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γ(x, x′￼) = ⟨Ψ̂†(x)Ψ̂(x′￼)⟩ = ∑
kk′￼

φ*k (x)φk′￼
(x′￼) ⟨ ̂a†

k ̂ak′￼
⟩

γkk′￼

(One-electron reduced)  
density matrix

Local and non-local one-electron bases 
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γ(x, x′￼) = ⟨Ψ̂†(x)Ψ̂(x′￼)⟩ = ∑
kk′￼

φ*k (x)φk′￼
(x′￼) ⟨ ̂a†

k ̂ak′￼
⟩

γkk′￼

(One-electron reduced)  
density matrix

single determinant=
occ.

∑
k

φ*k (x)φk(x′￼)

Local and non-local one-electron bases 

{γkk′￼} ≡

1

0⋱

0
0 0

11
1⋱
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single determinant=
occ.

∑
k

φ*k (x)φk(x′￼)

(One-electron reduced)  
density matrix

Representation

in real space:

Local basis

γ(x, x′￼) = ⟨Ψ̂†(x)Ψ̂(x′￼)⟩ = ∑
kk′￼

φ*k (x)φk′￼
(x′￼) ⟨ ̂a†

k ̂ak′￼
⟩

γkk′￼

“Molecular orbital”

representation:


Non-local basis

Local and non-local one-electron bases 
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γ(x, x′￼) = ⟨Ψ̂†(x)Ψ̂(x′￼)⟩ = ∑
kk′￼

φ*k (x)φk′￼
(x′￼) ⟨ ̂a†

k ̂ak′￼
⟩

γkk′￼

(One-electron reduced)  
density matrix

single determinant=
occ.

∑
k

φ*k (x)φk(x′￼)

Local and non-local one-electron bases 

{γkk′￼} ≡

1

0⋱

0
0 0

11
1⋱ = {γkk′￼}2

Idempotency!



Local evaluation of the energy (in a localised spin-orbital basis)  
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p

q

r

s

Fragment 

So-called “lattice representation” ⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

One-electron 

density matrix

Two-electron 

density matrix
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Fragment

Fragment’s environment Entanglement

p

q

r

s

Local evaluation of the energy (in a localised spin-orbital basis)  

⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩So-called “lattice representation”
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Quantum bath 
(spin-orbital subspace)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

p

q

r

s

“fragment+bath”cluster’s  
environment 

(spin-orbital subspace)

̂dℰ =
environment

∑
e

𝒰eℰ ̂ce

Fragment

̂db =
environment

∑
e

𝒰eb ̂ce

Clusterization through a unitary one-electron transformation 
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Quantum bath 
(spin-orbital subspace)

p

q

r

s

“fragment+bath”cluster’s  
environment 

(spin-orbital subspace)

̂dℰ =
environment

∑
e

𝒰eℰ ̂ce ̂db =
environment

∑
e

𝒰eb ̂ce

Clusterization through a unitary one-electron transformation 

Embedded fragment  
(impurities)

Embedding cluster

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).
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⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

Closed embedding cluster

Density matrix embedding theory (DMET) 

p

q

r

s
Ψ𝒞

⟨ ̂c†
p ̂cq⟩ ≈ ⟨ ̂c†

p ̂cq⟩Ψ𝒞

⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩ ≈ ⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩Ψ𝒞

Quantum bath  
 electronic reservoir≡

(exact  
diagonalisation)

Original lattice 
representation

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).



S. Sekaran, O. Bindech, and E. Fromager, to be submitted (2022).

Clusterization through a unitary one-electron transformation 
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γ ≡ {γij = ⟨ ̂c†
i ̂cj⟩} ≡

γff

γef ≠ 0

γ†
ef

γee

γ̃ij = {⟨ ̂d†
i

̂dj⟩} ≡ 𝒰†[γef ] γ 𝒰[γef ]

Change of spin-orbital basis

̂dj =
lattice

∑
l

𝒰lj[γef ] ̂cl

Unitary transformation of the density matrix

Fragment

Environment
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1f

0ef 𝒰eb
𝒰 ≡ 𝒰[γef] =

0fe

𝒰eℰ

Bath Cluster’s  
environment

Fragment

Clusterization through a unitary one-electron transformation 
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1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γff

γef

γ†
ef

γee

γ†
ef 𝒰eℰ ≡ 0

Environment of  
the embedding cluster 

(usually neglected)

Orthogonality constraint

Clusterization through a unitary one-electron transformation 
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1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γff

