

of Ψλ[n] vanish. This is due to the fact that Ψλ[n] is obtained via the minimization of Eq. (2.20) and thus any
variation of Ψλ[n] which keeps the density constant (which is the case for a variation with respect to λ) gives a
vanishing variation of Fλ[n].
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By introducing the correlation hole nλc (r1, r2) associated to the wave function Ψλ[n], the adiabatic-
connection formula for the correlation energy can also be written as

Ec[n] =
1

2

∫ 1

0
dλ

∫∫

n(r1)n
λ
c (r1, r2)

|r1 − r2|
dr1dr2, (2.27)

or, noting that nλc (r1, r2) is the only quantity that depends on λ in Eq. (2.27), in a more compact
way,

Ec[n] =
1

2

∫∫

n(r1)n̄c(r1, r2)

|r1 − r2|
dr1dr2, (2.28)

where n̄c(r1, r2) =
∫ 1
0 dλ nλc (r1, r2) is the coupling-constant-integrated correlation hole. It leads

to the interpretation of Ec as the electrostatic interaction energy of an electron with its coupling-
constant-integrated correlation hole. As for the exchange energy, the correlation energy func-
tional can be written as

Ec[n] =

∫

n(r1)εc[n](r1)dr1, (2.29)

where εc[n](r1) is the correlation energy per particle

εc[n](r1) =
1

2

∫

n̄c(r1, r2)

|r1 − r2|
dr2, (2.30)

which is a functional of the density that needs to be approximated.

2.2 Uniform coordinate scaling

We consider a norm-preserving uniform scaling of the spatial coordinates in the N -electron
wave function along the adiabatic connection Ψλ[n] [introduced in Eq. (2.20)] while leaving
untouched the spin coordinates [30–32]

Ψλ
γ [n](r1, σ1, ..., rN , σN ) = γ3N/2Ψλ[n](γr1, σ1, ..., γrN , σN ), (2.31)

where γ > 0 is a scaling factor. The scaled wave function Ψλ
γ [n] yields the scaled density

nγ(r) = γ3n(γr), (2.32)

with
∫

nγ(r)dr =
∫

n(r)dr = N and minimizes 〈Ψ|T̂ + λγŴee|Ψ〉 since it can be shown that

〈Ψλ
γ [n]|T̂ + λγŴee|Ψλ

γ [n]〉 = γ2〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉. (2.33)

Exercise 8 : Prove the identity of Eq. (2.33).

We thus conclude that the scaled wave function at the density n and coupling constant λ
corresponds to the wave function at the scaled density nγ and coupling constant λγ

Ψλ
γ [n] = Ψλγ [nγ ], (2.34)

or, equivalently,
Ψλ/γ

γ [n] = Ψλ[nγ ], (2.35)
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and that the universal density functional satisfies the scaling relation

F λγ [nγ ] = γ2F λ[n], (2.36)

or, equivalently,
F λ[nγ ] = γ2F λ/γ [n]. (2.37)

At λ = 0, we find the scaling relation of the KS wave function Φ[n]

Φ[nγ ] = Φγ [n]. (2.38)

This directly leads to the scaling relation for the non-interacting kinetic density functional [see
Eq. (1.23)]

Ts[nγ ] = γ2Ts[n]. (2.39)

Moreover, since the Hartree density functional [see Eq. (1.26)] scales linearly

EH[nγ ] = γEH[n], (2.40)

Eq. (2.38) implies that the exchange density functional [see Eq. (1.28)] also scales linearly

Ex[nγ ] = γEx[n]. (2.41)

Exercise 9 : Prove the scaling relations satisfied by the Hartree and exchange density func-
tionals in Eqs. (2.40) and (2.41).

However, the correlation density functional Ec[n] has the more complicated scaling (as F [n])

Eλ
c [nγ ] = γ2Eλ/γ

c [n], (2.42)

and, in particular for λ = 1,
Ec[nγ ] = γ2E1/γ

c [n]. (2.43)

These scaling relations allow one to find the behavior of the density functionals in the high-
and low-density limits. In the high-density limit (γ → ∞), it can be shown from Eq. (2.43) that,
for nondegenerate KS systems, the correlation functional Ec[n] goes to a constant

lim
γ→∞

Ec[nγ ] = EGL2
c [n], (2.44)

where EGL2
c [n] is the second-order Görling-Levy (GL2) correlation energy [33, 34] (see Sec-

tion 4.2). This is also called the weak-correlation limit since in this limit the correlation en-
ergy is negligible with respect to exchange energy which is itself negligible with respect to the
non-interacting kinetic energy: |Ec[nγ ]| = O(γ0) ≪ |Ex[nγ ]| = O(γ) ≪ Ts[nγ ] = O(γ2). Equa-
tion (2.44) is an important constraint since atomic and molecular correlation energies are often
close to the high-density limit. For example, for the ground-state density of the helium atom,
we have Ec[n] = −0.0421 hartree and limγ→∞Ec[nγ ] = −0.0467 hartree [35].

In the low-density limit (γ → 0), it can be shown from Eq. (2.37) that the Hartree-exchange-
correlation EHxc[n] goes to zero linearly in γ

EHxc[nγ ] ∼
γ→0

γ W SCE
ee [n], (2.45)

where W SCE
ee [n] = inf

Ψ∈W,Ψ→n
〈Ψ|Ŵee|Ψ〉 is the strictly-correlated-electron (SCE) functional [36–

39]. This is also called the strong-interaction limit since in this limit the Hartree-exchange-
correlation energy dominates over the non-interacting kinetic energy: EHxc[nγ ] = O(γ) ≫
Ts[nγ ] = O(γ2). In this limit, the electrons strictly localize relatively to each other. This
corresponds to a Wigner crystallization.
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2.3 One-orbital spatial regions and self-interaction

For systems composed of only one spin-↑ (or, symmetrically, one spin-↓) electron (e.g., the
hydrogen atom) with density n1e(r) = |ϕ1↑(r)|2 where ϕ1↑(r) is the unique occupied KS orbital,
the exchange hole in Eq. (2.11) simplifies to nx(r1, r2) = −n(r2), and consequently the exchange
energy cancels out the Hartree energy

Ex[n1e] = −EH[n1e]. (2.46)

Besides, the correlation energy vanishes

Ec[n1e] = 0. (2.47)

This is of course also true for the spin-dependent version of the functionals introduced in Sec-
tion 1.3.4, i.e.

Ex[n1e, 0] = −EH[n1e]. (2.48)

and
Ec[n1e, 0] = 0. (2.49)

For systems composed of two opposite-spin electrons (e.g., the helium atom or the dihydrogen

molecule) in a unique doubly occupied KS orbital ϕ1(r) = ϕ1↑(r) = ϕ1↓(r) with density n↑↓2e(r) =
2|ϕ1(r)|2, the exchange hole simplifies to nx(r1, r2) = −n(r2)/2, and consequently the exchange
energy is equal to half the opposite of the Hartree energy

Ex[n
↑↓
2e ] = −1

2
EH[n

↑↓
2e ]. (2.50)

These are constraints for the exchange and correlation density functionals in the special cases
N = 1 and N = 2. For systems with more electrons, similar relations apply locally in spatial
regions where, among the occupied KS orbitals, only one orbital is not zero (or, more generally,
takes non-negligible values) (see Ref. [17]). This situation can be approximately realized in
chemical systems. For example, this approximately corresponds to an unpair electron in a
radical, and to an electron pair in a single covalent bond, in a lone pair, or in a core orbital. If
approximate exchange and correlation density functionals do not satisfy these constraints, we
say that they introduce a self-interaction error.

2.4 Lieb-Oxford lower bound

Lieb and Oxford derived a lower bound for the indirect Coulomb energy (i.e., the two-particle
Coulomb potential energy beyond the Hartree energy) [40], which, when expressed in terms of
the exchange or exchange-correlation functional, takes the form [41]

Ex[n] ≥ Exc[n] ≥ −CLO

∫

n(r)4/3dr, (2.51)

where the optimal (i.e., smallest) constant CLO (independent of the electron number N) has
been narrowed to 1.4442 ≤ CLO ≤ 1.5765. This bound is approached in the low-density limit.
For one-electron densities and opposite-spin two-electron densities, specific tigher bounds (i.e.,
with smaller CLO) are known.
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2.5 Fractional electron numbers and frontier orbital energies

In 1982, Perdew, Parr, Levy, and Balduz [42] extended DFT to fractional electron numbers.
Although systems with a noninteger number of electrons may appear as unphysical, such systems
in fact naturally arise in quantum mechanics, e.g. as fragments from a molecular dissociation in
entangled quantum states. One important result of this extension is that the frontier KS orbital
energies can be seen as derivatives of the total energy with respect to the electron number.

2.5.1 Quantum mechanics with fractional electron numbers

The ground-state energy of a system with a fixed fractional number of electronsN = N−1+f
(where N is an integer and 0 ≤ f ≤ 1) can be defined in an ensemble formalism as

EN−1+f
0 = min

Γ̂∈DN−1+f
DM

Tr
[(

T̂ + Ŵee + V̂ne

)

Γ̂
]

, (2.52)

where Tr denotes the trace (in Fock space) and the minimization is over ensemble density

matrices Γ̂ in the set DN−1+f
DM

DN−1+f
DM =

{

Γ̂ = (1− f)|ΨN−1〉〈ΨN−1|+ f |ΨN 〉〈ΨN |, ΨN−1 ∈ WN−1,ΨN ∈ WN
}

, (2.53)

where f is fixed, and ΨN−1 and ΨN are arbitrary wave functions in the (N −1)- and N -electron
admissible wave-function sets WN−1 and WN , respectively. This form of Γ̂ in Eq. (2.53) ensures
an average electron number of N − 1 + f .7 The minimizing ensemble density matrix is

Γ̂0 = (1− f)|ΨN−1
0 〉〈ΨN−1

0 |+ f |ΨN
0 〉〈ΨN

0 |, (2.54)

where ΨN−1
0 and ΨN

0 are ground-state wave functions of the (N − 1)- and N -electron systems,
respectively.

The fact that the minimizing ensemble density matrix is linear in f implies that the ground-
state energy is also linear in f between the integer electron numbers N − 1 and N

EN−1+f
0 = (1− f)EN−1

0 + fEN
0 , (2.55)

where EN−1
0 and EN

0 are the ground-state energies of the (N − 1)- and N -electron systems,
respectively. Similarly, between the integer electron numbers N and N + 1, we have

EN+f
0 = (1− f)EN

0 + fEN+1
0 . (2.56)

Thus, the ground-state energy is a continuous piecewise linear function of the fractional electron
number N .

Exercise 10 : Prove that the minimizing ensemble density matrix is indeed given by Eq. (2.54)
and the ground-state energy by Eq. (2.55).

7In fact, with the assumption that the ground-state energy for integer electron numbers in a fixed external
potential is a convex function, EN ≤ (EN+1 + EN−1)/2, which is true for any known realistic system, the
minimization in Eq. (2.52) can be done over ensemble density matrices Γ̂ constructed from wave functions with
any number of electrons with the only constraint that Γ̂ gives an average electron number of N − 1 + f .
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The derivative of EN
0 with respect to N defines the electronic chemical potential 8

µ =
∂EN

0

∂N , (2.57)

and is obtained as the derivative with respect to f of Eq. (2.55) for N − 1 < N < N

(

∂EN
0

∂N

)

N−1<N<N

= EN
0 − EN−1

0 = −IN , (2.58)

where IN is the ionization energy of the N electron system (IN is always strictly positive), and
similarly from Eq. (2.56) for N < N < N + 1

(

∂EN
0

∂N

)

N<N<N+1

= EN+1
0 − EN

0 = −AN , (2.59)

where AN is the electron affinity of the N electron system (with this definition, AN is strictly
positive if the (N + 1)-electron system is bound, otherwise it is zero). The electronic chemical
potential µ has thus a discontinuity at the integer electron number N . So, the plot of EN

0

with respect to N is made of a series of straight lines between integer electron numbers, with
derivative discontinuities at each integer.

2.5.2 Density-functional theory with fractional electron numbers

The universal density functional F [n] is extended to densities integrating to a fractional
electron number,

∫

n(r)dr = N = N − 1 + f , as

F [n] = min
Γ̂∈DN−1+f

DM

Γ̂→n

Tr
[(

T̂ + Ŵee

)

Γ̂
]

, (2.60)

where the minimization is performed over ensemble density matrices Γ̂ ∈ DN−1+f
DM and yielding

the density n. As usual, to set up a KS method, F [n] is decomposed as

F [n] = Ts[n] + EHxc[n], (2.61)

with a KS non-interacting kinetic-energy functional and a remaining Hartree-exchange-correlation
functional EHxc[n]. Here, Ts[n] is defined as

Ts[n] = min
Γ̂s∈DN−1+f

DM,s

Γ̂s→n

Tr[Γ̂sT̂ ], (2.62)

where the minimization is over ensemble non-interacting density matrices Γ̂s ∈ DN−1+f
DM,s and

yielding the density n. The set of non-interacting density matrices is where the minimization is
over ensemble non-interacting density matrices Γ̂s of the form

DN−1+f
DM,s =

{

Γ̂s = (1− f)|ΦN−1,f 〉〈ΦN−1,f |+ f |ΦN,f 〉〈ΦN,f |, ΦN−1,f = ψ1 ∧ · · · ∧ ψN−1,

ΦN,f = ψ1 ∧ · · · ∧ ψN , ψi ∈ H1(R3 × {↑, ↓},C), 〈ψi|ψj〉 = δi,j

}

, (2.63)

8The electronic chemical potential is an important quantity in the field of conceptual DFT. The electronegativity
of a system can be defined as the opposite of the electronic chemical potential
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i.e., ΦN−1,f and ΦN,f are (N−1)- andN -electron single-determinant wave functions, respectively,
constructed from a common set of spin orbitals {ψi} depending on the fixed f . The exact ground-
state energy can then be expressed as

EN−1+f
0 = min

Γ̂s∈DN−1+f
DM,s

{

Tr
[(

T̂ + V̂ne

)

Γ̂s

]

+ EHxc[nΓ̂s
]
}

, (2.64)

In Eq. (2.64), EHxc is evaluated at nΓ̂s
, i.e. the density of Γ̂s. The total electronic energy

can then be written in terms of these orbitals and occupation numbers ni

E =
N
∑

i=1

ni

∫

ϕ∗
i (r)

(

−1

2
∇2 + vne(r)

)

ϕi(r)dr+ EHxc[n], (2.65)

with the density

n(r) =
N
∑

i=1

ni |ϕi(r)|2 , (2.66)

where ni = 1 for i ≤ N − 1 and nN = f for the highest occupied molecular orbital (HOMO)
which is assumed here to be nondegenerate for simplicity. As in the standard KS method,
the variation of Eq. (2.65) with respect to the orthonormal orbitals but with fixed occupation
numbers leads to the self-consistent KS equations

(

−1

2
∇2 + vs(r)

)

ϕi(r) = εiϕi(r), (2.67)

where vs(r) is the KS potential

vs(r) = vne(r) +
δEHxc[n]

δn(r)
. (2.68)

Thus, the KS equations for fractional electron numbers look identical (with the caveat of a
fractional occupation number for the HOMO) to the standard KS equations for integer electron
numbers. There is however one important difference. In the standard KS equations, the func-
tional derivative of EHxc[n] is taken with respect to density variations δn(r) keeping the number
of electrons constant, i.e.

∫

δn(r)dr = 0. As a consequence, the functional derivative is defined
only up to an additive constant, which can be seen from its definition

δEHxc[n] =

∫
(

δEHxc[n]

δn(r)
+ const

)

δn(r)dr. (2.69)

In the present extension to fractional electron numbers, since the functional EHxc[n] is now
defined for densities having any noninteger electron numbers, its functional derivative can now be
generally taken with respect to density variations which can change the number of electrons, i.e.
∫

δn(r)dr 6= 0. Consequently, the constant in Eq. (2.69) is now determined. This unambiguously
fixes the values of the KS orbital energies.

Eqs. (2.65)-(2.68) constitutes a general KS method with fractional occupation numbers. A
useful result is that, after optimizing the orbitals with fixed occupation numbers, the derivative
of the total energy with respect to the occupation number ni of an occupied orbital equals the
energy εi of this orbital,

∂E

∂ni
= εi, (2.70)

which is known as Janak’s theorem [43].
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Exercise 11 : Prove Janak’s theorem.

For clarity in the discussion, we will now explicitly indicate the dependence on the electron
number N in the density nN (r), the KS potential vNs (r), the KS orbitals ϕN

i (r), and the KS
orbital energies εNi .

