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Introduction

There are typically 1022 electrons per cm3 in condensed matter systems.
This is somehow too much for considering a solid as a big molecule.
Fortunately, translation symmetries can help a lot in particular in the case
of one-body Hamiltonian of the kind met in mean-field approaches (DFT,
Hartree-Fock, tight-binding or extended-Hückel, etc.)

Figure: (Left) First silicon transistor (Bell Labs, Murray Hill, NJ) announced in
1951 by William Shockley; (Right) Silicon band structure. Shaded area
indicates energy domains with no allowed states.



The unit cell and the periodic vectors

The unit cell is a portion of space that repeated periodically can
reconstruct the entire crystal. A unit cell can contain several atoms (the

motif). The lattice vectors: ~Rijk = i~a1 + j~a2 + k~a3 allow to reconstruct
the crystal from the atoms in the unit-cell with (~a1, ~a2, ~a3) the basis
vectors. The minimum volume cell is a primitive cell.

Figure: (Left) 2D square lattice with one atom per cell. A unit-cell is shaded in
blue. (Right) 2D hexagonal cell with one atom per cell. Two different unit cells
are represented. For the blue cell, 1/4th of each connected atom belong to this
cell. The yellow one is called the Wigner-Seitz cell that is invariant with respect
to the crystal symmetry point group.



The 3D Bravais lattices and the motif

Depending on the shape of the unit-cell, one can categorize 3D
crystal under 7 different ”lattice systems”, that yield 14 Bravais
lattices depending on the disposition of atoms in the unit cell
(the motif).

For example, a cubic lattice can be ”simple”, body-centered (BCC) or
face-centered (FCC). Silicon and diamond are FCC lattices with 2 atoms per
primitive cell.

Courtesy: http : //chemwiki.ucdavis.edu/Wikitexts/UC Davis/UCD Chem 2B/UCD Chem 2B



Symmetries, commutators and quantum numbers

Reminder: in the case of a spherically symmetric potential, the
Hamiltonian commutes with the angular momentum Lz and L2 operators
(and L2 commutes with Lz) which implies that there exists a common
basis of eigenstates:

H|ψnlm >= Enlm|ψnlm >

L2|ψnlm >= l(l + 1)~|ψnlm >

Lz |ψnlm >= m~|ψnlm >

We know that the solutions are of the type:

ψnlm(~r) = ψnlm(r , θ, φ) = Rnl(r)Ylm(θ, φ)

and that (nlm) are ”good” quantum numbers: the Hamiltonian H acting
on such states preserve the symmetry character of these eigenstates.



Bloch theorem in 1D: introduction

We consider now the case of a crystal
with discrete (not infinitesimal)
translation properties.

Assume that the potential is periodic: V(x+R)=V(x) (with R=na) and
call (TR) the translation operator. Then:

TRV (x)ψ(x) = V (x − R)ψ(x − R) = V (x)TRψ(x)

which means that the potential, and thus the Hamiltonian, commute
with the translation operator: [TR ,H] = 0. Then quantum mechanics
says that one can find a common eigenbasis for the two operators.

H|ψk > = Ek |ψk >

TR |ψk > = Ck(R)|ψk >

Common eigenvectors to H and TR are called Bloch states. (Felix Bloch:
Swiss-American Nobel prize for NMR.)



Bloch theorem in 1D (II)

We can find the expression of the Ck by simple considerations. The
translation operator should preserve the normalisation of ψ:

∫
dx |ψ(x − R)|2 =

∫
dx |TRψ(x)|2 =

∫
dx |C (R)|2|ψ(x)|2 =

∫
dx |ψ(x)|2

so |C (R)|2 = 1 and C (R) = e iθ(R). Further:

TaTaψ(x) = ψ(x − 2a) = T2aψ(x) ⇒ C (a)C (a) = C (2a)

The only mathematical function satisfying such conditions is:

C (a) = e−ika ⇒ C (2a) = C (a)C (a) and C (R = na) = e−ikR .

The quantum number (k) is associated with the translation operator.