γef

γ†
ef

γee

Quantum bath 

Bath spin-orbitals are generated from the columns of  γef

Clusterization through a unitary one-electron transformation 

Lf

Lf

S. Sekaran, O. Bindech, and E. Fromager, to be submitted (2022). 
B.-X. Zheng, PhD thesis, arXiv:1803.10259 (2018).

F. Rotella and I. Zambettakis, Appl. Math. Lett. 12, 29 (1999). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and S. Yalouz, to be submitted (2022).
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2

3

4

If 

(usually the case)

rank[γef ] = Lf
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γ =

γff

γef

γ†
ef

γee

Quantum bath 
Column vector

Lf = 1

Lf = 1Lf = 1

𝒰eb =
γef

γ†
ef γef

Column vector

1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ

Single-impurity case 
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γ =

γff

γef

γ†
ef

γee

Lf = 1

Lf = 1Lf = 1

̂dbath =

environment

∑
e

γef ̂ce

environment

∑
e

|γef |
2

Column vector

1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ

𝒰eb =
γef

γ†
ef γef

Single-impurity case 
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γ =

γff

γef

γ†
ef

γee

Lf = 1

Lf = 1Lf = 1

Column vector

1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ

𝒰eb =
γef

γ†
ef γef

φbath(x) ∼
environment

∑
e

γ*ef φe(x)

Single-impurity case 
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1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γff

γef

γ†
ef

γee

Quantum  
bath 

General multiple-impurity case 

Lf

Lf

S. Sekaran, O. Bindech, and E. Fromager, to be submitted (2022). 
B.-X. Zheng, PhD thesis, arXiv:1803.10259 (2018).

F. Rotella and I. Zambettakis, Appl. Math. Lett. 12, 29 (1999). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and S. Yalouz, to be submitted (2022).


1

2

3

4

How to generate an orthonormal basis 

for the bath and the cluster’s environment? 

Cluster’s  
environment
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1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γff

γef

γ†
ef

γee

Quantum  
bath 

General multiple-impurity case 

Lf

Lf

S. Sekaran, O. Bindech, and E. Fromager, to be submitted (2022). 
B.-X. Zheng, PhD thesis, arXiv:1803.10259 (2018).

F. Rotella and I. Zambettakis, Appl. Math. Lett. 12, 29 (1999). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and S. Yalouz, to be submitted (2022).
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3

4

Cluster’s  
environment

Diagonalise   !!!γefγ†
ef
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1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γff

γef

γ†
ef

γee

Quantum  
bath 

General multiple-impurity case 

Lf

Lf
Cluster’s  

environment

γefγ†
ef𝒰eℰ = 𝒰eℰ0ℰℰ

Zero eigenvalues
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1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γff

γef

γ†
ef

γee

Quantum  
bath 

General multiple-impurity case 

Lf

Lf
Cluster’s  

environment

Bath spin-orbitals are generated from the columns of  γef
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1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γff

γef

γ†
ef

γee

Quantum  
bath 

General multiple-impurity case 

Lf

Lf
Cluster’s  

environment

Bath spin-orbitals are generated from the columns of  γef

(γefγ†
ef) γef = γef (γ†

efγef)
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(γef γ†
ef) γef = γef (γ†

ef γef) γ†
ef γef = 𝒲𝒟𝒲†

= 𝒟
σ2

1
σ2

2
⋱

σ2
Lf

0
0

σi > 0
Singular values of   γef

Step-by-step construction of the bath 
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(γef γ†
ef) γef = γef (γ†

ef γef) γ†
ef γef = 𝒲𝒟𝒲†

= 𝒟
σ2

1
σ2

2
⋱

σ2
Lf

0
0

σi > 0
Singular values of   γef

(γef γ†
ef) γef𝒲𝒟−1/2 = γef𝒲𝒟−1/2 𝒟

𝒰eb 𝒰eb

Step-by-step construction of the bath 
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(γef γ†
ef) γef = γef (γ†

ef γef) γ†
ef γef = 𝒲𝒟𝒲†

= 𝒟
σ2

1
σ2

2
⋱

σ2
Lf

0
0

σi > 0
Singular values of   γef

(γef γ†
ef) γef𝒲𝒟−1/2 = γef𝒲𝒟−1/2 𝒟

𝒰eb 𝒰eb

𝒰†
eb𝒰eb = 𝒟−1/2𝒲†γ†

ef γef𝒲𝒟−1/2 = 1bb

Step-by-step construction of the bath 
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Singular value decomposition  of   1 γef Block Householder transformation  2,3