2.5.3 The HOMO energy and the ionization energy

Applying Janak’s theorem for the case of the HOMO for a fractional electron number N =
N − δ where δ → 0+ (the limit will be always tacitly assumed) gives

(

∂EN
0

∂N

)

N−δ

= εN−δ
H = εNH , (2.71)

where εNH is the HOMO energy of the N -electron system (here, the HOMO is the N th orbital).
Notice that, since ∂EN

0 /∂N has a discontinuity at the integer electron number N , it is important
to specify that εNH is defined as the limit when N is approached from the left (electron-deficient)
side. Combining this result with Eq. (2.58) leads to

εNH = −IN , (2.72)

i.e., the energy of the HOMO KS orbital is the opposite of the exact ionization energy.

This can be used, together with the asymptotic behavior of the density, to determine the
constant in the KS potential. Indeed, for finite systems, it can be shown that the exact ground-
state density of the N -electron system decays exponentially for r = |r| → +∞ with an exponent
related to the ionization energy IN [44]

nN (r) ∝
r→+∞

e−2
√
2IN r. (2.73)

Besides, each occupied KS orbitals of the N -electron system has the following asymptotic be-
havior (see Exercise 12)

ϕN
i (r) ∝

r→+∞
e−

√
−2(εNi −vNs (∞)) r, (2.74)

where vNs (∞) = vN−δ
s (∞) is the asymptotic value of the KS potential (defined as the limit from

the left side) which is for now unknown but fixed since the additive constant in the KS potential
is determined now according to the discussion after Eq. (2.69). Consequently, the HOMO KS
orbital ϕN

H (r) is the slowest decaying orbital and dominates the asymptotic decay of the KS
density [via Eq. (2.66)]

nN (r) ∝
r→+∞

e−2
√

−2(εNH−vNs (∞)) r. (2.75)

Since the KS density is the exact density, Eqs. (2.73) and (2.75) must agree, and since we have
already shown that εNH = −IN , we thus find

vNs (∞) = 0, (2.76)

in accordance with the choice usually made in the standard KS method for integer electron
numbers.
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Exercise 12 : Check that the asymptotic decay of the KS orbitals is indeed given by
Eq. (2.74). For this, use Eq. (2.67) and the asymptotic behavior of the KS potential
vNs (r) ∼

r→+∞
vNs (∞) + (Q− 1)/r where Q is the total charge of the system.

2.5.4 The LUMO energy, the electron affinity, and the derivative discontinuity

Applying Janak’s theorem for the HOMO but now for a fractional electron numberN = N+δ
where δ → 0+ gives

(

∂EN
0

∂N

)

N+δ

= εN+δ
H , (2.77)

where εN+δ
H is the HOMO energy from the right (excess-electron) side of the discontinuity (here,

the HOMO is the (N+1)th orbital). Since the derivative is in fact the same for allN < N < N+1,
it is also the HOMO energy of the (N +1)-electron system, εN+δ

H = εN+1−δ
H = εN+1

H . Combining
Eq. (2.77) with Eq. (2.59) leads to

εN+δ
H = −AN . (2.78)

Naively, one may think that εN+δ
H is equal to the LUMO energy of the N -electron system

εNL (again defined as the limit from the left side, εNL = εN−δ
L , i.e. the (N + 1)th orbital), and

therefore that the LUMO KS energy equals to the opposite of the electron affinity. However,
this is not as simple. Let us compare εN+δ

H that we can write as

εN+δ
H =

∫

ϕN+δ
H (r)∗

(

−1

2
∇2 + vN+δ

s (r)

)

ϕN+δ
H (r)dr, (2.79)

with εN−δ
L that we can write as

εN−δ
L =

∫

ϕN−δ
L (r)∗

(

−1

2
∇2 + vN−δ

s (r)

)

ϕN−δ
L (r)dr. (2.80)

The problem is that there is nothing preventing the KS potential to have a discontinuity
vN+δ
s (r) 6= vN−δ

s (r). Indeed, the continuity of the density implies that nN+δ(r) = nN−δ(r),9

but this only imposes that vN+δ
s (r) and vN−δ

s (r) be equal up to an additive spatial constant
(according to the Hohenberg-Kohn theorem). So we can have:

vN+δ
s (r)− vN−δ

s (r) = ∆N
xc, (2.81)

where ∆N
xc is independent from r. Since the two potentials just differ by an additive constant,

the orbitals are continuous at the integer N , and in particular ϕN+δ
H (r) = ϕN−δ

L (r). Using this
fact and Eq. (2.81), we find

εN+δ
H =

∫

ϕN−δ
L (r)∗

(

−1

2
∇2 + vN−δ

s (r)

)

ϕN−δ
L (r)dr+∆N

xc

= εN−δ
L +∆N

xc. (2.82)

In conclusion, the LUMO energy of the N -electron system is not the opposite of the exact
electron affinity

εNL = −AN −∆N
xc, (2.83)

9From the linearity of the minimizing ensemble density matrix in Eq. (2.54), the exact ground-state density is a
continuous piecewise linear function of N : nN−1+f (r) = (1− f)nN−1(r)+ fnN (r) and nN+f (r) = (1− f)nN (r)+
fnN+1(r), just like the total ground-state energy.
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due to the possible discontinuity ∆N
xc in the KS potential.

Such a discontinuity can only come from the exchange-correlation part of the potential vNxc(r)
since vne(r) is independent from N and the Hartree potential vNH (r) =

∫

nN (r′)/|r− r
′|dr′ is a

continuous function of N . So, we have

∆N
xc = vN+δ

xc (r)− vN−δ
xc (r) =

(

δExc[n]

δn(r)

)

N+δ

−
(

δExc[n]

δn(r)

)

N−δ

, (2.84)

i.e. ∆N
xc is the derivative discontinuity in the exchange-correlation energy functional Exc[n].

Theoretical and numerical examples show that this derivative discontinuity does exist [45–47].

2.5.5 Fundamental gap

The fundamental gap of the N -electron system is defined as

EN
gap = IN −AN . (2.85)

Using Eqs. (2.72) and (2.83), it can be expressed as

EN
gap = εNL − εNH +∆N

xc, (2.86)

i.e., the difference between the LUMO and HOMO energies which defines the KS gap, EKS,N
gap =

εNL −εNH , is not equal to the exact fundamental gap of the system. The difference comes from the
derivative discontinuity ∆N

xc. In practice, this last term can represent an important contribution
to the fundamental gap. In the special case of open-shell systems, we have εNL = εNH , and thus
if the fundamental gap of an open-shell system is not zero (Mott insulator), it is entirely given
by ∆N

xc.
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3 Usual approximations for the exchange-correlation energy

We review here the main classes of usual approximations for the exchange-correlation energy.
These classes are roughly ordered from the simplest to the most sophisticated ones. The discus-
sion is focus on the contents of the approximations, not their performance in practical calcula-
tions. On average, more sophisticated approximations are usually more accurate than simpler
ones, even though many exceptions can be found. For a review containing the explicit expressions
of the main approximate functionals, see Ref. [17]. For extensive benchmarks of approximate
functionals, see e.g. Refs. [16,48]. The more complicated case of the so-called orbital-dependent
exchange-correlation functionals such as exact exchange and the random-phase approximation,
beyond usual hybrid or double-hybrid approximations, is treated separately in Section 4.

3.1 The local-density approximation

In the local-density approximation (LDA), introduced by Kohn and Sham [23], the exchange-
correlation functional is approximated as

ELDA
xc [n] =

∫

n(r)εUEG
xc (n(r))dr, (3.1)

where εUEG
xc (n) is the exchange-correlation energy per particle of the infinite uniform electron

gas(UEG) with the density n. The uniform electron gas represents a family of systems of
interacting electrons with an arbitrary spatially constant density n that acts a parameter. Thus,
in the LDA, the exchange-correlation energy per particle of an inhomogeneous system at a
spatial point of density n(r) is approximated as the exchange-correlation energy per particle of
the uniform electron gas of the same density.

The function εUEG
xc (n) is a sum of exchange and correlation contributions, εUEG

xc (n) = εUEG
x (n)+

εUEG
c (n). The exchange energy per particle of the uniform electron gas can be calculated ana-
lytically

εUEG
x (n) = Cx n

1/3, (3.2)

where Cx = −(3/4)(3/π)1/3. The LDA exchange functional is associated with the names of
Dirac [49] and Slater [50].

Exercise 13 : Let us consider a local functional for the exchange energy of the formElocal
x [n] =

c
∫

n(r)pdr where c and p are constants. Show that requiring that Elocal
x [n] satisfies the scal-

ing relation Ex[nγ ] = γEx[n] [Eq. (2.41)] implies that p = 4/3, in accordance with the form
of the LDA exchange functional.

Exercise 14 : The exchange energy of the uniform electron gas can be obtained by starting
from the exact exchange energy expression for closed-shell systems [Eq. (3.18) or (4.1) with
ϕi↑(r) = ϕi↓(r) = ϕi(r)]

Ex = −
N/2
∑

i=1

N/2
∑

j=1

∫∫

ϕ∗
i (r1)ϕj(r1)ϕ

∗
j (r2)ϕi(r2)

|r1 − r2|
dr1dr2, (3.3)

and by making the replacements ϕi(r) → (1/V )1/2 eik·r and
∑N/2

i=1 → V/(2π)3
∫

ΩkF
dk where

ΩkF is the sphere of radius equal to the Fermi momentum kF = (3π2n)1/3 with the density
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n = N/V , and doing the spatial integrations on a large box of volume V (N → ∞ and
V → ∞ such that n = N/V remains finite). Show that this gives

EUEG
x = − V

(2π)6

∫

ΩkF

dk1

∫

ΩkF

dk2
4π

|k1 − k2|2
. (3.4)

Calculate this integral to finally obtain the exchange energy per particle εUEG
x = EUEG

x /N .

Exercise 15 : Show that the expression of the LDA exchange potential is (see Appendix B
for an introduction to functional derivatives)

vLDA
x (r) =

δELDA
x [n]

δn(r)
=

4

3
Cx n(r)

1/3. (3.5)

Does it satisfy the asymptotic behavior,

vx(r) ∼
r→+∞

−1

r
, (3.6)

of the exact exchange potential?

The correlation energy per particle εUEG
c (n) of the uniform electron gas cannot be calculated

analytically. This quantity has been obtained numerically for a number of densities n using
accurate quantum Monte Carlo calculations [51], and fitted to a parametrized function of n
satisfying the known high- and low-density expansions. Expressed in terms of the Wigner-Seitz
radius rs = (3/(4πn))1/3, the first terms of the high-density expansion (rs → 0) have the form

εUEG
c = A ln rs +B + Crs ln rs +O(rs), (3.7)

and the first terms of the low-density expansion (rs → +∞) have the form

εUEG
c =

a

rs
+

b

r
3/2
s

+
c

r2s
+O

(

1

r
5/2
s

)

, (3.8)

where A, B, C, a, b, and c are constants. The two most used parametrizations are the ones of
Vosko, Wilk, and Nusair (VWN) [52] and the one of Perdew and Wang (PW92) [53]. Their forms
are too complicated to be given here. These parametrizations also include the generalization to
spin densities, εUEG

c (n↑, n↓) differing from εUEG
c (n) for spin-polarized systems (n↑ 6= n↓), which

is sometimes specifically referred to as local-spin-density (LSD) approximation. For a recent
review on the calculations of the exchange and correlation energies of the uniform electron gas,
see Ref. [54].

Exercise 16 : The Wigner correlation functional is a simple functional derived from the
low-density limit of the uniform electron gas

EW
c [n] =

∫

n(r)
c

d+ rs(r)
dr, (3.9)

where rs(r) = (3/(4πn(r))1/3, and c and d are two constants. Calculate the corresponding
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correlation potential vWc (r).

3.2 Generalized-gradient approximations

The next logical step beyond the LDA is the gradient-expansion approximation (GEA), initi-
ated by Kohn and Sham [23]. One way of deriving the GEA is to start from the uniform electron
gas, introduce a weak and slowly-varying external potential v(r), and expand the exchange-
correlation energy in terms of the gradients of the density. Alternatively, one can perform a
semiclassical expansion of the exact Exc[n]. At second order, one obtains a functional of the
form

EGEA
xc [n] = ELDA

xc [n] +

∫

n(r)4/3 C(2)
xc (n(r))

( ∇n(r)
n(r)4/3

)2

dr, (3.10)

where C
(2)
xc (n) = C

(2)
x + C

(2)
c (n) is the sum of the exchange and correlation coefficients of the

second-order gradient expansion. Note that the gradient expansion is most naturally written in
terms of the reduced density gradient |∇n|/n4/3 which is a dimensionless quantity. The GEA
should improve over the LDA provided that the reduced density gradient is small. Unfortunately,
for real systems, the reduced density gradient can be large in some regions of space, and the
GEA turns out to be a worse approximation than the LDA.

The failure of the GEA lead to the development of generalized-gradient approximations
(GGAs), which really started in the 1980s, of the generic form

EGGA
xc [n] =

∫

eGGA
xc (n(r),∇n(r))dr, (3.11)

where eGGA
xc is some function. The GGAs are semilocal approximations in the sense that eGGA

xc

does not only use the local value of the density n(r) but also its gradient ∇n(r)10. For simplicity,
we consider here only the spin-independent form, but in practice GGA functionals are more
generally formulated in terms of spin densities (n↑, n↓) and their gradients (∇n↑, ∇n↓)11.

Exercise 17 : Show that the potential of a GGA functional has the following form

vGGA
xc (r) =

δEGGA
xc [n]

δn(r)
=
∂eGGA

xc

∂n
(n(r),∇n(r))−∇ · ∂e

GGA
xc

∂∇n (n(r),∇n(r)), (3.12)

which is a 3-dimensional generalization of Eq. (B.13). Give then a practical expression for
the contribution V GGA

xc,µν of this potential to the KS Fock matrix [Eq. (1.51)].

Many GGA functionals have been proposed. We very briefly review here some of the most
widely used ones.

B88 exchange functional

10For generally and simplicity, we consider here that the GGAs depend on the density gradient ∇n(r), but in
practice GGAs depend only on the module of the density gradient |∇n(r)|, or equivalently on its square (∇n(r))2,
and not on its direction.

11Again, in practice, the spin-dependent GGAs do not actually depend on the gradients ∇n↑ and ∇n↓ but on
the scalar quantities (∇n↑)

2, (∇n↓)
2, and ∇n↑ · ∇n↓
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The Becke 88 (B88 or B) [55] exchange functional is formulated as an additive correction
to LDA. It consists in a compact function of n and |∇n|/n4/3 chosen so as to satisfy the exact
asymptotic behavior of the exchange energy per particle for finite systems (see Exercise 7), and
with an empirical parameter fitted to Hartree-Fock exchange energies of rare-gas atoms.

LYP correlation functional

The Lee-Yang-Parr (LYP) [56] correlation functional is one of the rare functionals which have
not been constructed starting from LDA. It originates from the Colle-Salvetti [57] correlation-
energy approximation depending on the Hartree-Fock pair density and containing four param-
eters fitted to Helium data. By making a further reasonable approximation, LYP turned the
Colle-Salvetti expression into a density functional depending on the density n, the square of the
density gradient (∇n)2, and the Laplacian of the density ∇2n. The dependence on the Laplacian
can be exactly eliminated by an integration by parts [58].

PW91 exchange-correlation functional

The Perdew-Wang 91 (PW91) (see Refs. [41,59,60]) exchange-correlation functional is based
on a model of the exchange hole nx(r1, r2) in Eq. (2.15) and of the coupling-constant-integrated
correlation hole in Eq. (2.30). The idea is to start from the GEA model of these holes given
as gradient expansions and remove the unrealistic long-range parts of these holes to restore
important conditions satisfied by the LDA. Specifically, the spurious positive parts of the GEA
exchange hole are removed to enforce the negativity condition of Eq. (2.12) and a cutoff in
|r1 − r2| is applied to enforce the normalization condition of Eq. (2.10). Similarly, a cutoff is
applied on the GEA correlation hole to enforce the condition that the hole integrates to zero
[Eq. (2.17)]. The exchange and correlation energies per particle calculated from these numerical
holes are then fitted to functions of n and |∇n| chosen to satisfy a number of exact conditions.

PBE exchange-correlation functional

The Perdew-Burke-Ernzerhof (PBE) [61] exchange-correlation functional is a simplification
of the PW91 functional. The exchange and correlation energies per particle are expressed as
simpler functions of n and |∇n| enforcing less exact conditions and with no fitted parameters.
Specifically, the function used for correlation enforces the second-order small-gradient expansion
in the high-density limit, the vanishing of correlation in the large-gradient limit, and removes
the logarithm divergence of the LDA in the high-density limit [see Eq. (3.7)]. The function used
for exchange is chosen to cancel out the second-order small-gradient expansion of correlation
and enforces the Lieb-Oxford bound in the large-gradient limit.