Bloch theorem

We know therefore (generalizing to 3D) that one can find an eigenbasis
of the Hamiltonian and of translation operators such that:

ψ~k(~r − ~R) = T~Rψ~k(~r) = e−i
~k·~Rψ~k(~r) or ψ~k(~r + ~R) = e i

~k·~Rψ~k(~r)

This is a first formulation of Bloch theorem. A second formulation comes
when considering the properties of u~k(~r) = e−i

~k~rψ~k(~r):

T~Ru~k(~r) = e−i
~k·(~r−~R)ψ~k(~r − ~R) = e−i

~k·(~r−~R)e−i
~k·~Rψ~k(~r) = e−i

~k·~rψ~k(~r).

Namely, the fonction u~k(~r) is periodic and:

ψ~k(~r) = e i
~k~ru~k(~r), with u~k(~r) periodic.



Bloch states with bare hands (literally)

The e i
~k~r phase term can be regarded as an ”envelope function” that

modulates the periodic function u~k(~r). In the 1D example here below,
assume that each atom has one (pz) orbital. One can create different
Bloch states by changing the magnitude of the k-vector (we represent
e.g. the real part of the wavefunctions).

For the first/second Bloch state, (k = π/2a) and (k = π/4a).



Setting up H(~k) for the periodic uk

We start from Bloch theorem: ψn~k(~r) = e i
~k~run~k(~r) plugged in:

[−~2∇2

2m
+ V (~r)

]
ψn~k(~r) = En~kψn~k(~r)

to obtain straighforwardly for un~k(~r) the periodic part:

[
(~p + ~~k)2

2m
+ V (~r)

]
un~k(~r) = En~kun~k(~r), with ~p = −i~∇.

This is a ~k-specific Hamiltonian: one has to set-up and diagonalize a

different Hamiltonian for each ~k quantum number (a vector). We have

added the ”n” index to point to all possible solutions for a given ~k.

Compare to hydrogen case with a specific radial equation for each
l-quantum number, with the l(l + 1)~2/2mr2 centrifugal term coming
from the kinetic operator in spherical coordinates.



Setting up H(~k) in a basis

LCAO basis: Take an AO basis αµ(~r) for the atoms in unit cell and then
create a basis {uµ} of periodic functions to expand the un~k(~r) with:

uµ(~r) =
∑

~R

αµ(~r − ~R)

The number of AO per unit cell gives the
number of un~k(~r) for a given ~k .

PW basis: the planewave (PW)
representation uses the Fourier series

expansion of un~k(~r) over the e i
~G~r planewaves

un~k(~r) =
∑

~G

cn~k( ~G )e i
~G~r

The ~G are such that the e i
~G~r are periodic:

they are called reciprocal lattice vectors.



Linear combination of atomic orbitals versus planewaves

The question: ”which is the best basis ?” (planewaves, Gaussians,
real-space grid, wavelets, etc.) has probably no answer besides ”it
depends on the system you study !”.

Courtesy:
http://www.iue.tuwien.ac.at/phd/osintsev/disserch4.html

Atomic-like orbitals are extremely
compact and allow a natural description
of the variations of wavefunctions close
to the atoms.

Plenewave basis are on the contrary not
very good for describing strong
variations of the density, but are more
systematic and allow to sample the
density far away from the atoms (e.g.
diffuse orbitals, interstitial sites, etc.)



The 1D-chain of atoms with one atomic orbital per atom

Assume N identical atoms with
interatomic distance ”a” forming a 1D
chain. Assume one φat(x − na) atomic
orbital per atom in position (na).

Wavefunctions built as linear combination of atomic orbitals (LCAO):

ψ(x) =
N∑

n=1

cnφ
at(x − na) =⇒ N ' 1023 unknown{cn} coefficients

Use Bloch theorem: ψñk(x) = e ikxuñk(x) with uñk periodic

The only periodic LCAO is obtained for cn all equals (basically
cn = 1/

√
N by normalization). The only possible wavefunctions are:

u(x) =
N∑

n=1

1√
N
φat(x − na) and ψk(x) =

N∑

n=1

e ikx√
N
φat(x − na)

We removed the ñ-index since one state per k with one AO per cell.