S. Sekaran, O. Bindech, and E. Fromager, to be submitted (2022). 
B.-X. Zheng, PhD thesis, arXiv:1803.10259 (2018).

F. Rotella and I. Zambettakis, Appl. Math. Lett. 12, 29 (1999). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

1

2

3

γ =

γff

γef

γ†
ef

γee

Lf

Lf

Lf

1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ

Lf

Clusterization through a unitary one-electron transformation 

Equivalent constructions of the   orthonormal bath spin-orbitalsLf

or
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1f

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γff

γef

γ†
ef

γee

γ†
ef 𝒰eℰ ≡ 0

Environment of  
the embedding cluster 

(usually neglected)

Orthogonality constraint

Clusterization through a unitary one-electron transformation 

The only thing we need 

to remember is that

REMINDER
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Unitary transformed density matrix 
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γ̃ = 𝒰†γ𝒰 ≡

γff

γ̃bf

𝒰†
eℰγef

γ̃†
bf

γ̃bb

γ†
ef𝒰eℰ

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

=
0

= 0

Orthogonality constraint

Orthogonality constraint
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γ̃ = 𝒰†γ𝒰 ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

0ℰf

0fℰ

“fragment+bath”  
embedding cluster

Cluster’s  
environment

Unitary transformed density matrix 

Entanglement 
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γ̃2 ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

0ℰf

0fℰ

Unitary transformed density matrix 

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

0ℰf

0fℰ



S. Sekaran, O. Bindech, and E. Fromager, to be submitted (2022).

Unitary transformed idempotent density matrix 
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γ̃ℰb = 0

=
γ̃ℰbγ̃bf

γ̃2 = γ̃ = 𝒰†γ𝒰 ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ
γ̃ℰb

γ̃†
ℰb = 0

0ℰf

0fℰ

=

0

γ̃bf γ̃†
bf = 𝒟
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Unitary transformed idempotent density matrix 
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γ̃2 = γ̃ = 𝒰†γ𝒰 ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ
γ̃ℰb

γ̃†
ℰb = 0

0ℰf

0fℰ

=

0
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γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ

γ̃2 = γ̃ = 𝒰†γ𝒰 ≡

Disconnected  
embedding cluster

Cluster’s  
environment0

0
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Unitary transformed idempotent density matrix 
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γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ0ℰf

0fℰ

0ℰb

0bℰ
γ̃ = γ̃2 ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ0ℰf

0fℰ

0ℰb

0bℰ
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Unitary transformed idempotent density matrix 

35

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ0ℰf

0fℰ

=γ̃bf γff+γ̃bbγ̃bf

0ℰb

0bℰ
≡ γ̃ = γ̃2



S. Sekaran, O. Bindech, and E. Fromager, to be submitted (2022).

Unitary transformed idempotent density matrix 

36

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ0ℰf

0fℰ

=γ̃bf γff+γ̃bbγ̃bf

0ℰb

0bℰ

Tr[γff] + Tr [γ̃bb] = Lf

γff+γ̃−1
bf γ̃bbγ̃bf = 1f

≡ γ̃ = γ̃2

The embedding cluster  
contains exactly   electrons!Lf

Lf Lf
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γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ

γ̃2 = γ̃ = 𝒰†γ𝒰 ≡
Cluster’s  

environment0

0

Contains exactly    electrons!Tr[γff ] + Tr [γ̃bb] = Lf



Approximate embedding of interacting Hamiltonians

38
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Ĥ = ∑
pq

hpq ̂c†
p ̂cq +

1
2 ∑

pqrs

⟨pq |rs⟩ ̂c†
p ̂c†

q ̂cs ̂cr Original  
localised representation

= ∑
pq

h̃pq
̂d†
p

̂dq +
1
2 ∑

pqrs

˜⟨pq |rs⟩ ̂d†
p

̂d†
q

̂ds
̂dr

̂dj =
lattice

∑
l

𝒰lj[γef ] ̂cl

Embedding  
representation



Approximate embedding of interacting Hamiltonians
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Ĥ = ∑
pq

hpq ̂c†
p ̂cq +

1
2 ∑

pqrs

⟨pq |rs⟩ ̂c†
p ̂c†

q ̂cs ̂cr Original  
localised representation

=
𝒞

∑
pq

h̃pq
̂d†
p

̂dq

̂dj =
lattice

∑
l

𝒰lj[γef ] ̂cl

Exact!