3.3 Meta-generalized-gradient approximations

The meta-generalized-gradient approximations (meta-GGAs or mGGAs) are of the generic
form

EmGGA
xc [n, τ ] =

∫

emGGA
xc (n(r),∇n(r),∇2n(r), τ(r))dr, (3.13)

i.e., they use more ingredients than the GGAs, namely the Laplacian of the density ∇2n(r)
and/or the non-interacting positive kinetic energy density τ(r)

τ(r) =
1

2

N
∑

i=1

|∇ϕi(r)|2 , (3.14)

where ϕi(r) are the orbitals composing a single-determinant wave function Φ.
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A meta-GGA functional can be either considered as an implicit functional of the density
in the KS method, i.e. Exc[n] = EmGGA

xc [n, τΦ[n]], or more commonly as an explicit functional

of a single-determinant Φ in the GKS method, i.e. ES
xc[Φ] = EmGGA

xc [nΦ, τΦ]. In the GKS
method, a meta-GGA functional generates a non-multiplicative potential (see, e.g., Ref. [17].
The meta-GGAs are considered part of the family of semilocal approximations, in the sense
that τ(r) depends only the gradient of the orbitals at point r. Again, we consider here only the
spin-independent form, but meta-GGAs are more generally formulated in terms of spin-resolved
quantities (n↑, n↓, ∇n↑, ∇n↓, ∇2n↑, ∇2n↓, τ↑, τ↓).

One motivation for the introduction of the variable τ(r) is that it appears in the expansion
of the spherically average exchange hole ñx(r1, r12) for small interelectronic distances r12, which
for the case of a closed-shell system is [62]

ñx(r1, r12) = −n(r1)
2

− 1

3

(

1

4
∇2n(r1)− 4τ(r1) +

|∇n(r1)|2
8n(r1)

)

r212 +O(r412). (3.15)

Thus τ(r) is needed to describe the curvature of the exchange hole. Another important moti-
vation is that τ(r) can be used as an indicator of one-orbital spatial regions (regions containing
one or two electrons in a single orbital). This is done by comparing τ(r) with the von Weizsäcker
kinetic energy density

τW(r) =
|∇n(r)|2
8n(r)

, (3.16)

which is the exact τ(r) for one electron and for two electrons in a single orbital. In practice,
τ(r) is often used through the variables z(r) = τW(r)/τ(r) or α(r) = (τ(r) − τW(r))/τUEG(r)
where τUEG(r) = c n(r)5/3.

Exercise 18 : Show that the von Weizsäcker kinetic energy density in Eq. (3.16) is indeed
the exact (non-interacting) positive kinetic energy density τ(r) for one electron and for two
electrons in a single orbital.

One the most used meta-GGA approximation is the Tao-Perdew-Staroverov-Scuseria (TPSS)
[63] exchange-correlation functional. A more recently developed meta-GGA approximation is
the SCAN exchange-correlation functional [64] which satisfies 17 known exact constraints and
contains 7 parameters determined by fitting to a few simple systems.

3.4 Single-determinant hybrid approximations

3.4.1 Hybrid approximations

Based on arguments relying on the adiabatic-connection formalism, in 1993 Becke [65] pro-
posed to mix a fraction of the exact or Hartree-Fock (HF) exchange energy EHF

x with GGA
functionals. In particular, he proposed a three-parameter hybrid (3H) approximation [66] of the
form

E3H
xc [Φ] = a EHF

x [Φ]+b EGGA
x [nΦ]+(1−a−b) ELDA

x [nΦ]+c E
GGA
c [nΦ]+(1−c) ELDA

c [nΦ], (3.17)

where the three parameters a, b, and c are determined by fitting to experimental data. The
functional E3H

xc [Φ] is thought of as a functional of a single-determinant wave function Φ ∈ S
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since EHF
x [Φ] is itself a functional of Φ

EHF
x [Φ] = 〈Φ|Ŵee|Φ〉 − EH[nΦ]

= −1

2

∑

σ∈{↑,↓}

Nσ
∑

i=1

Nσ
∑

j=1

∫∫

ϕ∗
iσ(r1)ϕjσ(r1)ϕ

∗
jσ(r2)ϕiσ(r2)

|r1 − r2|
dr1dr2, (3.18)

where {ϕiσ}i=1,...,Nσ are the orbitals occupied in Φ. The HF exchange energy has exactly the
same form as the exact-exchange energy given in Eq. (4.1). The notation“HF” is there to specify
that it is not viewed as a functional of the density but instead as a functional of Φ. These hybrids
are thus approximations within the GKS method, with a term S[Φ] = aEHF

x [Φ] which generates
a nonlocal HF exchange potential avHF

x,σ(r, r
′) instead of a local one (see Exercise 19). Having a

nonlocal potential is perfectly allowed in the GKS method.12 The most famous and widely used
three-parameter hybrid approximation is B3LYP [67], which uses the B88 exchange functional
and the LYP correlation functional, and the parameters a = 0.20, b = 0.72, and c = 0.81.

In 1996, Becke proposed a simpler one-parameter hybrid (1H) approximation [68]

E1H
xc [Φ] = a EHF

x [Φ] + (1− a) EDFA
x [nΦ] + EDFA

c [nΦ], (3.19)

where EDFA
x [n] and EDFA

c [n] can be any (semilocal) density-functional approximations (DFA),
and the fraction a of HF exchange has to be determined.

The main benefit of adding a fraction a of HF exchange is to decrease the self-interaction
error in the exchange functional which tends to favor too much delocalized electron densities over
localized electron densities (leading to problems with dissociation of charged fragments, reaction
barriers, radicals,...). However, a too large a tends to increase the static-correlation error (leading
to problems with stretched chemical bonds, transition metal elements, ...). The fraction of HF
exchange should thus be small enough to keep the compensation of errors usually occurring
between the approximate semilocal exchange functional EDFA

x [n] and the approximate semilocal
correlation functional EDFA

c [n]. Fits to experimental data often give an optimal parameter a
around 0.25. A rationale has also been proposed in favor of this value [69]. For example,
PBE0 [70, 71] is a popular one-parameter hybrid approximation which uses a = 0.25 and the
PBE exchange and correlation functionals.

A strategy that has been sometimes used to construct approximations of the form of Eq. (3.19)
is to employ parameterized flexible functions for EDFA

x [n] and EDFA
c [n], and systematically opti-

mize all the parameters (including the fraction a of HF exchange) on large sets of physicochem-
ical properties of molecular systems. For example, the Becke 97 (B97) exchange-correlation
functional [72] is a hybrid GGA approximation containing 13 parameters optimized on atomic
exchange and correlation energies, atomization energies, ionization potentials, and proton affini-
ties. Another example is the so-called family of “Minnesota” functionals, and in particular the
M06 exchange-correlation functional [73] which is a hybrid meta-GGA approximation containing
36 parameters optimized on a very large set of diverse physicochemical properties concerning
main-group thermochemistry, reaction barrier heights, noncovalent interactions, electronic spec-
troscopy, and transition metal bonding.

12In fact, the possibility of combining a nonlocal HF potential with a local correlation potential was mentioned
already in 1965 in the paper by Kohn and Sham [23].
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Exercise 19 : Show that the functional derivative of EHF
x with respect to ϕ∗

iσ(r) gives

δEHF
x

δϕ∗
iσ(r)

=

∫

vHF
x,σ(r, r

′)ϕiσ(r
′)dr′, (3.20)

where vHF
x,σ(r, r

′) is the nonlocal HF exchange potential

vHF
x,σ(r, r

′) = −
Nσ
∑

j=1

ϕjσ(r)ϕ
∗
jσ(r

′)

|r− r′| . (3.21)

Show also that Eq. (3.20) can be reformulated in terms of a local HF exchange potential
vHF
x,iσ(r) depending on each orbital it acts on.

3.4.2 Range-separated hybrid approximations

Based on earlier ideas of Savin [74], in 2001, Iikura, Tsuneda, Yanai, and Hirao [75] proposed
a long-range correction (LC) scheme

ELC
xc [Φ] = Elr,HF

x [Φ] + Esr,DFA
x [nΦ] + EDFA

c [nΦ], (3.22)

whereElr,HF
x [Φ] is the HF exchange energy for a long-range electron-electron interaction wlr

ee(r12) =
erf(µr12)/r12 (where r12 = |r1 − r2| is the interelectronic distance and erf is the error function,
see Exercise 20)

Elr,HF
x [Φ] = −1

2

∑

σ∈{↑,↓}

Nσ
∑

i=1

Nσ
∑

j=1

∫∫

ϕ∗
iσ(r1)ϕjσ(r1)ϕ

∗
jσ(r2)ϕiσ(r2)w

lr
ee(r12)dr1dr2, (3.23)

and Esr,DFA
x [n] is the DFA exchange energy for the complementary short-range interaction

wsr
ee(r12) = 1/r12 − wlr

ee(r12). Similarly to the hybrid approximations of Section 3.4.1, the in-
troduction of a fraction of long-range HF exchange reduces the self-interaction error (see, e.g.,
Ref. [76]) . In addition, the short-range exchange part is easier to approximate with semilocal
DFA. In particular, the −1/r asymptotic behavior of the exchange potential [Eq. (3.6)], which
is difficult to satisfy with DFAs, does not apply anymore to the short-range exchange potential.
The parameter µ (also sometimes denoted as ω) in the error function controls the range of the
separation and must be chosen, e.g. by fitting to experimental data. In practice, a value around
µ ≈ 0.3−0.5 bohr−1 is often found to be optimal. A popular example of such LC approximations
is LC-ωPBE [77] which uses a short-range version of the PBE exchange functional, as well as
the standard PBE correlation functional. Note that the LC scheme has also been referred to as
the range-separated hybrid exchange (RSHX) scheme [78].

Exercise 20 : Using the definition of the error function

erf(x) =
2√
π

∫ x

0
e−t2dt, (3.24)

show that erf(x) ∼
x→0

(2/
√
π)x and erf(x) −−−−→

x→+∞
1. Draw then the form of the long-range
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interaction erf(µr)/r as a function r for different values of the range-separation parameter:
µ = 0, µ = 1, and µ→ +∞.

In 2004, Yanai, Tew, and Handy [79], introduced a more flexible scheme called the Coulomb-
attenuating method (CAM) [79] in which fractions of HF exchange are added at both short and
long range

ECAM
xc [Φ] = a Esr,HF

x [Φ]+b Elr,HF
x [Φ]+(1−a) Esr,DFA

x [nΦ]+(1−b) Elr,DFA
x [nΦ]+E

DFA
c [nΦ], (3.25)

where Esr,HF
x [Φ] is the HF exchange energy for the short-range interaction wsr

ee(r12) and E
lr,DFA
x [n]

is the DFA exchange energy for the long-range interaction wlr
ee(r12). The reintroduction of

HF exchange at short range improves thermodynamic properties such as atomization energies.
According to this scheme, the authors proposed the CAM-B3LYP approximation which uses
short- and long-range versions of the B88 exchange functional, the same correlation functional
used in B3LYP (i.e., 0.81 ELYP

c [n] + 0.19 ELDA
c [n]), and optimized parameters a = 0.19, b =

0.65, and µ = 0.33 bohr−1. Another example in this class of approximations is the ωB97X
exchange-correlation functional [80] which is based on the B97 exchange-correlation functional
with reoptimized parameters, and uses a = 0.16, b = 1, and µ = 0.3 bohr−1. Another functional
that can be considered as part of this class of approximations is the Heyd-Scuseria-Ernzerhof
(HSE) exchange-correlation functional [81], which uses the parameters a = 0.25, b = 0 (i.e. no
long-range HF exchange), and µ = 0.15 bohr−1, with a long-range version of the PBE exchange
correlation functional and the standard PBE correlation functional. The absence of HF exchange
at very long range makes this approximation particularly useful for solids.

3.5 Multideterminant hybrid approximations

3.5.1 Double-hybrid approximations

In 2006, Grimme [82] introduced a two-parameter double-hybrid (2DH) approximation

E2DH
xc = ax E

HF
x [Φ] + (1− ax) E

DFA
x [nΦ] + (1− ac)E

DFA
c [nΦ] + acE

MP2
c , (3.26)

mixing a fraction ax of the HF exchange energy with a semilocal exchange DFA, and a fraction ac
of the second-order Møller-Plesset (MP2) correlation energy EMP2

c with a semilocal correlation
DFA. In Eq. (3.26), the first three terms are first calculated in self-consistent manner, and then
the last term EMP2

c is added perturbatively using the orbitals determined in the first step. The
expression of EMP2

c is

EMP2
c = −1

4

N
∑

i=1

N
∑

j=1

∑

a≥N+1

∑

b≥N+1

|〈ψiψj ||ψaψb〉|2
εa + εb − εi − εj

, (3.27)

where i, j and a, b run over occupied and virtual spin orbitals, respectively, εk are spin orbital en-
ergies, and 〈ψiψj ||ψaψb〉 = 〈ψiψj |ψaψb〉−〈ψiψj |ψbψa〉 are antisymmetrized two-electron integrals
with (in physicists’ notation)

〈ψpψq|ψrψs〉 =
∫∫

ψ∗
p(x1)ψ

∗
q (x2)ψr(x1)ψs(x2)

|r1 − r2|
dx1dx2. (3.28)

Note that the notation in Eq. (3.27) assumes that the one-electron wave-function space is spanned
by a discrete set of spin orbitals. In the exact theory, the continuum limit of the set of virtual
spin orbitals is implied.
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The presence of nonlocal MP2 correlation allows one to use a larger fraction of nonlocal
HF exchange. For example, Grimme proposed the B2-PLYP approximation which uses the
B88 exchange and LYP correlation functionals, and the parameters ax = 0.53 and ac = 0.27
optimized on experimental heats of formation of a set of molecules.

In 2011, Sharkas, Toulouse, and Savin [83] showed that double hybrids can be understood
as approximations of a multideterminant extension of the KS method based on the adiabatic-
connection formalism in which the exact ground-state energy is written as

E0 = min
Ψ∈W

{

〈Ψ|T̂ + V̂ne + λŴee|Ψ〉+ Ēλ
Hxc[nΨ]

}

, (3.29)

where Ēλ
Hxc[n] = (1−λ)EH[n]+(1−λ)Ex[n]+ Ē

λ
c [n] and Ē

λ
c [n] = Ec[n]−λ2Ec[n1/λ]. At second

order of a non-linear Møller-Plesset-like perturbation theory, and using Ec[n1/λ] ≈ Ec[n], we
obtain a one-parameter double-hybrid (1DH) approximation

E1DH
xc = λ EHF

x [Φ] + (1− λ) EDFA
x [nΦ] + (1− λ2)EDFA

c [nΦ] + λ2EMP2
c , (3.30)

where the fraction HF exchange ax = λ is now connected to the fraction of MP2 correlation ac =
λ2. It turns out that using ax = λ = 0.53 nearly reproduces the parameter ac = λ2 = 0.28 ≈ 0.27
independently optimized in Eq. (3.26). Likewise, Fromager [84] proposed a rigorous formulation
of the two-parameter double-hybrid approximations. The multideterminant extension of the KS
method can also be used to rigorously combine wave-function methods such as MCSCF with
DFT [85].

The double-hybrid approximations are examples of correlation functionals depending on
virtual orbitals. Another example of a correlation functional depending on virtual orbitals is the
random-phase approximation (RPA), which goes beyond second order and has been the subject
of intensive developments since the 2000s.

3.5.2 Range-separated double-hybrid approximations

In 1996, Savin [74] introduced the range-separated multideterminant extension of the KS
scheme in which the exact ground-state energy is written as

E0 = min
Ψ∈W

{

〈Ψ|T̂ + V̂ne + Ŵ lr
ee|Ψ〉+ Ēsr

Hxc[nΨ]
}

, (3.31)

where Ŵ lr
ee is the long-range electron-electron operator for the pair potential wlr

ee(r12) and Ē
sr
Hxc[n]

is the complementary short-range density functional. This approach have been used to rigorously
combine many wave-function methods with DFT (see references in Ref. [17]).

In 2005, starting from Eq. (3.31) and using a a non-linear long-range second-order Møller-
Plesset-like perturbation theory, Ángyán, Gerber, Savin, and Toulouse [86] introduced a range-
separated double-hybrid (RSDH) approximation (also called RSH+MP2)

ERSDH
xc = Elr,HF

x [Φ] + Esr,DFA
x [nΦ] + Esr,DFA

c [nΦ] + Elr,MP2
c , (3.32)

where Elr,MP2
c is the MP2 correlation energy calculated with long-range two-electron integrals

and the previously calculated orbitals. The RSDH scheme is thus similar to the double-hybrid
approximations of Section 3.5.1 but with range separation. One of main advantages of using a
long-range MP2 correlation energy is the correct qualitative description of London dispersion in-
teraction energies, while displaying a fast convergence with the basis size [87]. For more accurate
results, one can go beyond second order by using long-range coupled-cluster [88] or random-phase
approximations [89–91]. Extensions of this scheme to a more flexible CAM decomposition have
also been proposed [92–95].
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3.6 Dispersion corrections

3.6.1 Semiempirical dispersion corrections

To explicitly account for London dispersion interactions, it has been proposed in the 2000s
to add to the standard approximate functionals a semiempirical dispersion correction of the
form [96–98]

Edisp = −s
∑

α<β

f(Rαβ)
Cαβ
6

R6
αβ

, (3.33)

where Rαβ is the distance between each pair of atoms, Cαβ
6 is the dispersion coefficient between

these atoms, f(Rαβ) is a parametrized damping function which tends to 1 at large Rαβ and
tends to zero at small Rαβ , and s is a possible scaling parameter that can be adjusted for each

approximate functional. The dispersion coefficient Cαβ
6 for any pair of atoms is empirically

calculated from tabulated same-atom dispersion coefficients Cαα
6 and/or atomic polarizabilities.