The 1D-chain energy levels in the tight-binding limit

Assume localized atomic orbitals => e ikxφat(x − na) ' e iknaφat(x − na).
Then the energy of ψk is just:

εk = 〈ψk |Ĥ|ψk〉 =
1

N

N∑

n,m

e ik(m−n)aHnm

Hnm = 〈φat(x − na)|Ĥ|φat(x −ma)〉

Hnm = Hamiltonian matrix elements in the AO basis. In the tight-binding
limit (AO localized)

I (m = n) Hnm = ε0 on-site energy

I (m = n ± 1) Hnm = t hopping energy

I |m − n| > 1 Hnm = 0 (tight-binding limit)



The 1D-chain energy levels in the tight-binding limit (II)

In the tight-binding limit, one obtains straighforwardly:

εk = 〈ψk |Ĥ|ψk〉 =
1

N
N(ε0 + te ika + te−ika) = ε0 + 2t cos(ka)
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Question 1: for N-atoms with one atomic orbital per atom, one should
get N energy levels !! But the quantum number k is continuous ??

Question 2 : why don’t we build the full Hamiltonian 〈φk |H|ψk′〉 in the
space of Bloch states with various k ?



Block diagonalisation of the Hamiltonian in k-space

It is a common result of quantum mechanics that if Â and B̂ commute
and |ψ1〉 and |ψ2〉 are eigenstates of Â with different eigenvalues, then
〈ψ1|B̂|ψ2〉 = 0 (just calculate 〈ψ1|[Â, B̂]|ψ2〉). Now the ψk with
”different k” are eigenstates of translation operators with different
eigenvalues so that they are orthogonal through Ĥ.

The Hamiltonian does not couple Bloch
states with different Bloch vectors. This is
the central result that allows to decoupling
degrees of freedom and reducing the
complexity of the problem.

We still have an a priori infinite number of k-vectors !



Introduction to the Brillouin zone for k-vectors

It is easy to see that if k ′ = k + 2π/a then :

εk′ = ε0 + 2t cos(ka +
2π

a
a) = εk

ψk′(x) =
1

N

N∑

n

e ika+i 2π
a aφat(x − na) = ψk(x)

Two quantum number (k’) and (k) such that (k’-k) is a multiple of 2π/a
index the same quantum state(s) ! One can restrict (k) to [−πa , πa [

The restriction in k-space to independent k-vectors is called the first
Brillouin zone (Léon Brillouin, French physicist emigrated to the US in
1940).

This is very similar to the idea that in Ylm spherical harmonics, one just
needs to sample (m) within [−l , l ].



Discretizing the k (the 1D chain continued)

The values of (k) are governed by the boundary conditions. Solid-state
physicists adopt usually the Born-von Karman periodic boundary
conditions where the solid (the 1D chain here) closes onto itself:

R=na#

a#

This means that with N atoms, one has the condition:

ψ(x + Na) = ψ(x) ⇒ e ikNa = 1 ⇒ k = integer × (2π/Na)

As such, in the first Brillouin zone, there are 2π/a
2π/Na = N discretized

independent k-vectors.



Discretizing the k (the 1D chain continued)

The values of (k) are governed by the boundary conditions. Solid-state
physicists adopt usually the Born-von Karman periodic boundary
conditions where the solid (the 1D chain here) closes onto itself:
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This means that with N atoms, one has the condition:

ψ(x + Na) = ψ(x) ⇒ e ikNa = 1 ⇒ k = integer × (2π/Na)

As such, in the first Brillouin zone, there are 2π/a
2π/Na = N discretized

independent k-vectors.



Exercise: From physics to chemistry

The same algebra can be achieved in the ”chain of atoms around a
circle” using point group symmetries rather than translations.