Projection onto 
the cluster

ĥ𝒞



Approximate embedding of interacting Hamiltonians
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Ĥ = ∑
pq

hpq ̂c†
p ̂cq +

1
2 ∑

pqrs

⟨pq |rs⟩ ̂c†
p ̂c†

q ̂cs ̂cr Original  
localised representation

=
𝒞

∑
pq

h̃pq
̂d†
p

̂dq +
1
2

fragment

∑
pqrs

˜⟨pq |rs⟩ ̂d†
p

̂d†
q

̂ds
̂dr

̂dj =
lattice

∑
l

𝒰lj[γef ] ̂cl

Approximate!

Projection onto 
the cluster

ĥ𝒞



Approximate embedding of interacting Hamiltonians

41
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Embedding cluster

Cluster’s  
environment0

0

Core electrons

 active  
electrons
Lf

Local CASCI calculation



Approximate embedding of interacting Hamiltonians
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ĥ𝒞 single impurity
→ ĥ𝒞 + ⟨pp |pp⟩ ̂c†

p↑ ̂c†
p↓ ̂cp↓ ̂cp↑ −μ̃imp ∑

σ=↑,↓

̂c†
pσ ̂cpσ

Chemical potential 
on the impurity

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Exact non-interacting

embedding

Approximate interacting 
embedding



Hubbard model for rings of hydrogen atoms
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Two-electron system

-electron systemN

H φbath

H

H

HH

H

H

H

H

H

HH

H

H

H

H
H

Effective  
neighbouring atom 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Ĥ = ∑
σ=↑,↓

L−1

∑
i=0

−t ( ̂c†
iσ ̂c(i+1)σ + ̂c†

(i+1)σ ̂ciσ)+U
L−1

∑
i=0

̂c†
i↑ ̂c†

i↓ ̂ci↓ ̂ci↑
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0.0 0.2 0.4 0.6 0.8
-1.5

-1.2

-0.9

-0.6

-0.3

0.0

U/(U+4t)

pe
r-s

ite
 e

ne
rg

y

Ht-DMFET  

Ht-DMFET (NIB) 

exact (BA)     

                                

n = 1

E/L

Half-filled uniform Hubbard ring with  atomic sites  L = 400

Ĥ = ∑
σ=↑,↓

L−1

∑
i=0

−t ( ̂c†
iσ ̂c(i+1)σ + ̂c†

(i+1)σ ̂ciσ)+U
L−1

∑
i=0

̂c†
i↑ ̂c†

i↓ ̂ci↓ ̂ci↑

without  
 μ̃imp

Non-interacting bath
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FIG. 9. Ht-DMFET per-site energies plotted as a function of the
lattice filling n for various correlation regimes. Results obtained with
a single impurity are shown as (colored) solid lines. The blue color
corresponds to the noninteracting bath (NIB) case. In the strongly
correlated U/t = 8 regime (bottom panel), NIB results obtained with
two (Nimp = 2) and three (Nimp = 3) impurities are also shown (as
points), for analysis purposes (see Sec. III C for further details).
Comparison is made with the exact Bethe ansatz (BA) results (black
solid lines). In the weakly U/t = 1 correlated case (top panel), exact
and approximate results are almost indistinguishable.

are not allowed in our approximate embedding. As discussed
in Sec. II B, away from half-filling, the cluster becomes an
open subsystem as soon as U/t deviates from zero. Surpris-
ingly, in this density regime, per-site energies are in better
agreement with the BA values when the interaction in the bath
is neglected. Again, in the latter case, we recover the single-
impurity DMET results of Ref. [30]. As expected [30,35] and
shown in the bottom panel of Fig. 9, the results dramatically
improve when a larger fragment (consisting of two or three
impurities) is embedded, even at the simplest NIB level of
approximation.