The most recent versions include Cαβ
8 two-body terms and Cαβγ

9 three-body terms [99]. This
approach was named “DFT-D” by Grimme [98]. Examples of DFT-D functionals are: PBE-
D [100], B97-D [100], B3LYP-D [100], ωB97X-D [101], B2PLYP-D [102]. There have also been
various proposals to make the determination of dispersion coefficients less empirical, such as the
scheme of Becke and Johnson [103] based on the exchange-hole dipole moment, the scheme of
Tkatchenko and Scheffler [104] based on a Hirshfeld atomic partitioning, or the scheme of Sato
and Nakai [105] based on the local-response approximation [106].

3.6.2 Nonlocal van der Waals density functionals

Another approach to describe dispersion interactions is to add to the standard approximate
functionals a nonlocal van der Waals density functional of the form

Enl
c [n] =

1

2

∫∫

n(r1)n(r2)φ(r1, r2)dr1dr2, (3.34)

where φ(r1, r2) is a correlation kernel. Two main families of such nonlocal correlation func-
tionals exist: the “van der Waals density functionals” (vdW-DF) of Langreth, Lundqvist and
coworkers [107,108] and the Vydrov-Van Voorhis (VV) functionals [109–111].

For example, the VV10 nonlocal correlation functional [111] (2010) uses a theory-based
kernel φ(r1, r2) with two adjustable parameters. Nonlocal van der Waals density functionals are
less empirical but more computationally expensive than semiempirical dispersion corrections.
Examples of functionals using VV10 are: ωB97X-V [112] and ωB97M-V [113].
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4 Some less usual orbital-dependent exchange-correlation functionals

We discuss here some exchange-correlation energy functionals explicitly depending on the
KS orbitals. Since the KS orbitals are themselves functionals of the density, these exchange-
correlation expressions are thus implicit functionals of the density (for notational simplicity, this
dependence on the density will not be explicitly indicated). In fact, the (range-separated) hybrid
and double-hybrid approximations of Sections 3.4 and 3.5 are sometimes considered to belong
to this family, but they are more commonly considered within the GKS method, i.e. the orbitals
are obtained with a nonlocal potential. In this Section, we are concerned with orbital-dependent
exchange-correlation energy functionals within the KS method, i.e. with orbitals obtained with
a local potential. These approximations tend to be more computationally involved than the
approximations of the previous Section and are thus much less used.

4.1 Exact exchange

Being defined as an expectation value over a single-determinant wave function [see Eq. (1.28)],
the exact exchange (EXX) energy functional can be expressed in terms of the orbitals

Ex = −1

2

∑

σ∈{↑,↓}

Nσ
∑

i=1

Nσ
∑

j=1

∫∫

ϕ∗
iσ(r1)ϕjσ(r1)ϕ

∗
jσ(r2)ϕiσ(r2)

|r1 − r2|
dr1dr2, (4.1)

where i and j run over spatial occupied orbitals. The exchange energy in Eq. (4.1) has exactly
the same form as the HF exchange [Eq. (3.18)], but the orbitals used in this expression are in
general different.

Since the exact exchange energy in Eq. (4.1) is not an explicit functional of the density,
the corresponding exchange potential vx(r) = δEx/δn(r) cannot be calculated directly. We can
however find an workable equation for vx(r) by first considering the functional derivative of Ex

with respect to the KS potential vs(r) and then applying the chain rule

δEx

δvs(r)
=

∫

δEx

δn(r′)
δn(r′)
δvs(r)

dr′. (4.2)

Introducing the non-interacting KS static linear-response function χ0(r
′, r) = δn(r′)/δvs(r), we

can rewrite Eq. (4.2) as
∫

vx(r
′)χ0(r

′, r)dr′ =
δEx

δvs(r)
, (4.3)

which is known as the optimized-effective-potential (OEP) equation for the exact-exchange po-
tential. Explicit expressions in terms of the orbitals can be derived for δEx/δvs(r) and χ0(r

′, r).

Exercise 21 : Using first-order perturbation theory on the KS system, show that

δϕiσ(r
′)

δvs(r)
= −

∑

p≥1
p 6=i

ϕ∗
pσ(r)ϕiσ(r)

εpσ − εiσ
ϕpσ(r

′). (4.4)

where the sum is over all spatial orbitals p different from orbital i but of the same spin.
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Show then that the expression of χ0(r
′, r) is

χ0(r
′, r) = −

∑

σ∈{↑,↓}

Nσ
∑

i=1

∑

a≥Nσ+1

ϕ∗
iσ(r

′)ϕ∗
aσ(r)ϕiσ(r)ϕaσ(r

′)
εaσ − εiσ

+ c.c. , (4.5)

where a runs over virtual spatial orbitals and c.c. stands for the complex conjugate. Finally,
by using the definition of Ex in terms of the orbitals, show that

δEx

δvs(r)
=

∑

σ∈{↑,↓}

Nσ
∑

i=1

Nσ
∑

j=1

∑

a≥Nσ+1

(ϕaσϕjσ|ϕjσϕiσ)
ϕaσ(r)ϕ

∗
iσ(r)

εaσ − εiσ
+ c.c. , (4.6)

where (ϕaσϕjσ|ϕjσϕiσ) are the two-electron integrals [see Eq. (1.50) for the definition] in
the basis of the KS spatial orbitals.

Applying this OEP method with the EXX energy (and no correlation energy functional) is
an old idea [114,115], but reasonable efficient calculations for molecules have been possible only
relatively recently [116, 117]. The EXX occupied orbitals turn out to be very similar to the HF
occupied orbitals, and thus the EXX ground-state properties are also similar to the HF ones.
However, the EXX virtual orbitals tend to be much less diffuse than the HF virtual orbitals,
and may be more adapted for calculating excited-state properties.

4.2 Second-order Görling-Levy perturbation theory

In 1993, Görling and Levy [33, 34] developed a perturbation theory in terms of the cou-
pling constant λ of the adiabatic connection (Section 2.1.2) which provides an explicit orbital-
dependent second-order approximation for the correlation energy functional. The Hamiltonian
along the adiabatic connection [Eq. (2.19)] can be written as

Ĥλ = T̂ + λŴee + V̂ λ

= Ĥs + λ(Ŵee − V̂Hx)− V̂ λ
c , (4.7)

where Ĥs = Ĥλ=0 = T̂ + V̂s is the KS non-interacting reference Hamiltonian (which will be
assumed to have a nondegenerate ground state). Equation (4.7) was obtained by decomposing
the potential operator keeping the density constant as V̂ λ = V̂s − λV̂Hx − V̂ λ

c where V̂s = V̂ λ=0

is the KS potential operator, λV̂Hx is the Hartree-exchange potential operator which is linear in

λ, and V̂ λ
c is the correlation potential which starts at second order in λ, i.e. V̂ λ

c = λ2V̂
(2)
c + · · · .

Using a complete set of orthonormal eigenfunctions Φn and eigenvalues En of the KS Hamiltonian,
Ĥs|Φn〉 = En|Φn〉, the normalized ground-state wave function of the Hamiltonian Ĥλ can be
expanded as Ψλ = Φ + λΨ(1) + · · · where Φ = Φ0 is the ground-state KS single-determinant
wave function and Ψ(1) is its first-order correction given by

|Ψ(1)〉 = −
∑

n 6=0

〈Φn|Ŵee − V̂Hx|Φ〉
En − E0

|Φn〉. (4.8)

Using the expression in Eq. (2.24), the correlation energy functional can also be expanded
in powers of λ

Eλ
c = 〈Ψλ|T̂ + λŴee|Ψλ〉 − 〈Φ|T̂ + λŴee|Φ〉.

= E(0)
c + λE(1)

c + λ2E(2)
c + · · · . (4.9)
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Since Ψλ=0 = Φ, the zeroth-order term vanishes: E
(0)
c = 0. Using the expression of the first-

order derivative of Eλ
c with respect to λ in Eq. (2.25), i.e. ∂Eλ

c /∂λ = 〈Ψλ|Ŵee|Ψλ〉− 〈Φ|Ŵee|Φ〉,
we find that the first-order term vanishes as well: E

(1)
c = 0. The second-order term corresponds

to the second-order Görling-Levy (GL2) correlation energy and is given by

E(2)
c = EGL2

c = 〈Φ|Ŵee|Ψ(1)〉 = 〈Φ|Ŵee − V̂Hx|Ψ(1)〉, (4.10)

where the second equality comes the fact that 〈Φ|V̂Hx|Ψ(1)〉 = 0 since it is the derivative with
respect to λ at λ = 0 of 〈Ψλ|V̂Hx|Ψλ〉 =

∫

vHx(r)n(r)dr which does not depend on λ by virtue of
the fact the density n(r) is constant along the adiabatic connection. Using the last expression
in Eq. (4.10) allows one to express the GL2 correlation energy as

EGL2
c = −

∑

n 6=0

|〈Φ|Ŵee − V̂Hx|Φn〉|2
En − E0

. (4.11)

It is instructive to decompose the GL2 correlation energy as

EGL2
c = EMP2

c + ES
c , (4.12)

where EMP2
c is a MP2-like correlation energy evaluated with KS spin orbitals

EMP2
c = −1

4

N
∑

i=1

N
∑

j=1

∑

a≥N+1

∑

b≥N+1

|〈ψiψj ||ψaψb〉|2
εa + εb − εi − εj

, (4.13)

and ES
c is the contribution coming from the single excitations (which does not vanish here,

contrary to HF-based MP2 perturbation theory)

ES
c = −

N
∑

i=1

∑

a≥N+1

|〈ψi|V̂ HF
x − V̂x|ψa〉|2
εa − εi

, (4.14)

involving the difference between the integrals over the nonlocal HF exchange potential 〈ψi|V̂ HF
x |ψa〉 =

−∑N
j=1〈ψiψj |ψjψa〉 and over the local KS exchange potential 〈ψi|V̂x|ψa〉 =

∫

ψ∗
i (x)vx(r)ψa(x)dx.

Exercise 22 : Derive Eqs. (4.12)-(4.14).

Calculations of the GL2 correlation energy using either a non-self-consistent post-EXX im-
plementation or a more complicated OEP self-consistent procedure have been tested (see, e.g.,
Refs. [118–120]) but the results are often disappointing. It is preferable to go beyond second
order with the random-phase approximation in the adiabatic-connection fluctuation-dissipation
approach.

4.3 Adiabatic-connection fluctuation-dissipation approach

4.3.1 Exact adiabatic-connection fluctuation-dissipation expression

Using the adiabatic-connection formula of Eq. (2.26), the correlation energy functional can
be written as

Ec =

∫ 1

0
dλ 〈Ψλ|Ŵee|Ψλ〉 − 〈Φ|Ŵee|Φ〉

=
1

2

∫ 1

0
dλ

∫∫

nλ2,c(r1, r2)

|r1 − r2|
dr1dr2, (4.15)
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where nλ2,c(r1, r2) = nλ2(r1, r2) − n2,KS(r1, r2) is the correlation part of the pair density along

the adiabatic connection. The pair density nλ2(r1, r2) can be expressed with the pair-density
operator n̂2(r1, r2) [Eq. (A.10)]

nλ2(r1, r2) = 〈Ψλ|n̂2(r1, r2)|Ψλ〉 = 〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − δ(r1 − r2)〈Ψλ|n̂(r1)|Ψλ〉, (4.16)

where n̂(r) is the density operator [Eq. (A.8)], and the KS pair density n2,KS(r1, r2) simply
corresponds to the case λ = 0

n2,KS(r1, r2) = nλ=0
2 (r1, r2) = 〈Φ|n̂(r2)n̂(r1)|Φ〉 − δ(r1 − r2)〈Φ|n̂(r1)|Φ〉, (4.17)

Since the density does not change with λ, i.e. 〈Ψλ|n̂(r)|Ψλ〉 = 〈Φ|n̂(r)|Φ〉 = n(r), the correlation
pair density needed in Eq. (4.15) can thus be expressed as

nλ2,c(r1, r2) = 〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − 〈Φ|n̂(r2)n̂(r1)|Φ〉. (4.18)

We would like to calculate nλ2,c(r1, r2) without having to calculate the complicated many-

body wave function Ψλ. For this, we consider the (time-ordered) linear-response function along
the adiabatic connection13

iχλ(r1t1, r2t2) = 〈Ψλ|T [n̂λ(r1t1)n̂λ(r2t2)]|Ψλ〉 − 〈Ψλ|n̂λ(r1t1)|Ψλ〉〈Ψλ|n̂λ(r2t2)|Ψλ〉
= 〈Ψλ|T [n̂λ(r1t1)n̂λ(r2t2)]|Ψλ〉 − 〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉, (4.19)

where n̂λ(rt) = eiĤ
λtn̂(r)e−iĤλt is the density operator in the Heisenberg picture, and T is

the Wick time-ordering operator which orders the operators with larger times on the left, i.e.
T [n̂λ(r1t1)n̂

λ(r2t2)] = θ(t1 − t2)n̂
λ(r1t1)n̂

λ(r2t2) + θ(t2 − t1)n̂
λ(r2t2)n̂

λ(r1t1) where θ is the
Heaviside step function. Due to time translation invariance, the linear-response function depends
in fact only on τ = t1 − t2. If we set t2 = t1 + 0+ where 0+ is an infinitesimal positive shift, i.e.
τ = 0−, we get

iχλ(r1, r2; τ = 0−) = 〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − 〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉, (4.20)

and, similarly, for the non-interacting KS linear-response function corresponding to the case
λ = 0

iχ0(r1, r2; τ = 0−) = 〈Φ|n̂(r2)n̂(r1)|Φ〉 − 〈Φ|n̂(r1)|Φ〉〈Φ|n̂(r2)|Φ〉. (4.21)

We can thus express nλ2,c(r1, r2) as the difference between the zero-time linear-response functions

nλ2,c(r1, r2) = i[χλ(r1, r2; τ = 0−)− χ0(r1, r2; τ = 0−)]. (4.22)

Alternatively, Eq (4.22) can be rewritten in terms of the Fourier transforms of the linear-response
functions, using the definition χλ(r1, r2; τ) =

∫ +∞
−∞ dω/(2π)χλ(r1, r2;ω)e

−iωτ ,

nλ2,c(r1, r2) = −
∫ +∞

−∞

dω

2πi
eiω0

+
[χλ(r1, r2;ω)− χ0(r1, r2;ω)], (4.23)

which is known as the (zero-temperature) fluctuation-dissipation theorem. This theorem relates
ground-state correlations in the time-independent system, nλ2,c(r1, r2), to the linear response of
the system due to a time-dependent external perturbation, χλ(r1, r2;ω).

13We choose to work with the time-ordered linear-response function (or polarization propagator) which is used in
many-body Green function theory. In linear-response time-dependent DFT, one normally uses the retarded linear-
response function iχR

λ (r1t1, r2t2) = θ(t1 − t2)〈Ψ
λ|[n̂λ(r1t1), n̂

λ(r2t2)]|Ψ
λ〉 − 〈Ψλ|n̂λ(r1t1)|Ψ

λ〉〈Ψλ|n̂λ(r2t2)|Ψ
λ〉.

Their Fourier transforms are related by χR
λ (r1, r2;ω) = χλ(r1, r2;ω) for ω ≥ 0, and χR

λ (r1, r2;ω) = χλ(r1, r2;ω)
∗

for ω < 0. One should be careful to be consistent when switching between these related quantities. For a
presentation based on the retarded linear-response function, see e.g. Ref. [17].
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Exercise 23 : Show that the linear-response function can be rewritten as

iχλ(r1, r2; τ) = θ(τ)
∑

n 6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉e−iωλ
nτ

+θ(−τ)
∑

n 6=0

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉eiωλ
nτ , (4.24)

where the sums are over all eigenstates Ψλ
n of the Hamiltonian Ĥλ, i.e. Ĥλ|Ψλ

n〉 = Eλ
n |Ψλ

n〉,
except the ground state Ψλ = Ψλ

0 , and ωλ
n = Eλ

n − Eλ
0 are the corresponding excitation

energies. Show then that the Fourier transform of χλ(r1, r2; τ) is

χλ(r1, r2;ω) =
∑

n 6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉
ω − ωλ

n + i0+
− 〈Ψλ|n̂(r2)|Ψλ

n〉〈Ψλ
n|n̂(r1)|Ψλ〉

ω + ωλ
n − i0+

, (4.25)

which is called the Lehmann representation of χλ. Finally, check directly Eq. (4.23) by
performing the integration over ω using the residue theorem.