Finally, we investigate in Fig. 10 the density-driven Mott-
Hubbard transition via the evaluation of the density-functional
µ(n) = ∂e(n)/∂n chemical potential from the Ht-DMFET en-
ergy expression of Eq. (69). As expected from Ref. [30], at
the single-impurity level, there is no gap opening when the
interaction in the bath is neglected. Restoring the interaction
in the bath has actually no impact on the transition. In the
light of Sec. II B, we can reasonably assume that Ht-DMFET
fails in this case because it relies on a closed two-electron
“single impurity+single bath” cluster. Already at the NIB
level of approximation, the embedding of a larger fragment
(consisting of two or three impurities) substantially improves
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FIG. 10. Lattice filling plotted, via the relation µ ≡ µ(n) =
∂e(n)/∂n, as a function of the (lattice) chemical potential µ at
the Ht-DMFET level of calculation for various correlation regimes.
(Single-impurity) noninteracting bath (NIB) results are shown as
solid blue lines. In the strongly correlated U/t = 8 case, NIB results
obtained with Nimp = 2 and Nimp = 3 impurities are also shown (as
points), for analysis purposes. Comparison is made with the exact
Bethe ansatz (BA) results.

the results. Nevertheless, even in this case, the gap remains
closed, which is in perfect agreement with the DET results of
Ref. [35]. As we perform single-shot embeddings (where we
only require the embedded impurity to reproduce the correct
filling n), we expect from Ref. [35] the transition to be better
described at the multiple-impurity level when the interactions
in the bath are taken into account. It would also be interesting
to see how Ht-DMFET performs when a correlated (through
the density matrix) bath is employed. This is left for future
work.

V. CONCLUSIONS AND PERSPECTIVES

Similar in spirit to DMET, a (static and zero-temperature)
single-impurity Householder-transformed density matrix
functional embedding theory (Ht-DMFET) has been derived.
The theory has been applied to the 1D Hubbard model. In the
noninteracting case, the formal reduction of the full lattice
to a two-electron dimer is exact. Thanks to the Householder
transformation, the bath site can be determined (analytically)
from the density matrix of the (full) lattice. Alternatively,
one may determine, in principle exactly, the Householder
vector v (which defines the transformation) by minimizing
the sum of the v-dependent Householder cluster and envi-
ronment energies. While the two-site “impurity+bath” cluster
problem is trivially solved, the ground-state energy of the
cluster’s environment must be evaluated for each trial vec-
tor v. Even though such a strategy is uselessly complicated
in practice, because the noninteracting full-size problem can
be solved directly, it is enlightening in many ways. First, it
clearly shows that the optimal cluster cannot be determined
without learning from its environment (and therefore from the
full lattice). The two subsystems “communicate” through the
Householder vector. Second, the resulting variational charac-
ter of the bath might be exploited when electron correlation
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FIG. 9. Ht-DMFET per-site energies plotted as a function of the
lattice filling n for various correlation regimes. Results obtained with
a single impurity are shown as (colored) solid lines. The blue color
corresponds to the noninteracting bath (NIB) case. In the strongly
correlated U/t = 8 regime (bottom panel), NIB results obtained with
two (Nimp = 2) and three (Nimp = 3) impurities are also shown (as
points), for analysis purposes (see Sec. III C for further details).
Comparison is made with the exact Bethe ansatz (BA) results (black
solid lines). In the weakly U/t = 1 correlated case (top panel), exact
and approximate results are almost indistinguishable.

are not allowed in our approximate embedding. As discussed
in Sec. II B, away from half-filling, the cluster becomes an
open subsystem as soon as U/t deviates from zero. Surpris-
ingly, in this density regime, per-site energies are in better
agreement with the BA values when the interaction in the bath
is neglected. Again, in the latter case, we recover the single-
impurity DMET results of Ref. [30]. As expected [30,35] and
shown in the bottom panel of Fig. 9, the results dramatically
improve when a larger fragment (consisting of two or three
impurities) is embedded, even at the simplest NIB level of
approximation.

Finally, we investigate in Fig. 10 the density-driven Mott-
Hubbard transition via the evaluation of the density-functional
µ(n) = ∂e(n)/∂n chemical potential from the Ht-DMFET en-
ergy expression of Eq. (69). As expected from Ref. [30], at
the single-impurity level, there is no gap opening when the
interaction in the bath is neglected. Restoring the interaction
in the bath has actually no impact on the transition. In the
light of Sec. II B, we can reasonably assume that Ht-DMFET
fails in this case because it relies on a closed two-electron
“single impurity+single bath” cluster. Already at the NIB
level of approximation, the embedding of a larger fragment
(consisting of two or three impurities) substantially improves
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FIG. 10. Lattice filling plotted, via the relation µ ≡ µ(n) =
∂e(n)/∂n, as a function of the (lattice) chemical potential µ at
the Ht-DMFET level of calculation for various correlation regimes.
(Single-impurity) noninteracting bath (NIB) results are shown as
solid blue lines. In the strongly correlated U/t = 8 case, NIB results
obtained with Nimp = 2 and Nimp = 3 impurities are also shown (as
points), for analysis purposes. Comparison is made with the exact
Bethe ansatz (BA) results.

the results. Nevertheless, even in this case, the gap remains
closed, which is in perfect agreement with the DET results of
Ref. [35]. As we perform single-shot embeddings (where we
only require the embedded impurity to reproduce the correct
filling n), we expect from Ref. [35] the transition to be better
described at the multiple-impurity level when the interactions
in the bath are taken into account. It would also be interesting
to see how Ht-DMFET performs when a correlated (through
the density matrix) bath is employed. This is left for future
work.

V. CONCLUSIONS AND PERSPECTIVES

Similar in spirit to DMET, a (static and zero-temperature)
single-impurity Householder-transformed density matrix
functional embedding theory (Ht-DMFET) has been derived.
The theory has been applied to the 1D Hubbard model. In the
noninteracting case, the formal reduction of the full lattice
to a two-electron dimer is exact. Thanks to the Householder
transformation, the bath site can be determined (analytically)
from the density matrix of the (full) lattice. Alternatively,
one may determine, in principle exactly, the Householder
vector v (which defines the transformation) by minimizing
the sum of the v-dependent Householder cluster and envi-
ronment energies. While the two-site “impurity+bath” cluster
problem is trivially solved, the ground-state energy of the
cluster’s environment must be evaluated for each trial vec-
tor v. Even though such a strategy is uselessly complicated
in practice, because the noninteracting full-size problem can
be solved directly, it is enlightening in many ways. First, it
clearly shows that the optimal cluster cannot be determined
without learning from its environment (and therefore from the
full lattice). The two subsystems “communicate” through the
Householder vector. Second, the resulting variational charac-
ter of the bath might be exploited when electron correlation
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and compute approximate per-site energies as follows,

E(µ)
L

+ µn(µ) ⇡
LPFET

⌦
t̂01 + Û0

↵
YC (µ�ṽHxc,ṽHxc)

, (88)

since the approximation in Equation (75) is also used in LPFET, as discussed above.

Figure 1. Graphical representation of the LPFET procedure. Note that the same Hxc potential ṽHxc is
used in the KS lattice and the embedding Householder cluster. It is optimized self-consistently in
order to fulfill the density constraint of Equation (85). See text for further details.

Note that Ht-DMFET (which is equivalent to DMET in the present context) and LPFET
use the same per-site energy expression (see Equation (47)), which is a functional of the
interacting cluster’s wave function. In both approaches, the latter and the non-interacting
lattice share the same density. Therefore, if the per-site energy or the double occupation⌦

n̂0"n̂0#
↵

were plotted as functions of the (converged) lattice filling n, as it is usually done
in the literature [15], both methods would give exactly the same results. The reason
is that, at convergence of the LPFET algorithm, the density constraint of Equation (85)
should be fulfilled, exactly like in Ht-DMFET (see Equations (45) and (46)). However, if
properties were plotted as functions of the chemical potential value µ in the true interacting
lattice, LPFET and Ht-DMFET would give different results, simply because the densities
obtained (for a given µ value) with the two methods would be different. Indeed, as
shown in Section 2.3.2, Ht-DMFET can be viewed as an approximation to KS-DFT where
the Hxc density-functional potential of Equation (78) is employed. As readily seen from
Equation (86), the LPFET and Ht-DMFET Hxc potentials differ by the Householder kinetic
correlation potential (which is neglected in LPFET). If the corresponding KS densities
were the same then the Hxc potential, the Householder transformation, and, therefore,
the chemical potential on the interacting embedded impurity would be the same, which
is impossible according to Equations (78) and (86). In summary, differences in properties
between LPFET and Ht-DMFET are directly related to differences in density. This is
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The converged LPFET densities are plotted in Figure 5 as functions of the chemical
potential µ in various correlation regimes. The non-interacting U = 0 curve describes
the KS lattice at the zeroth iteration of the LPFET calculation. Thus, we can visualize, as
U deviates from zero, how much the KS lattice learns from the interacting two-electron
Householder cluster. LPFET is actually quite accurate (even more than Ht-DMFET, probably
because of error cancellations) in the low filling regime. Even though LPFET deviates
from Ht-DMFET when electron correlation is strong, as expected, their chemical-potential-
density maps are quite similar. This is an indication that neglecting the Householder
kinetic correlation potential contribution to the Hxc potential, as done in LPFET, is not a
crude approximation, even in the strongly correlated regime. As expected [15,31], LPFET
and Ht-DMFET poorly perform when approaching half filling. Like the well-established
single-site DMFT (see Figure 7 of Ref. [5]), they are unable to describe the density-driven
Mott–Hubbard transition (i.e., the opening of the gap). As discussed in Ref. [31], this might
be related to the fact that, in the exact theory, the Householder cluster is not disconnected
from its environment and it contains a fractional number of electrons, away from half
filling, unlike in the (approximate) Ht-DMFET and LPFET schemes. In the language of
KS-DFT, modeling the gap opening is equivalent to modeling the derivative discontinuity
in the density-functional correlation potential vc(n) = µ(n)� µs(n)� U