Combining Eqs. (4.15) and (4.23), we finally arrive the exact adiabatic-connection fluctuation-
dissipation (ACFD) formula for the correlation energy

Ec = −1

2

∫ 1

0
dλ

∫ +∞

−∞

dω

2πi
eiω0

+

∫∫

χλ(r1, r2;ω)− χ0(r1, r2;ω)

|r1 − r2|
dr1dr2. (4.26)

The usefulness of the ACFD formula is due to the fact there are practical ways of directly
calculating χλ(r1, r2;ω) without having to calculate the many-body wave function Ψλ. In linear-
response time-dependent DFT, one can find a Dyson-like equation for χλ(r1, r2;ω)

χλ(r1, r2;ω) = χ0(r1, r2;ω) +

∫∫

χ0(r1, r3;ω)f
λ
Hxc(r3, r4;ω)χλ(r4, r2;ω)dr3dr4, (4.27)

where fλHxc(r3, r4;ω) is the Hartree-exchange-correlation kernel associated to the Hamiltonian
Ĥλ. Here, Eq. (4.27) will be considered as the definition for fλHxc. In principle, the exact
correlation energy can be obtained with Eqs. (4.26) and (4.27). In practice, however, we need
to use an approximation for fλHxc.

4.3.2 Direct random-phase approximation

In the direct random-phase approximation (dRPA, also just referred to as RPA, or some-
times as time-dependent Hartree), only the Hartree part of the kernel, which is linear in λ and
independent from ω, is retained

fλHxc(r1, r2;ω) ≈ fλH(r1, r2) = λwee(r1, r2), (4.28)

where wee(r1, r2) = 1/|r1 − r2| is the Coulomb interaction, and the corresponding dRPA linear-
response function then satisfies the equation

χdRPA
λ (r1, r2;ω) = χ0(r1, r2;ω) + λ

∫∫

χ0(r1, r3;ω)wee(r3, r4)χ
dRPA
λ (r4, r2;ω)dr3dr4. (4.29)
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The physical contents of this approximation can be seen by iterating Eq. (4.29) which generates
an infinite series

χdRPA
λ (r1, r2;ω) = χ0(r1, r2;ω) + λ

∫∫

χ0(r1, r3;ω)wee(r3, r4)χ0(r4, r2;ω)dr3dr4

+λ2
∫∫∫∫

χ0(r1, r3;ω)wee(r3, r4)χ0(r4, r5;ω)wee(r5, r6)χ0(r6, r2;ω)dr3dr4dr5dr6 + · · · ,

(4.30)

which, after plugging it into Eq. (4.26), leads to the dRPA correlation energy as the following
perturbation expansion

EdRPA
c = −1

2

∫ 1

0
dλ

∫ +∞

−∞

dω

2πi
eiω0

+

[

λ

∫∫∫∫

χ0(r1, r3;ω)χ0(r4, r2;ω)

|r1 − r2| |r3 − r4|
dr1dr2dr3dr4

+λ2
∫∫∫∫∫∫

χ0(r1, r3;ω)χ0(r4, r5;ω)χ0(r6, r2;ω)

|r1 − r2| |r3 − r4| |r5 − r6|
dr1dr2dr3dr4dr5dr6 + · · ·

]

. (4.31)

Using now the Lehmann representation [Eq. (4.25)] of the KS linear-response function in terms
of the KS orbitals and their energies

χ0(r1, r2;ω) =
∑

σ∈{↑,↓}

Nσ
∑

i=1

∑

a≥Nσ+1

[

ϕ∗
iσ(r1)ϕaσ(r1)ϕ

∗
aσ(r2)ϕiσ(r2)

ω − (εa − εi) + i0+
− ϕ∗

iσ(r2)ϕaσ(r2)ϕ
∗
aσ(r1)ϕiσ(r1)

ω + (εa − εi)− i0+

]

,

(4.32)

one can obtain, after quite some work,

EdRPA
c = −1

2

N
∑

i=1

N
∑

j=1

∑

a≥N+1

∑

b≥N+1

|〈ψiψj |ψaψb〉|2
εa + εb − εi − εj

+
N
∑

i=1

N
∑

j=1

N
∑

k=1

∑

a≥N+1

∑

b≥N+1

∑

c≥N+1

〈ψiψj |ψaψb〉〈ψjψk|ψbψc〉〈ψkψi|ψcψa〉
(εa + εb − εi − εj)(εa + εc − εi − εk)

+ · · · .

(4.33)

The dRPA correlation energy is the sum of all the direct terms (i.e., no exchange terms) of the
Møller-Plesset or Görling-Levy perturbation expansion. Of course, Eq. (4.33) is not the way
to calculate the dRPA correlation energy in practice. To do this, we need to solve the Dyson
equation [Eq. (4.29)] without explicitly expanding in powers of λ.

4.3.3 Practical calculation in a spin orbital basis

For solving Eq. (4.29) in a spin orbital basis, it is more convenient to introduce the four-point
(time-ordered) linear-response function

iχλ(x1,x2;x
′
1,x

′
2; τ = t1 − t2) = 〈Ψλ|T [n̂λ1(x1,x

′
1; t1)n̂

λ
1(x2,x

′
2; t2)]|Ψλ〉

−〈Ψλ|n̂λ1(x1,x
′
1; t1)|Ψλ〉〈Ψλ|n̂λ1(x2,x

′
2; t2)|Ψλ〉, (4.34)

where n̂λ1(x,x
′; t) = eiĤ

λtn̂1(x,x
′)e−iĤλt is the (spin-dependent) one-electron density matrix

operator in the Heisenberg picture. The Fourier transform of the linear-response function
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χλ(r1, r2;ω) involved in Eq. (4.26) is just the spin-summed diagonal part of the Fourier transform
of the four-point linear-response function

χλ(r1, r2;ω) =
∑

σ1∈{↑,↓}

∑

σ2∈{↑,↓}
χλ(r1σ1, r2σ2; r1σ1, r2σ2;ω). (4.35)

In the dRPA approximation, the four-point linear-response function is given by

χdRPA
λ (x1,x2;x

′
1,x

′
2;ω) = χ0(x1,x2;x

′
1,x

′
2;ω)

+

∫∫∫∫

dx3dx4dx5dx6 χ0(x1,x4;x
′
1,x3;ω)f

λ
H(x3,x6;x4,x5)χ

dRPA
λ (x5,x2;x6,x

′
2;ω), (4.36)

with the four-point Hartree kernel fλH(x1,x2;x
′
1,x

′
2) = λwee(|r1 − r2|)δ(x1 − x

′
1)δ(x2 − x

′
2), or

equivalently in terms of inverses

(χdRPA
λ )−1(x1,x2;x

′
1,x

′
2;ω) = χ−1

0 (x1,x2;x
′
1,x

′
2;ω)− fλH(x1,x2;x

′
1,x

′
2). (4.37)

The non-interacting four-point linear-response function can be explicitly written in terms of the
KS spin orbitals and their energies

χ0(x1,x2;x
′
1,x

′
2;ω) =

N
∑

i=1

∑

a≥N+1

[

ψ∗
i (x

′
1)ψa(x1)ψ

∗
a(x

′
2)ψi(x2)

ω − (εa − εi) + i0+
− ψ∗

i (x
′
2)ψa(x2)ψ

∗
a(x

′
1)ψi(x1)

ω + (εa − εi)− i0+

]

,

(4.38)

which can be seen as expanded in a basis, χ0(x1,x2;x
′
1,x

′
2;ω) =

∑

p,q[χ0(ω)]p,qfp(x1,x
′
1)f

∗
q (x

′
2,x2),

where the basis functions are tensor products of two occupied/virtual (ov) fia(x1,x
′
1) = ψ∗

i (x
′
1)ψa(x1)

or two virtual/occupied (vo) spin orbitals fai(x1,x
′
1) = ψ∗

a(x
′
1)ψi(x1), and the matrix of χ0(ω) is

in fact diagonal: [χ0(ω)]ia,jb = δijδab/(ω−(εa−εi)+i0+), [χ0(ω)]ai,bj = δijδab/(ω+(εa−εi)−i0+),
and [χ0(ω)]ia,bj = [χ0(ω)]ai,jb = 0. The inverse of χ0(ω) in this basis is, written with ov/ov,
ov/vo, vo/ov, ov/ov block matrices,

χ
−1
0 (ω) = −

[(

∆ε 0

0 ∆ε

)

− ω

(

1 0

0 −1

)]

, (4.39)

with the diagonal matrix ∆εia,jb = (εa − εi)δijδab. Using Eq. (4.37), the matrix representation
of the inverse of χdRPA

λ (ω) can be easily find

(χdRPA
λ )−1(ω) = −

[(

Aλ Bλ

B
∗
λ A

∗
λ

)

− ω

(

1 0

0 −1

)]

, (4.40)

with the matrices Aλ and Bλ defined by

(Aλ)ia,jb = ∆εia,jb + λ〈ψaψj |ψiψb〉, (4.41a)

(Bλ)ia,jb = λ〈ψaψb|ψiψj〉, (4.41b)

and it can be checked that the matrix Aλ is Hermitian [i.e., (Aλ)jb,ia = (Aλ)
∗
ia,jb] and the

matrix Bλ is symmetric [i.e, (Bλ)jb,ia = (Bλ)ia,jb]. To calculate the inverse of the matrix in the
right-hand-side of Eq. (4.40), we then consider the following generalized eigenvalue equation

(

Aλ Bλ

B
∗
λ A

∗
λ

)(

Xn,λ

Yn,λ

)

= ωλ
n

(

1 0

0 −1

)(

Xn,λ

Yn,λ

)

, (4.42)
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whose solutions come in pairs: if (Xn,λ,Yn,λ) is an eigenvector with eigenvalue ωλ
n, then it is

easy to check that (Y∗
n,λ,X

∗
n,λ) is also an eigenvector with opposite eigenvalue −ωλ

n. Choosing

the normalization of the eigenvectors so that X†
n,λXm,λ−Y

†
n,λYm,λ = δnm, the matrix χ

dRPA
λ (ω)

can be expressed as the following spectral representation

χ
dRPA
λ (ω) =

∑

n

[

1

ω − ωλ
n + i0+

(

Xn,λ

Yn,λ

)

(

X
†
n,λ Y

†
n,λ

)

− 1

ω + ωλ
n − i0+

(

Y
∗
n,λ

X
∗
n,λ

)

(

Y
∗†
n,λ X

∗†
n,λ

)

]

, (4.43)

where the sum is over eigenvectors with positive eigenvalues. The fluctuation-dissipation theorem
[Eq. (4.23)] leads to the matrix representation of the correlation part of the dRPA two-particle

density matrix n
λ,dRPA
2,c (using contour integration in the upper half of the complex plane)

n
λ,dRPA
2,c = −

∫ +∞

−∞

dω

2πi
eiω0

+
[χλ(ω)− χ0(ω)]

=
∑

n

(

Y
∗
n,λY

∗†
n,λ Y

∗
n,λX

∗†
n,λ

X
∗
n,λY

∗†
n,λ X

∗
n,λX

∗†
n,λ

)

−
(

0 0

0 1

)

, (4.44)

the simple contribution coming from χ0(ω) resulting from its diagonal form, and the dRPA
correlation energy has then the following expression

EdRPA
c =

1

2

∫ 1

0
dλ

N
∑

i=1

N
∑

j=1

∑

a≥N+1

∑

b≥N+1

∑

n

{

〈ψiψb|ψaψj〉(Yn,λ)∗ia(Yn,λ)jb

+〈ψiψj |ψaψb〉(Yn,λ)∗ia(Xn,λ)jb + 〈ψaψb|ψiψj〉(Xn,λ)
∗
ia(Yn,λ)jb

+〈ψaψj |ψiψb〉 [(Xn,λ)
∗
ia(Xn,λ)jb − δijδab]

}

. (4.45)

For real-valued spin orbitals, the correlation energy can be simplified to

EdRPA
c =

1

2

∫ 1

0
dλ

N
∑

i=1

N
∑

j=1

∑

a≥N+1

∑

b≥N+1

〈ψiψb|ψaψj〉(Pc,λ)ia,jb, (4.46)

where

(Pc,λ)ia,jb =
∑

n

(Xn,λ + Yn,λ)ia (Xn,λ + Yn,λ)jb − δijδab, (4.47)

or, in matrix form,

Pc,λ =
∑

n

(Xn,λ +Yn,λ) (Xn,λ +Yn,λ)
T − 1. (4.48)

Using the fact that, if Aλ+Bλ and Aλ−Bλ are positive definite, the non-Hermitian eigenvalue
equation (4.42) with real spin orbitals can be transformed into the following half-size symmetric
eigenvalue equation

MλZn,λ = (ωλ
n)

2
Zn,λ, (4.49)

where Mλ = (Aλ −Bλ)
1/2 (Aλ +Bλ) (Aλ −Bλ)

1/2 and with eigenvectors

Zn,λ =
√

ωλ
n (Aλ −Bλ)

−1/2 (Xn,λ +Yn,λ), and using the spectral decomposition M
−1/2
λ =
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∑

n(ω
λ
n)

−1
Zn,λZ

T
n,λ, the correlation two-particle density matrix Pc,λ can be finally expressed

as

Pc,λ = (Aλ −Bλ)
1/2

M
−1/2
λ (Aλ −Bλ)

1/2 − 1. (4.50)

In practice, the integration over λ in Eq. (4.46) is done by numerical integration.

This is the adiabatic-connection formulation of dRPA. There also other equivalent formu-
lations of dRPA in which the integration over λ is done analytically: the plasmon-formula
formulation, the ring coupled-cluster formulation, and the dielectric-matrix formulation. For
more details about all the different formulations, see e.g. Refs. [91, 121–126].

Most dRPA correlation energy (combined with the EXX energy) calculations are done in
a non-self-consistent way but self-consistent OEP dRPA calculations have also recently been
performed [127, 128]. One of the main advantage of dRPA is that it accounts for van der
Waals dispersion interactions, and it can somewhat deals with systems with static correlation.
However, it shows large self-interaction errors. To overcome the latter drawback, the exchange
contribution to the kernel need to be included.

4.3.4 Random-phase approximation with exchange and beyond

The next logical improvement over dRPA is then to include exchange terms by adding the
EXX kernel which is also linear in λ but depends on the frequency

fλHxc(r1, r2;ω) ≈ fλHx(r1, r2;ω) = λwee(r1, r2) + λfx(r1, r2;ω), (4.51)

and the corresponding RPAx(EXX) [129–132] linear-response function satisfies the Dyson equa-
tion

χ
RPAx(EXX)
λ (r1, r2;ω) = χ0(r1, r2;ω) +

∫∫

χ0(r1, r3;ω)f
λ
Hx(r3, r4;ω)χ

RPAx(EXX)
λ (r4, r2;ω)dr3dr4.

(4.52)

Alternatively, one can define a RPAx(HF) [89, 123] approximation at the level of the four-
point linear-response function

χ
RPAx(HF)
λ (x1,x2;x

′
1,x

′
2;ω) = χ0(x1,x2;x

′
1,x

′
2;ω)

+

∫∫∫∫

dx3dx4dx5dx6 χ0(x1,x4;x
′
1,x3;ω)f

λ,HF
Hx (x3,x6;x4,x5)χ

RPAx(HF)
λ (x5,x2;x6,x

′
2;ω),

(4.53)

with the four-point Hartree-Fock kernel fλ,HF
Hx (x1,x2;x

′
1,x

′
2) = λwee(|r1 − r2|)[δ(x1 − x

′
1)δ(x2 −

x
′
2)− δ(x1−x

′
2)δ(x2−x

′
1)] which is linear in λ but independent from the frequency ω. However,

contrary to the dRPA case, Eqs. (4.52) and (4.53) do not lead to the same correlation energies.
Moreover, several non-equivalent correlation energies can be extracted from Eq. (4.53) [124].

In practice, these diverse RPAx variants does not always improve over dRPA. Going beyond
RPAx by also including a correlation kernel is an active area of research (see e.g. Ref. [133]).
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Appendices

A The Hamiltonian in second quantization

It is convenient to express the Hamiltonian operator in second quantization. In this for-
malism, the operators are independent from the number of electrons (i.e., we work in Fock
space).

In real-space second quantization, the electronic Hamiltonian operator is written as

Ĥ = T̂ + Ŵee + V̂ne, (A.1)

where T̂ is the kinetic-energy operator

T̂ = −1

2

∑

σ∈{↑,↓}

∫

ψ̂†
σ(r)∇2ψ̂σ(r)dr, (A.2)

Ŵee is the electron-electron interaction operator

Ŵee =
1

2

∑

σ1∈{↑,↓}

∑

σ2∈{↑,↓}

∫∫

ψ̂†
σ2
(r2)ψ̂

†
σ1
(r1)wee(r1, r2)ψ̂σ1(r1)ψ̂σ2(r2)dr1dr2, (A.3)

with wee(r1, r2) = 1/|r1 − r2|, and V̂ne is the nuclei-electron interaction operator

V̂ne =
∑

σ∈{↑,↓}

∫

ψ̂†
σ(r)vne(r)ψ̂σ(r)dr. (A.4)

In these expressions, ψ̂†
σ(r) and ψ̂σ(r) are the creation and annihilation field operators, respec-

tively, which obey Fermionic anticommutation rules
{

ψ̂†
σ(r), ψ̂

†
σ′(r

′)
}

= 0, (A.5)

{

ψ̂σ(r), ψ̂σ′(r′)
}

= 0, (A.6)

{

ψ̂†
σ(r), ψ̂σ′(r′)

}

= δ(r− r
′)δσσ′ . (A.7)

It is also convenient to define the density operator

n̂(r) =
∑

σ∈{↑,↓}
ψ̂†
σ(r)ψ̂σ(r), (A.8)

the one-particle density-matrix operator

n̂1(r, r
′) =

∑

σ∈{↑,↓}
ψ̂†
σ(r

′)ψ̂σ(r), (A.9)

and the pair-density operator

n̂2(r1, r2) =
∑

σ1∈{↑,↓}

∑

σ2∈{↑,↓}
ψ̂†
σ2
(r2)ψ̂

†
σ1
(r1)ψ̂σ1(r1)ψ̂σ2(r2)

= n̂(r2)n̂(r1)− n̂(r1)δ(r1 − r2),

= n̂(r1)n̂(r2)− n̂(r1)δ(r1 − r2), (A.10)
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so that Eqs. (A.2), (A.3), and (A.4) can be rewritten in a more compact way

T̂ = −1

2

∫

[

∇2
rn̂1(r, r

′)
]

r′=r
dr, (A.11)

Ŵee =
1

2

∫∫

wee(r1, r2)n̂2(r1, r2)dr1dr2, (A.12)

V̂ne =

∫

vne(r)n̂(r)dr. (A.13)

We can also use the second-quantization formalism in an orthonormal spin-orbital basis
{ψp(x)} where x = (r, σ). For this, we expand the field operators as

ψ̂†
σ(r) =

∑

p

ψ∗
p(x)â

†
p, (A.14)

and
ψ̂σ(r) =

∑

p

ψp(x)âp, (A.15)

where â†p and âp are the creation and annihilation operators in this basis, which still obey

anticommutation rules: {â†p, â†q} = {âp, âq} = 0 and {â†p, âq} = δpq. The expressions of the
operators are then

T̂ =
∑

pq

tpq â
†
pâq, (A.16)

Ŵee =
1

2

∑

pqrs

〈ψpψq|ψrψs〉 â†pâ†qâsâr, (A.17)

V̂ne =
∑

pq

vne,pq â
†
pâq, (A.18)

where tpq and vne,pq are the one-electron kinetic and nuclei-electron integrals, respectively, and
〈ψpψq|ψrψs〉 are the two-electron integrals.
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B A brief introduction to functional derivatives

This section is inspired from Appendix A of Ref. [1] to which the reader is referred for more
details.

A function f is a mapping from a number x to another number f(x), i.e. x→ f(x). Similarly,
a functional F is a mapping from a function f to a number F [f ], i.e. f → F [f ]. In other words,
a functional is a function of a function.

The differential of a functional F [f ] is δF [f ] = F [f + δf ]− F [f ], where δf is a infinitesimal
variation of f . It represents the infinitesimal variation of F [f ] due to an infinitesimal variation
of f . The infinitesimal variation δF [f ] is linear in δf(x) at any point x

δF [f ] =

∫

δF [f ]

δf(x)
δf(x)dx, (B.1)

which defines the functional derivative of F [f ] with respect f(x), denoted by δF [f ]/δf(x). The
functional derivative generalizes the concept of partial derivative. Indeed, if we consider a func-
tion F (f1, f2, ...) of several variables f1, f2, ..., then the differential of F is dF =

∑

i ∂F/∂fi dfi,
which is the analog of Eq. (B.1). Thus, δF [f ]/δf(x) is the analog of ∂F/∂fi for the case of an
infinitely continuous number of variables.

Functional derivatives shares most of the properties of ordinary derivatives. The functional
derivative of a linear combination of functionals c1F [f ] + c2G[f ] is

δ

δf(x)
(c1F [f ] + c2G[f ]) = c1

δF [f ]

δf(x)
+ c2

δG[f ]

δf(x)
. (B.2)

The functional derivative of a product of two functionals F [f ]G[f ] is

δ

δf(x)
(F [f ]G[f ]) =

δF [f ]

δf(x)
G[f ] + F [f ]

δG[f ]

δf(x)
. (B.3)

A functional F [f ] of a function f [g](x) which is itself a functional of a function g(x) has a
functional derivative with respect to g(x) given by the chain rule

δF [f ]

δg(x)
=

∫

δF [f ]

δf(x′)
δf(x′)
δg(x)

dx′. (B.4)

It is the analog of the chain rule for a function F (f1, f2, ...) of several variables fi(g1, g2, ...) which
are themselves functions of other variables g1, g2, ..., i.e. ∂F/∂gi =

∑

j(∂F/∂fj)(∂fj/∂gi).

An important special case is when the functional F (f(x)) is just an ordinary function of
f(x). The functional derivative of F (f(x)) with respect to f(x′) is

δF (f(x))

δf(x′)
=

dF (f(x))

df
δ(x− x′), (B.5)

where dF/df is the ordinary derivative of the function F and δ(x−x′) is the Dirac delta function.
In particular, if F (f(x)) = f(x), we have

δf(x)

δf(x′)
= δ(x− x′). (B.6)

48



Also, if f(x) is a functional of g(x), the chain rule (B.4) and Eq. (B.6) give

δf(x)

δf(x′)
=

∫

δf(x)

δg(x′′)
δg(x′′)
δf(x′)

dx′′ = δ(x− x′), (B.7)

which permits one to interpret δg/δf as the inverse of δf/δg. Eq. (B.7) is analogous to the
matrix relation:

∑

k(A)ik(A
−1)kj = δij .

Higher-order functional derivatives can also be defined. For example, the second-order
functional derivative δ2F [f ]/δf(x)δf(x′) is the define as the first-order functional derivative
of δF [f ]/δf(x) with respect to f(x′). The order of differentiation is usually irrelevant

δ2F [f ]

δf(x)δf(x′)
=

δ2F [f ]

δf(x′)δf(x)
. (B.8)

These functional derivatives can be used to expand a functional in a Taylor series

F [f +∆f ] = F [f ] +

∫

δF [f ]

δf(x)
∆f(x)dx+

1

2

∫∫

δ2F [f ]

δf(x)δf(x′)
∆f(x)∆f(x′)dxdx′ + ..., (B.9)

where ∆f is a finite change in f .

Finally, consider the following frequently occurring semilocal form for the functional F [f ]
depending on a function f(x) and its first-order derivative f ′(x) = df(x)/dx

F [f ] =

∫

h(f(x), f ′(x))dx, (B.10)

where h is some function and f(x) vanishes at the boundary of x. The differential of F [f ] can
be written as

δF [f ] =

∫

δh(f(x), f ′(x))dx =

∫
[

∂h(f(x), f ′(x))
∂f

δf(x) +
∂h(f(x), f ′(x))

∂f ′
δf ′(x)

]

dx. (B.11)

Using now δf ′(x) = δ[f(x+ ε)− f(x)]/ε = [δf(x+ ε)− δf(x)]/ε = (δf(x))′ (with ε → 0), and
integrating by parts the second term in Eq. (B.11) gives

δF [f ] =

∫
[

∂h(f(x), f ′(x))
∂f

δf(x)− d

dx

(

∂h(f(x), f ′(x))
∂f ′

)

δf(x)

]

dx, (B.12)

where we have used that δf(x) mush vanish on the boundary so that the boundary term of the
integration by parts vanishes. Comparing Eq. (B.12) with Eq. (B.1) shows that the functional
derivative of F [f ] is

δF [f ]

δf(x)
=
∂h(f(x), f ′(x))

∂f
− d

dx

(

∂h(f(x), f ′(x))
∂f ′

)

. (B.13)

Exercise 24 : Generalize Eq. (B.13) to a semilocal functional F depending up to on n-order
derivatives of f

F [f ] =

∫

h(f(x), f ′(x), f ′′(x), ..., f (n)(x))dx, (B.14)

where f (n)(x) = dnf(x)/dxn.
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Solutions to the exercises

Exercise 1

For the special case of Coulombic potentials of the form vne(r) = −∑α Zα/|r − Rα|, it is easy to see
that the ground-state density n0(r) determines the parameters of the potential. Indeed, the locations
of the local maxima of n0(r) give the positions of the nuclei rmax = Rα, and the electron-nucleus cusp
condition at each nucleus, (∂n̄0(rα)/∂rα)rα=0 = −2Zαn̄0(0) where n̄0(rα) is the spherical average of the
density around the nucleus α (rα = |r − Rα|), gives the nucleus charge Zα. Moreover, the integral of
the density gives the number of electrons,

∫

n0(r)dr = N . It is important to realize however that the
Hohenberg-Kohn theorem is much more general than that since it states that the ground-state density
determines the potential for any form of potential (that bounds N electrons).

Exercise 2

Let n0 be a ground-state density associated with the potential vne(r) and let Ψ[n0] be a corresponding
ground-state wave function. Let n be a ground-state density associated with another potential v(r) and
let Ψ[n] be a corresponding ground-state wave function. The variational property of the Hohenberg-Kohn
density functional E[n] directly follows from the variational theorem on wave functions:

E0 = E[n0] = F [n0] +

∫

vne(r)n0(r)dr

= 〈Ψ[n0]|T̂ + Ŵee + V̂ne|Ψ[n0]〉
≤ 〈Ψ[n]|T̂ + Ŵee + V̂ne|Ψ[n]〉

= F [n] +

∫

vne(r)n(r)dr = E[n], (S.1)

establishing Eq. (1.16).

Exercise 3

Let us consider a variation of the density δn, the induced variation of the Hartree energy functional
[Eq. (1.26)] is:

δEH[n] =
1

2

∫∫

δn(r1)n(r2)

|r1 − r2|
dr1dr2 +

1

2

∫∫

n(r1)δn(r2)

|r1 − r2|
dr1dr2

=
1

2

∫
[
∫

n(r2)

|r1 − r2|
dr2

]

δn(r1)dr1 +
1

2

∫
[
∫

n(r1)

|r1 − r2|
dr1

]

δn(r2)dr2

=

∫
[
∫

n(r2)

|r1 − r2|
dr2

]

δn(r1)dr1, (S.2)

which, according to Eq. (B.1), allows us to identify the functional derivative of EH[n]

vH(r1) =
δEH[n]

δn(r1)
=

∫

n(r2)

|r1 − r2|
dr2. (S.3)

Exercise 4

We start from the expression of the density in Eq. (1.31) and insert the expansion of ϕi(r) in terms of
basis functions [Eq. (1.43)]

n(r) =
N
∑

i=1

|ϕi(r)|2 =
N
∑

i=1

ϕi(r)ϕ
∗
i (r)

=

N
∑

i=1

(

M
∑

γ=1

cγi χγ(r)

)(

M
∑

λ=1

c∗λi χ
∗
λ(r)

)

=
M
∑

γ=1

M
∑

λ=1

Pγλχγ(r)χ
∗
λ(r), (S.4)
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where Pγλ =
∑N

i=1 cγic
∗
λi. The second equality in Eq. (1.48) is then found by inserting the expression of

the Hartree potential vH [Eq. S.3] and using Eq. (S.4)

Jµν =

∫

χ∗
µ(r1)vH(r1)χν(r1)dr1

=

∫∫

χ∗
µ(r1)

n(r2)

|r1 − r2|
χν(r1)dr1dr2

=

M
∑

γ=1

M
∑

λ=1

Pγλ

∫∫

χ∗
µ(r1)χγ(r2)χ

∗
λ(r2)χν(r1)

|r1 − r2|
dr1dr2

=

M
∑

λ=1

M
∑

γ=1

Pγλ(χµχν |χλχγ), (S.5)

where (χµχν |χλχγ) are the two-electron integrals defined in Eq. (1.50).

Exercise 5

Since the ↑- and ↓-spin electrons are uncoupled in the exchange energy (in the non-relativistic approxi-
mation), the spin-dependent exchange functional can be decomposed as

Ex[n↑, n↓] = Ex[n↑, 0] + Ex[0, n↓]. (S.6)

Applying this equation with n↑ = n↓ = n/2 gives

Ex[n/2, n/2] = Ex[n/2, 0] + Ex[0, n/2] = 2Ex[n/2, 0] = 2Ex[0, n/2], (S.7)

where it has been used that the functional is symmetric in its two arguments. Now, since Ex[n/2, n/2] =
Ex[n] where Ex[n] is the spin-independent exchange functional, we thus have

2Ex[n/2, 0] = 2Ex[0, n/2] = Ex[n], (S.8)

or, equivalently,

Ex[n, 0] = Ex[0, n] =
1

2
Ex[2n]. (S.9)

Since this is true for any density n, it can be applied with arbitrary spin-resolved densities n↑ and n↓,
leading to the spin-scaling relation

Ex[n↑, n↓] =
1

2
(Ex[2n↑] + Ex[2n↓]) . (S.10)

Exercise 6

Using Eqs. (2.3) and (2.4), we can write the exchange-correlation hole as

nxc(r1, r2) =
n2(r1, r2)

n(r1)
− n(r2), (S.11)

which, after integrating over r2, leads to

∫

nxc(r1, r2)dr2 =

∫

n2(r1, r2)dr2
n(r1)

−
∫

n(r2)dr2 =
(N − 1)n(r1)

n(r1)
−N = −1, (S.12)

where the relation
∫

n2(r1, r2)dr2 = (N − 1)n(r1) has been used, stemming directly from the definition
of n2(r1, r2) in Eq. (2.1).
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Exercise 7

We start from the definition of the exchange energy per particle of Eq. (2.15) and separate the domain
of integration over r2 into two subdomains

εx[n](r1) =
1

2

∫

nx(r1, r2)

|r1 − r2|
dr2

=
1

2

∫

Ω(r1)

nx(r1, r2)

|r1 − r2|
dr2 +

1

2

∫

Ω̄(r1)

nx(r1, r2)

|r1 − r2|
dr2, (S.13)

where Ω(r1) is the ball centered at 0 of radius r1 and Ω̄(r1) is the complement subdomain. In the first
subdomain Ω(r1), we have r2 < r1 so we can make a convergent multipole expansion of the Coulomb
interaction 1/|r1 − r2| around r2 = 0

1

2

∫

Ω(r1)

nx(r1, r2)

|r1 − r2|
dr2 =

1

2

∫

Ω(r1)

nx(r1, r2)

(

1

r1
+

r1 · r2
r31

+ · · ·
)

dr2

=
1

2r1

∫

Ω(r1)

nx(r1, r2)dr2 +
r1

2r31
·
∫

Ω(r1)

nx(r1, r2)r2dr2 + · · ·

∼
r1→+∞

1

2r1

∫

nx(r1, r2)dr2 = − 1

2r1
, (S.14)

where we have used the sum rule on the exchange hole [Eq. (2.10)] and the fact that all the moments
of the exchange hole exist for finite systems. As regards now the second contribution to the integral in
Eq. (S.13), since for finite systems the exchange hole decays exponentially, nx(r1, r2) ∝

|r1−r2|→0
e−α|r1−r2|,

this remaining contribution vanishes exponentially for r1 → +∞

1

2

∫

Ω̄(r1)

nx(r1, r2)

|r1 − r2|
dr2 =

r1→+∞
O(e−αr1). (S.15)

This thus proves that

εx[n](r1) ∼
r→+∞

− 1

2r1
. (S.16)

Exercise 8

We use the definition of the scaled wave function Ψλ
γ [n] in Eq. (2.31) and perform the change of variables

r̃i = γri in the integrals to obtain

〈Ψλ
γ [n]|T̂ + λγŴee|Ψλ

γ [n]〉 = γ3N
∫∫

· · ·
∫

Ψλ[n](γr1, σ1, ..., γrN , σN )∗

[

−1

2

N
∑

i=1

∇2
ri
+

∑

1≤i<j≤N

λγ

|ri − rj |

]

×Ψλ[n](γr1, σ1, ..., γrN , σN )dr1dσ1...drNdσN

=

∫∫

· · ·
∫

Ψλ[n](r̃1, σ1, ..., r̃N , σN )∗

[

−γ
2

2

N
∑

i=1

∇2
r̃i
+

∑

1≤i<j≤N

λγ2

|r̃i − r̃j |

]

×Ψλ[n](r̃1, σ1, ..., r̃N , σN )dr̃1dσ1...dr̃NdσN

= γ2〈Ψλ[n]|T̂ + λŴee|Ψλ[n]〉, (S.17)

which proves the identity of Eq. (2.33).