2 n at half filling.
As clearly shown in Figure 6, Ht-DMFET and LPFET do not reproduce this feature. In the
language of the exact density-functional embedding theory derived in Section 2.3, both
Ht-DMFET and LPFET approximations neglect the complementary density-functional
correlation energy ec(n) that is induced by the interacting bath and the environment of
the (closed) density-functional Householder cluster. As readily seen from Equation (74), it
should be possible to describe the density-driven Mott–Hubbard transition with a single
statically embedded impurity, provided that we can model the derivative discontinuity in
∂ec(n)/∂n at half filling. This is obviously a challenging task that is usually bypassed by
embedding more impurities [15,31]. The implementation of a multiple-impurity LPFET as
well as its generalization to higher-dimension lattice or quantum chemical Hamiltonians is
left for future work.
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Figure 5. Converged LPFET densities (red solid lines) plotted as functions of the chemical potential
µ in various correlation regimes. Comparison is made with the exact BA (black solid lines) and Ht-
DMFET (blue dotted lines) results. In the latter case, the chemical potential is evaluated via the numer-
ical differentiation of the density-functional Ht-DMFET per-site energy (see Equations (62) and (76)).
The non-interacting (U = 0) chemical-potential-density map (see Equation (60)) is shown for
analysis purposes.
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ABSTRACT: Density matrix embedding theory (DMET) for-
mally requires the matching of density matrix blocks obtained from
high-level and low-level theories, but this is sometimes not
achievable in practical calculations. In such a case, the global band
gap of the low-level theory vanishes, and this can require additional
numerical considerations. We find that both the violation of the
exact matching condition and the vanishing low-level gap are
related to the assumption that the high-level density matrix blocks
are noninteracting pure-state v-representable (NI-PS-V), which
assumes that the low-level density matrix is constructed following
the Aufbau principle. To relax the NI-PS-V condition, we develop
an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for
the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle
directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

1. INTRODUCTION
Density matrix embedding theory (DMET)1−8 is a quantum
embedding theory designed to treat strong correlation effects
in large quantum systems. DMET and its related variants have
been successfully applied to a wide range of systems such as
Hubbard models,1,4,9−15 quantum spin models,16−18 and a
number of strongly correlated molecular and periodic
systems.2,5,8,19−29 The main idea of DMET is to partition the
global quantum system into several “quantum impurities”.
Each impurity is treated accurately via a high-level theory
(such as full configuration interaction (FCI),30−32 coupled
cluster theory,33 density matrix renormalization group
(DMRG),34 etc.). Global information, in particular the one-
electron reduced density matrix (1-RDM), is made consistent
between all of the impurities with the help of a low-level
Hartree−Fock (HF) type of theory. In the self-consistent-field
DMET (SCF-DMET), this global information is then used to
update the impurity problems in the next self-consistent
iteration, until a certain consistency condition of the 1-RDM is
satisfied between the high-level and low-level theories.1−4,35,36

(Throughout this Article, DMET refers to SCF-DMET. This is
in contrast to one-shot DMET, in which the impurity problem
is only solved once without self-consistent updates.)
In DMET, the self-consistency condition can be achieved by

optimizing a correlation potential, which can be viewed as a
Lagrange multiplier associated with the matching condition of
the 1-RDMs. For instance, if the self-consistency condition
only requires electron densities from the high-level and low-
level theories to match (e.g., in ref 4), then the problem of
finding the correlation potential strongly resembles the v-

representability problem in density functional theory
(DFT).37−41 Omitting the spin degree of freedom, an electron
density ρ (often obtained from a many-body calculation) with
N electrons is called noninteracting pure-state v-representable
(NI-PS-V), if ρ can be reconstructed (1) from a single particle
Hamiltonian with potential v (2) using the energetically lowest
N orbitals. Condition (2) is also referred to as the Aufbau
principle. There are densities that are not NI-PS-V, but for
DFT such densities are rare exceptions rather than the norm.41