Exercise 9

The scaling relation satisfied by the Hartree density functional is directly found by using the definition
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of the scaled density nγ(r) = γ3n(γr) and performing the change of variables r̃ = γr

EH[nγ ] =
1

2

∫∫

nγ(r1)nγ(r2)

|r1 − r2|
dr1dr2

=
γ6

2

∫∫

n(γr1)n(γr2)

|r1 − r2|
dr1dr2

=
γ

2

∫∫

n(r̃1)n(r̃2)

|r̃1 − r̃2|
dr̃1dr̃2

= γEH[n]. (S.18)

Using then the scaling of the KS wave function, Φ[nγ ] = Φγ [n] [Eq. (2.38)] and the fact that 〈Φγ [n]|Ŵee|Φγ [n]〉 =
γ〈Φ[n]|Ŵee|Φ[n]〉 [same proof as in Eq. (S.17)], we find the scaling relation satisfied by the exchange den-
sity functional

Ex[nγ ] = 〈Φ[nγ ]|Ŵee|Φ[nγ ]〉 − EH[nγ ]

= 〈Φγ [n]|Ŵee|Φγ [n]〉 − γEH[n]

= γ〈Φ[n]|Ŵee|Φ[n]〉 − γEH[n]

= γEx[n]. (S.19)

Exercise 10

We search the minimizing ensemble density matrices in the form

Γ̂ = (1− f)
∑

n

wN−1
n |ΨN−1

n 〉〈ΨN−1
n |+ f

∑

m

wN
m|ΨN

m〉〈ΨN
m|, (S.20)

where {ΨN−1
n } and {ΨN

m} are complete orthonormal basis of fixed eigenstates of the (N − 1)- and N -
electron systems, respectively, and wN−1

n and wN
m are weights to be optimized with the constraints

0 ≤ wN−1
n ≤ 1 and

∑

n w
N−1
n = 1, and similarly for wN

m. The energy corresponding to the ensemble
density matrix of Eq. (S.20) is

EN−1+f = Tr
[

Γ̂Ĥ
]

= (1− f)
∑

n

wN−1
n Tr

[

|ΨN−1
n 〉〈ΨN−1

n |Ĥ
]

+ f
∑

m

wN
mTr

[

|ΨN
m〉〈ΨN

m|Ĥ
]

= (1− f)
∑

n,n′

wN−1
n 〈ΨN−1

n′ |ΨN−1
n 〉〈ΨN−1

n |Ĥ|ΨN−1
n′ 〉+ f

∑

m,m′

wN
m〈ΨN

m′ |ΨN
m〉〈ΨN

m|Ĥ|ΨN
m′〉

= (1− f)
∑

n

wN−1
n 〈ΨN−1

n |Ĥ|ΨN−1
n 〉+ f

∑

m

wN
m〈ΨN

m|Ĥ|ΨN
m〉

= (1− f)
∑

n

wN−1
n EN−1

n + f
∑

m

wN
mE

N
m , (S.21)

where EN−1
n = 〈ΨN−1

n |Ĥ|ΨN−1
n 〉 and EN

m = 〈ΨN
m|Ĥ|ΨN

m〉 are the corresponding eigenenergies for the
(N − 1)- and N -electron systems, respectively. Clearly, the minimum of EN−1+f in Eq. (S.21) is reached
when only the ground-state energies EN−1

0 and EN
0 of the (N − 1)- and N -electron systems remain in

the sums, i.e. for the weights wN−1
0 = 1 and wN−1

n>0 = 0, and wN
0 = 1 and wN

m>0 = 0. The minimizing
ensemble density matrix is thus indeed given by Eq. (2.54) and the corresponding ground-state energy
by Eq. (2.55).

Exercise 11

In the energy expression of Eq. (2.65), the orbitals {ϕj} are optimized in the presence of the orbital
occupation numbers {ni}. Therefore, the derivative of the energy with respect to ni contains two contri-
butions, a term corresponding to the explicit dependence on ni at fixed orbitals {ϕj} and a term coming
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from the implicit dependence on ni via the orbitals {ϕj},

∂E

∂ni
=

(

∂E

∂ni

)

{ϕj}

+





N
∑

j=1

∫

δE

δϕ∗
j (r)

∂ϕ∗
j (r)

∂ni
dr+ c.c.



 . (S.22)

The first term gives

(

∂E

∂ni

)

{ϕj}

=

∫

ϕ∗
i (r)

(

−1

2
∇2 + vne(r)

)

ϕi(r)dr+

(

∂EHxc[n]

∂ni

)

{ϕj}

=

∫

ϕ∗
i (r)

(

−1

2
∇2 + vne(r)

)

ϕi(r)dr+

∫

δEHxc[n]

δn(r)

(

∂n(r)

∂ni

)

{ϕj}

dr

=

∫

ϕ∗
i (r)

(

−1

2
∇2 + vne(r) + vHxc(r)

)

ϕi(r)dr

= εi, (S.23)

where the expression of the density in terms of ni in Eq. (2.66) has been used, and εi is the orbital energy
introduced in Eq. (2.67). It can be shown that the second term in Eq. (S.22) vanishes

N
∑

j=1

∫

δE

δϕ∗
j (r)

∂ϕ∗
j (r)

∂ni
dr+ c.c. =

N
∑

j=1

∫

[

nj

(

−1

2
∇2 + vne(r)

)

ϕj(r) +
δEHxc[n]

δϕ∗
j (r)

]

∂ϕ∗
j (r)

∂ni
dr+ c.c.

=

N
∑

j=1

∫
[

nj

(

−1

2
∇2 + vne(r) + vHxc(r)

)

ϕj(r)

]

∂ϕ∗
j (r)

∂ni
dr+ c.c.

=

N
∑

j=1

∫

njεjϕj(r)
∂ϕ∗

j (r)

∂ni
dr+ c.c.

=

N
∑

j=1

njεj
∂

∂ni

∫

|ϕj(r)|2dr = 0, (S.24)

since the orbitals are normalized,
∫

|ϕj(r)|2dr = 1. This proves Janak’s theorem [Eq. (2.70)].

Exercise 12

For large r, the KS potential vNs (r) ∼
r→+∞

vNs (∞) + (Q − 1)/r has spherical symmetry, and the KS

equations (2.67) for the asymptotic orbitals ϕN
i,asymp(r) can thus be written as

−1

2

(

d2ϕN
i,asymp(r)

dr2
+

2

r

dϕN
i,asymp(r)

dr
− ℓ(ℓ+ 1)

r2
ϕN
i,asymp(r)

)

+

(

vNs (∞) +
Q− 1

r

)

ϕN
i,asymp(r)

= εNi ϕ
N
i,asymp(r), (S.25)

where ℓ is the angular momentum. For r → +∞, the terms in 1/r or 1/r2 are negligible, so it remains

−1

2

d2ϕN
i,asymp(r)

dr2
+ vNs (∞)ϕN

i,asymp(r) = εNi ϕ
N
i,asymp(r), (S.26)

which has the general solutions

ϕN
i,asymp(r) = c1e

−
√

−2(εN
i
−vN

s (∞)) r + c2e
+
√

−2(εN
i
−vN

s (∞)) r, (S.27)

for bound states, i.e. εNi < vNs (∞). Since the second term on the right-hand-side of Eq. (S.27) diverges
for r → +∞, we must have c2 = 0 and therefore the asymptotic behavior of the KS orbitals is

ϕN
i (r) ∝

r→+∞
e−

√
−2(εN

i
−vN

s (∞)) r. (S.28)
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Exercise 13

Let us impose the scaling relation Ex[nγ ] = γEx[n] [Eq. (2.41)] to the functional Elocal
x [n] = c

∫

n(r)pdr,
we get

Elocal
x [nγ ] = γElocal

x [n]

⇔ c

∫

nγ(r)
pdr = γc

∫

n(r)pdr

⇔ cγ3p
∫

n(γr)pdr = γc

∫

n(r)pdr

⇔ cγ3p−3

∫

n(r′)pdr′ = γc

∫

n(r)pdr, (S.29)

giving 3p− 3 = 1 or p = 4/3. So, the simple uniform-coordinate scaling relation entirely determines the
exponent of the density in the LDA exchange functional. Of course, it does not determine the prefactor
c.

Exercise 14

By making the indicated replacements in Eq. (3.3), we arrive at

EUEG
x =

1

(2π)6

∫

ΩkF

dk1

∫

ΩkF

dk2

∫∫

1

|r1 − r2|
ei (k1−k2)·(r2−r1)dr1dr2, (S.30)

where the spatial integrations are on a box of volume V → ∞. Performing the change of variables
(r1, r2) → (r1, r12 = r2 − r1), we get

EUEG
x =

1

(2π)6

∫

ΩkF

dk1

∫

ΩkF

dk2

∫∫

1

|r12|
ei (k1−k2)·r12dr1dr12

= − V

(2π)6

∫

ΩkF

dk1

∫

ΩkF

dk2
4π

|k1 − k2|2
, (S.31)

where it was used that the integration over r12 gives the Fourier transform of the Coulomb interaction
∫

(1/|r12|)ei (k1−k2)·r12dr12 = 4π/|k1 − k2|2 and the integration over r1 gives the volume of the box
∫

dr1 = V . We can rewrite the integrals over k1 and k2 in spherical coordinates choosing as the polar
angle θ of k2 the angle between k1 and k2

EUEG
x = − V

(2π)6

∫ kF

0

dk14πk
2
1

∫ kF

0

dk22πk
2
2

∫ π

0

dθ sin θ
4π

k21 + k22 − 2k1k2 cos θ
. (S.32)

The integral over θ is easy to calculate

∫ π

0

dθ sin θ
4π

k21 + k22 − 2k1k2 cos θ
=

∫ 1

−1

dx
4π

k21 + k22 − 2k1k2x

=
−2π

k1k2

[

ln
(

(k1 − k2)
2
)

− ln
(

(k1 + k2)
2
)]

, (S.33)

and we are left with

EUEG
x =

2V

(2π)3

∫ kF

0

dk1

∫ kF

0

dk2 k1k2
[

ln
(

(k1 − k2)
2
)

− ln
(

(k1 + k2)
2
)]

=
2V k4F
(2π)3

∫ 1

0

dx1

∫ 1

0

dx2 x1x2
[

ln
(

(x1 − x2)
2
)

− ln
(

(x1 + x2)
2
)]

, (S.34)

where we have introduced x1 = k1/kF and x2 = k2/kF. It can be shown that the last double integral
over x1 and x2 equals −1, so we get

EUEG
x = −2V k4F

(2π)3
. (S.35)
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We finally obtain the exchange energy per particle

εUEG
x =

EUEG
x

N
= − 2k4F

(2π)3n
= Cxn

1/3, (S.36)

where the definition of kF = (3π2n)1/3 was used and the constant Cx = −(3/4)(3/π)1/3 was introduced.
For an alternative way of calculating the integral in Eq. (S.31) see Fetter and Walecka, page 28 [134].

Exercise 15

The LDA exchange energy functional is

ELDA
x [n] =

∫

n(r)εUEG
x (n(r))dr =

∫

f(n(r))dr, (S.37)

where f(n) = Cxn
4/3. The variation of ELDA

x [n] due to a variation of the density can be written as

δELDA
x [n] =

∫

δf(n(r))dr =

∫
(

df(n)

dn

)

n=n(r)

δn(r)dr, (S.38)

which, according to Eq. (B.1), means that the functional derivative is

vLDA
x (r) =

δELDA
x [n]

δn(r)
=

(

df(n)

dn

)

n=n(r)

=
4

3
Cxn(r)

1/3. (S.39)

Since the density n(r) decays exponentially for r → +∞ [Eq. (2.73)], the LDA exchange potential vLDA
x (r)

also decays exponentially for r → +∞, i.e. much too fast in comparison to the asymptotic behavior of
the exact exchange potential vx(r) ∼

r→+∞
−1/r.

Exercise 16

The Wigner correlation energy functional can be written as

EW
c [n] =

∫

f(n(r))dr, (S.40)

with f(n) = cn/(d+kn−1/3) where k = (3/(4π))1/3. Similarly to Exercise 15, the corresponding potential
is calculated as

vWc (r) =
δEW

c [n]

δn(r)
=

(

df(n)

dn

)

n=n(r)

=
c(d+ kn(r)−1/3)− cn(r)(−kn(r)−4/3/3)

(d+ kn(r)−1/3)2

=
cd+ (4/3)ckn(r)−1/3

(d+ kn(r)−1/3)2
. (S.41)

Exercise 17

The derivation of the potential of a GGA functional is just a 3D generalization of the 1D case of Eqs.(B.10)-
(B.13). The variation of EGGA

xc [n] induced by a variation of the density δn(r) is

δEGGA
xc [n] =

∫

δeGGA
xc (n(r),∇n(r))dr

=

∫
[

∂eGGA
xc (n(r),∇n(r))

∂n
δn(r) +

∂eGGA
xc (n(r),∇n(r))

∂∇n · δ∇n(r)
]

dr, (S.42)

where the notation ∂eGGA
xc /∂∇n means the vector containing the derivatives of eGGA

xc with respect to the
different components of ∇n. Using δ∇n(r) = ∇δn(r) (since ∇ is a linear operator) and integrating by
parts the second term in Eq. (S.42)

δEGGA
xc [n] =

∫
[

∂eGGA
xc (n(r),∇n(r))

∂n
δn(r)−∇ · ∂e

GGA
xc (n(r),∇n(r))

∂∇n δn(r)

]

dr, (S.43)

57



where we have used that δn(r) mush vanish at infinity so that the boundary term of the integration by
parts vanishes. Using the definition of a functional derivative, the potential associated with EGGA

xc [n] is
thus

vGGA
xc (r) =

δEGGA
xc [n]

δn(r)
=
∂eGGA

xc

∂n
(n(r),∇n(r))−∇ · ∂e

GGA
xc

∂∇n (n(r),∇n(r)). (S.44)

The contribution of vGGA
xc (r) to the KS Fock matrix [Eq. (1.51)] can then be expressed as

V GGA
xc,µν =

∫

χ∗
µ(r)v

GGA
xc (r)χν(r)dr

=

∫

χ∗
µ(r)

[

∂eGGA
xc

∂n
(n(r),∇n(r))−∇ · ∂e

GGA
xc

∂∇n (n(r),∇n(r))
]

χν(r)dr

=

∫

∂eGGA
xc

∂n
(n(r),∇n(r))χ∗

µ(r)χν(r)dr+

∫

∂eGGA
xc

∂∇n (n(r),∇n(r)) · ∇
(

χ∗
µ(r)χν(r)

)

dr,

(S.45)

where an integration by parts has been performed in the second term. Note that, since in practice eGGA
xc

depends on (∇n)2, the derivative ∂eGGA
xc /∂∇n is calculated as

∂eGGA
xc

∂∇n =
∂eGGA

xc

∂(∇n)2
d(∇n)2
d∇n = 2

∂eGGA
xc

∂(∇n)2∇n. (S.46)

Exercise 18

For a one-electron system, there is only one occupied orbital, which can be explicitly written in terms
of the density, ϕ(r) =

√

n(r), up to a unimportant phase factor. It is then immediate to check that the
kinetic energy density of such a system is the von Weizsäcker kinetic energy density:

τ1e(r) =
1

2
|∇ϕ(r)|2 =

1

2

(

∇
√

n(r)
)2

=
1

2

(

∇n(r)
2
√

n(r)

)2

=
|∇n(r)|2
8n(r)

= τW(r). (S.47)

Similarly, for two electrons in a single spatial occupied, we have ϕ(r) =
√

n(r)/2, and it is easy to show
that the non-interacting kinetic energy density is again the von Weizsäcker kinetic energy density.