DMET requires the matching condition for certain 1-RDM
matrix blocks corresponding to the high-level 1-RDMs. The
correlation potential (denoted by u following the convention in
the literature) then consists of matrix blocks of matching
dimensions. While v-representability in DFT usually concerns
a diagonal potential in the real-space basis, the correlation
potential in DMET is expressed as a block diagonal matrix in
the fragment-orbital basis. In a typical DMET calculation, the
1-RDM is assumed to be NI-PS-V; in particular, the low-level
1-RDM is reconstructed following the Aufbau principle.
However, from the very beginning of the development of
DMET, it was noticed that the exact matching of the 1-RDMs
often cannot be achieved.1,2,4 Therefore, as a practical solution,
the matching condition is relaxed into a least-squares
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ABSTRACT: Density matrix embedding theory (DMET) for-
mally requires the matching of density matrix blocks obtained from
high-level and low-level theories, but this is sometimes not
achievable in practical calculations. In such a case, the global band
gap of the low-level theory vanishes, and this can require additional
numerical considerations. We find that both the violation of the
exact matching condition and the vanishing low-level gap are
related to the assumption that the high-level density matrix blocks
are noninteracting pure-state v-representable (NI-PS-V), which
assumes that the low-level density matrix is constructed following
the Aufbau principle. To relax the NI-PS-V condition, we develop
an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for
the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle
directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

1. INTRODUCTION
Density matrix embedding theory (DMET)1−8 is a quantum
embedding theory designed to treat strong correlation effects
in large quantum systems. DMET and its related variants have
been successfully applied to a wide range of systems such as
Hubbard models,1,4,9−15 quantum spin models,16−18 and a
number of strongly correlated molecular and periodic
systems.2,5,8,19−29 The main idea of DMET is to partition the
global quantum system into several “quantum impurities”.
Each impurity is treated accurately via a high-level theory
(such as full configuration interaction (FCI),30−32 coupled
cluster theory,33 density matrix renormalization group
(DMRG),34 etc.). Global information, in particular the one-
electron reduced density matrix (1-RDM), is made consistent
between all of the impurities with the help of a low-level
Hartree−Fock (HF) type of theory. In the self-consistent-field
DMET (SCF-DMET), this global information is then used to
update the impurity problems in the next self-consistent
iteration, until a certain consistency condition of the 1-RDM is
satisfied between the high-level and low-level theories.1−4,35,36

(Throughout this Article, DMET refers to SCF-DMET. This is
in contrast to one-shot DMET, in which the impurity problem
is only solved once without self-consistent updates.)
In DMET, the self-consistency condition can be achieved by

optimizing a correlation potential, which can be viewed as a
Lagrange multiplier associated with the matching condition of
the 1-RDMs. For instance, if the self-consistency condition
only requires electron densities from the high-level and low-
level theories to match (e.g., in ref 4), then the problem of
finding the correlation potential strongly resembles the v-

representability problem in density functional theory
(DFT).37−41 Omitting the spin degree of freedom, an electron
density ρ (often obtained from a many-body calculation) with
N electrons is called noninteracting pure-state v-representable
(NI-PS-V), if ρ can be reconstructed (1) from a single particle
Hamiltonian with potential v (2) using the energetically lowest
N orbitals. Condition (2) is also referred to as the Aufbau
principle. There are densities that are not NI-PS-V, but for
DFT such densities are rare exceptions rather than the norm.41

DMET requires the matching condition for certain 1-RDM
matrix blocks corresponding to the high-level 1-RDMs. The
correlation potential (denoted by u following the convention in
the literature) then consists of matrix blocks of matching
dimensions. While v-representability in DFT usually concerns
a diagonal potential in the real-space basis, the correlation
potential in DMET is expressed as a block diagonal matrix in
the fragment-orbital basis. In a typical DMET calculation, the
1-RDM is assumed to be NI-PS-V; in particular, the low-level
1-RDM is reconstructed following the Aufbau principle.
However, from the very beginning of the development of
DMET, it was noticed that the exact matching of the 1-RDMs
often cannot be achieved.1,2,4 Therefore, as a practical solution,
the matching condition is relaxed into a least-squares
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