Exercise 19

The variation of the HF exchange energy [Eq. (3.18)] due to a variation of ϕ∗
iσ(r) is

δEHF
x = −1

2

Nσ
∑

j=1

∫∫

δϕ∗
iσ(r1)ϕjσ(r1)ϕ

∗
jσ(r2)ϕiσ(r2)

|r1 − r2|
dr1dr2

−1

2

Nσ
∑

j=1

∫∫

ϕ∗
jσ(r1)ϕiσ(r1)δϕ

∗
iσ(r2)ϕjσ(r2)

|r1 − r2|
dr1dr2

= −
Nσ
∑

j=1

∫∫

δϕ∗
iσ(r1)ϕjσ(r1)ϕ

∗
jσ(r2)ϕiσ(r2)

|r1 − r2|
dr1dr2, (S.48)

and the functional derivative is thus

δEHF
x

δϕ∗
iσ(r1)

= −
Nσ
∑

j=1

∫

ϕjσ(r1)ϕ
∗
jσ(r2)ϕiσ(r2)

|r1 − r2|
dr2 =

∫

vHF
x,σ(r1, r2)ϕiσ(r2)dr2, (S.49)

where vHF
x,σ(r1, r2) is the nonlocal HF exchange potential

vHF
x,σ(r1, r2) = −

Nσ
∑

j=1

ϕjσ(r1)ϕ
∗
jσ(r2)

|r1 − r2|
. (S.50)
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Alternatively, the functional derivative of Eq. (S.49) can be reformulated as δEHF
x /δϕ∗

iσ(r1) = vHF
x,iσ(r1)ϕiσ(r1)

where vHF
x,iσ(r) is a local HF exchange potential depending on each orbital it acts on

vHF
x,iσ(r1) =

1

ϕiσ(r1)

∫

vHF
x,σ(r1, r2)ϕiσ(r2)dr2. (S.51)

Exercise 20

The error function is written as erf(x) = (2/
√
π)F (x) with F (x) =

∫ x

0
e−t2dt. Its Taylor expansion for

x→ 0 is

erf(x) =
2√
π
(F (0) + F ′(0)x+ · · · ) . (S.52)

We have F (0) = 0, and since F ′(x) = e−x2

, we have F ′(0) = 1, leading to erf(x) ∼
x→0

(2/
√
π)x. The limit

x→ +∞ is easily obtained by using the Gaussian integral
∫ +∞

0
e−t2dt =

√
π/2, leading to erf(x) −−−−−→

x→+∞

1.

Exercise 21

According to standard first-order perturbation theory, if a perturbation vs(r) → vs(r) + δvs(r) is applied
on the KS system, the first-order variation of the orbital ϕiσ(r

′) (assumed to be nondegenerate) is

δϕiσ(r
′) = −

∑

p≥1
p 6=i

∫

ϕ∗
pσ(r)δvs(r)ϕiσ(r)dr

εpσ − εiσ
ϕpσ(r

′), (S.53)

where the sum is over all spatial orbitals p different from orbital i but of the same spin. The functional
derivative of ϕiσ(r

′) with respect to vs(r) is thus

δϕiσ(r
′)

δvs(r)
= −

∑

p≥1
p 6=i

ϕ∗
pσ(r)ϕiσ(r)

εpσ − εiσ
ϕpσ(r

′). (S.54)

This result can be used to calculate the expression of χ0(r
′, r)

χ0(r
′, r) =

δn(r′)

δvs(r)
=

∑

σ∈{↑,↓}

Nσ
∑

i=1

[

ϕ∗
iσ(r

′)
δϕiσ(r

′)

δvs(r)
+ c.c.

]

= −
∑

σ∈{↑,↓}

Nσ
∑

i=1

∑

p≥1
p 6=i

[

ϕ∗
iσ(r

′)
ϕ∗
pσ(r)ϕiσ(r)

εpσ − εiσ
ϕpσ(r

′) + c.c.

]

. (S.55)

The last sum can be simplified by decomposing it as
∑Nσ

i=1

∑

p≥1,p 6=i =
∑Nσ

i=1

∑Nσ

p=1,p 6=i +
∑Nσ

i=1

∑

a≥Nσ+1

and realizing that the double sum
∑Nσ

i=1

∑Nσ

p=1,p 6=i is zero because the summand inside the square bracket
is antisymmetric with respect to the exchange of i and p. We thus arrive at the expected expression

χ0(r
′, r) = −

∑

σ∈{↑,↓}

Nσ
∑

i=1

∑

a≥Nσ+1

ϕ∗
iσ(r

′)ϕ∗
aσ(r)ϕiσ(r)ϕaσ(r

′)

εaσ − εiσ
+ c.c. . (S.56)

As regards the functional derivative of Ex with respect to vs(r), it is obtained by using chain rule with
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the orbitals and using Eqs. (S.49), (S.50), and (S.54)

δEx

δvs(r)
=

∑

σ∈{↑,↓}

Nσ
∑

i=1

∫

δEx

δϕ∗
iσ(r1)

δϕ∗
iσ(r1)

δvs(r)
dr1 + c.c.

= −
∑

σ∈{↑,↓}

Nσ
∑

i=1

∑

p≥1
p 6=i

∫∫

vHF
x,σ(r1, r2)ϕiσ(r2)

ϕpσ(r)ϕ
∗
iσ(r)

εpσ − εiσ
ϕ∗
pσ(r1)dr1dr2 + c.c.

=
∑

σ∈{↑,↓}

Nσ
∑

i=1

Nσ
∑

j=1

∑

p≥1
p 6=i

[

(ϕpσϕjσ|ϕjσϕiσ)
ϕpσ(r)ϕ

∗
iσ(r)

εpσ − εiσ
+ c.c.

]

=
∑

σ∈{↑,↓}

Nσ
∑

i=1

Nσ
∑

j=1

∑

a≥Nσ+1

(ϕaσϕjσ|ϕjσϕiσ)
ϕaσ(r)ϕ

∗
iσ(r)

εaσ − εiσ
+ c.c. , (S.57)

where again it was used that
∑Nσ

i=1

∑

p≥1,p 6=i =
∑Nσ

i=1

∑Nσ

p=1,p 6=i +
∑Nσ

i=1

∑

a≥Nσ+1 =
∑Nσ

i=1

∑

a≥Nσ+1 since
the summand inside the square bracket is antisymmetric with respect to the exchange of i and p.

Exercise 22

In the GL2 correlation energy expression of Eq. (4.11), only double and single excitations contribute

EGL2
c = −

N
∑

i=1

N
∑

j=i+1

∑

a≥N+1

∑

b≥a+1

|〈Φ|Ŵee − V̂Hx|Φab
ij 〉|2

εa + εb − εi − εj
−

N
∑

i=1

∑

a≥N+1

|〈Φ|Ŵee − V̂Hx|Φa
i 〉|2

εa − εi
. (S.58)

Applying the standard Slater’s rules, 〈Φ|Ŵee − V̂Hx|Φab
ij 〉 = 〈Φ|Ŵee|Φab

ij 〉 = 〈ij||ab〉, the first term gives
the MP2-like contribution

EMP2
c = −

N
∑

i=1

N
∑

j=i+1

∑

a≥N+1

∑

b≥a+1

|〈ψiψj ||ψaψb〉|2
εa + εb − εi − εj

= −1

4

N
∑

i=1

N
∑

j=1

∑

a≥N+1

∑

b≥N+1

|〈ψiψj ||ψaψb〉|2
εa + εb − εi − εj

. (S.59)

As regards the second term, using 〈Φ|Ŵee − V̂Hx|Φa
i 〉 =

∑N
j=1〈ψiψj ||ψaψj〉 − 〈ψi|V̂Hx|ψa〉 = 〈ψi|V̂ HF

Hx −
V̂Hx|ψa〉 = 〈ψi|V̂ HF

x − V̂x|ψa〉, we find the expected expression

ES
c = −

N
∑

i=1

∑

a≥N+1

|〈ψi|V̂ HF
x − V̂x|ψa〉|2
εa − εi

. (S.60)

Exercise 23

The linear-response function of Eq. (4.19) can be written as

iχλ(r1t1, r2t2) = θ(t1 − t2)〈Ψλ|eiĤλt1 n̂(r1)e
−iĤλt1eiĤ

λt2 n̂(r2)e
−iĤλt2 |Ψλ〉

+θ(t2 − t1)〈Ψλ|eiĤλt2 n̂(r2)e
−iĤλt2eiĤ

λt1 n̂(r1)e
−iĤλt1 |Ψλ〉

−〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉, (S.61)

or, after introducing a complete set of orthornormal eigenstates of the Hamiltonian, Ĥλ|Ψλ
n〉 = Eλ

n |Ψλ
n〉

(with Ψλ
0 = Ψλ),

iχλ(r1t1, r2t2) = θ(t1 − t2)
∑

n

〈Ψλ|eiĤλt1 n̂(r1)e
−iĤλt1 |Ψλ

n〉〈Ψλ
n|eiĤ

λt2 n̂(r2)e
−iĤλt2 |Ψλ〉

+θ(t2 − t1)
∑

n

〈Ψλ|eiĤλt2 n̂(r2)e
−iĤλt2 |Ψλ

n〉〈Ψλ
n|eiĤ

λt1 n̂(r1)e
−iĤλt1 |Ψλ〉

−〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉. (S.62)
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After applying the Hamiltonian Ĥλ on its eigenstates, it is apparent that χλ(r1t1t1, r2t2) only depends
on τ = t1 − t2

iχλ(r1, r2; τ) = θ(τ)
∑

n

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉e−iωλ
nτ

+θ(−τ)
∑

n

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉eiωλ
nτ

−〈Ψλ|n̂(r1)|Ψλ〉〈Ψλ|n̂(r2)|Ψλ〉, (S.63)

where ωλ
n = Eλ

n − Eλ
0 are the excitation energies. Since the last term in Eq. (S.63) just corresponds to

the n = 0 contribution from the sums, we finally find

iχλ(r1, r2; τ) = θ(τ)
∑

n6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉e−iωλ
nτ

+θ(−τ)
∑

n6=0

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉eiωλ
nτ . (S.64)

Using the Fourier-transform formulas for the Heaviside step function, θ(τ) = −1/(2πi)
∫∞

−∞
dω e−iωτ/(ω+

i0+) and θ(τ) = 1/(2πi)
∫∞

−∞
dω e−iωτ/(ω − i0+), we can express iχλ(r1, r2; τ) as

iχλ(r1, r2; τ) = −
∫ ∞

−∞

dω

2πi

∑

n6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉
ω + i0+

e−i(ω+ωλ
n)τ

+

∫ ∞

−∞

dω

2πi

∑

n6=0

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉
ω − i0−

e−i(ω−ωλ
n)τ ,

(S.65)

which, after making the substitutions ω → ω − ωλ
n and ω → ω + ωλ

n in the first and second integrals,
respectively, can be recast in the form

χλ(r1, r2; τ) =

∫ ∞

−∞

dω

2π
e−iωτ

∑

n6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉
ω − ωλ

n + i0+
− 〈Ψλ|n̂(r2)|Ψλ

n〉〈Ψλ
n|n̂(r1)|Ψλ〉

ω + ωλ
n − i0−

,

(S.66)

meaning that the Fourier transform of χλ(r1, r2; τ) is

χλ(r1, r2;ω) =
∑

n6=0

〈Ψλ|n̂(r1)|Ψλ
n〉〈Ψλ

n|n̂(r2)|Ψλ〉
ω − ωλ

n + i0+
− 〈Ψλ|n̂(r2)|Ψλ

n〉〈Ψλ
n|n̂(r1)|Ψλ〉

ω + ωλ
n − i0−

. (S.67)

After extending the function χλ(r1, r2;ω) on the ω-complex plane by analytic continuation, and noting

that the integral of eiω0+χλ(r1, r2;ω) is zero on the infinite upper semi-circle C according to Jordan’s

lemma (since |χλ(r1, r2;ω)| goes to zero when |ω| → +∞), the integral of eiω0+χλ(r1, r2;ω) over the real
axis (−∞,+∞) is identical to the integral over the closed path γ = (−∞,+∞) ∪ C

∫ ∞

−∞

dω

2πi
eiω0+χλ(r1, r2;ω) =

∮

γ

dω

2πi
eiω0+χλ(r1, r2;ω). (S.68)

Only the second term in Eq. (S.67) gives poles in the upper-half of the complex plane, ω = −ωλ
n + i0−,

enclosed by γ, therefore according to the residue theorem only their associated residues contribute to the
integral
∮

γ

dω

2πi
eiω0+χλ(r1, r2;ω) = −

∑

n6=0

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉

= −
[

∑

n

〈Ψλ|n̂(r2)|Ψλ
n〉〈Ψλ

n|n̂(r1)|Ψλ〉 − 〈Ψλ|n̂(r2)|Ψλ〉〈Ψλ|n̂(r1)|Ψλ〉
]

= −
[

〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − 〈Ψλ|n̂(r2)|Ψλ〉〈Ψλ|n̂(r1)|Ψλ〉
]

. (S.69)
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We thus correctly recover the fluctuation-dissipation theorem of Eq. (4.23)

−
∫ ∞

−∞

dω

2πi
eiω0+ [χλ(r1, r2;ω)− χ0(r1, r2;ω)] = 〈Ψλ|n̂(r2)n̂(r1)|Ψλ〉 − 〈Φ|n̂(r2)n̂(r1)|Φ〉

= nλ2,c(r1, r2). (S.70)

Exercise 24

The variation of F [f ] induced by a variation of f(x) is

δF [f ] =

∫
[

∂h

∂f(x)
δf(x) +

∂h

∂f ′(x)
δf ′(x) +

∂h

∂f ′′(x)
δf ′′(x) + · · ·+ ∂h

∂f (n)(x)
δf (n)(x)

]

dx

=

∫
[

∂h

∂f(x)
− d

dx

(

∂h

∂f ′(x)

)

+
d2

dx2

(

∂h

∂f ′′(x)

)

+ · · ·+ (−1)n
dn

dxn

(

∂h

∂f (n)(x)

)]

δf(x)dx,

(S.71)

where, in the nth-order term, it was used that δf (n)(x) = [δf(x)](n) (since differentiation is a linear
operation) and n consecutive integrations by parts were performed (and assuming that all boundary
terms vanish). The functional derivative is thus

δF [f ]

δf(x)
=

∂h

∂f(x)
− d

dx

(

∂h

∂f ′(x)

)

+
d2

dx2

(

∂h

∂f ′′(x)

)

+ · · ·+ (−1)n
dn

dxn

(

∂h

∂f (n)(x)

)

. (S.72)
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[126] B. Mussard, D. Rocca, G. Jansen and J. G. Ángyán, J. Chem. Theory Comput. 12, 2191 (2016).

[127] M. Hellgren, D. R. Rohr and E. K. U. Gross, J. Chem. Phys. 136, 034106 (2012).

[128] P. Bleiziffer, A. Heßelmann and A. Görling, J. Chem. Phys. 139, 084113 (2013).

[129] M. Hellgren and U. von Barth, Phys. Rev. B 78, 115107 (2008).

[130] M. Hellgren and U. von Barth, J. Chem. Phys. 132, 044101 (2010).

[131] A. Heßelmann and A. Görling, Mol. Phys. 108, 359 (2010).

[132] A. Heßelmann and A. Görling, Phys. Rev. Lett. 106, 093001 (2011).

[133] J. Erhard, P. Bleiziffer and A. Görling, Phys. Rev. Lett. 117, 143002 (2016).

[134] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (Dover, 2003).

66


	Basic density-functional theory
	The many-body problem
	The universal density functional
	The Hohenberg-Kohn theorem
	Levy-Lieb constrained-search formulation

	The Kohn-Sham method
	Decomposition of the universal functional
	The Kohn-Sham equations
	Practical calculations in an atomic basis
	Extension to spin density-functional theory

	The generalized Kohn-Sham method

	Exact expressions and constraints for the exchange and correlation functionals
	The exchange and correlation functionals in terms of the exchange and correlation holes
	The exchange and correlation holes
	The adiabatic connection

	Uniform coordinate scaling
	One-orbital spatial regions and self-interaction
	Lieb-Oxford lower bound
	Fractional electron numbers and frontier orbital energies
	Quantum mechanics with fractional electron numbers
	Density-functional theory with fractional electron numbers
	The HOMO energy and the ionization energy
	The LUMO energy, the electron affinity, and the derivative discontinuity
	Fundamental gap


	Usual approximations for the exchange-correlation energy
	The local-density approximation
	Generalized-gradient approximations
	Meta-generalized-gradient approximations
	Single-determinant hybrid approximations
	Hybrid approximations
	Range-separated hybrid approximations

	Multideterminant hybrid approximations
	Double-hybrid approximations
	Range-separated double-hybrid approximations

	Dispersion corrections
	Semiempirical dispersion corrections
	Nonlocal van der Waals density functionals


	Some less usual orbital-dependent exchange-correlation functionals
	Exact exchange
	Second-order Görling-Levy perturbation theory
	Adiabatic-connection fluctuation-dissipation approach
	Exact adiabatic-connection fluctuation-dissipation expression
	Direct random-phase approximation
	Practical calculation in a spin orbital basis
	Random-phase approximation with exchange and beyond


	Appendices
	A The Hamiltonian in second quantization
	B A brief introduction to functional derivatives

	Solutions to the exercises
	References