✓ = 2⇡/N

R(n ⇥ ✓) = rotations  that commute with Ĥ



The reciprocal space (the space for the ~k-vectors)

The ~k-vectors are homogeneous to the inverse of a distance and lives in
the ”reciprocal space”. If (~a1, ~a2, ~a3) are the periodic vector of the

crystal, we choose to represent the ~k-vectors as a function of the
reciprocal space basis: (~b1, ~b2, ~b3) vectors such that:

~ai · ~bj = 2πδij ⇒ ~bi = 2π
~aj × ~ak

~ai · (~aj × ~ak)

Defining the reciprocal space vectors: ~G = l1~b1 + l2~b2 + l3~b3, then the

e i
~G ·~r vectors form a basis for periodic functions since for any lattice

vector in real space ~R = n1~a1 + n2~a2 + n3~a3,

e i
~G ·(~r+~R) = e i

~G ·~r+i
∑
α nαlα~aα·~bα = e i

~G ·~r+i
∑
α nαlα2π = e i

~G ·~r

Any periodic function, such as the potential V (~r), can be expressed as a

Fourier serie over the e i
~G ·~r basis (which is a ”planewave” basis).



The first Brilllouin zone

Remember that the ψ~k eigenstates of H are also eigenstates of the

translation operators with eigenvalue e i
~k·~r . But:

e i(
~k+~G)·~R = e i

~k·~R and further: ψ~k+~G (~r) = e i
~k·~r
[
e i
~G ·~ru~k+~G (~r)

]

This means that the (~k) and (~k + ~G ) are the same quantum numbers,
leading to same eigenvalues of the translation operator. The Brillouin
zone (BZ) is the ensemble of independent ~k-vectors (not connected by

any ~G -vector). It is the unit cell of the reciprocal vectors lattice.

Figure: 2D hexagonal lattice with its
first Brillouin-zone. The important
k-points bear specific names (Γ is the
zone-center, K is at the corner, etc.)



The silicon band structure

Silicon is an FCC structure with 2-atoms per unit cell (with positions τI ,
I=1,2, in the unit cell). The band structure if the plot of εk energy levels
along specific directions in the BZ. The band gap (minimum energy
between occupied and unoccupied levels) is of about 1.2 eV.

~⌧1
~⌧2

FCC structure with
2-atoms per cell

~a1

~a2
~a3

10/05/15 08:54

Page 1 sur 1http://upload.wikimedia.org/wikipedia/commons/0/04/Band_structure_Si_schematic.svg
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It is an indirect gap semiconductor : the top of the valence (occupied)

bands is not at the same ~k-vector as the bottom of the conduction
(empty) bands. A photon (negligible momentum) cannot be adsorbed at
the gap energy. The direct band gap is of about 3.4 eV . As such, a lot
of solar photons cannot be adsorbed. Not good for solar cell efficiency.



The silicon band structure (LCAO)

We can adopt a very minimal atomic orbital (AO) basis with one set of
α = (3s, 3px , 3py , 3pz) atomic orbitals per atom (we forget here about
core electrons). As such there are 8 atomic orbitals in one unit cell since
there are two atoms with position ~τI (I=1,2) in one cell. By repeating
each atomic orbital periodically, one can make 8 periodic functions:

uIα(r) =
1√
Ncells

Ncells∑

n

φatIα(r − Rn − τI )

and Bloch states will be a linear combination of these 8 periodic
functions:

ψn~k(r) = e ik·r
∑

Iα

Cn(Iα)uIα(r)

This will yield 8 levels per ~k-vector => 4 are occupied by the 8
(3s2, 3p2) electrons per unit cell and 4 are unoccupied.



Silicon from the atomic limit : metallic to semiconducting

When silicon is formed from the atomic limit by approaching the atoms,
first the 3s and 3p bands forms (the 3s is filled the 3p is metallic). Then
the 2 subbands overlap. Surprizingly, a gap reopens when approaching
the experimental interatomic distance, forming a semiconductor. This is
the sp3 rehybridization.

Courtesy wikipedia.



Exercise : 1D silicon and sp hybridization

Assume again a 1D chain of N atoms with 1-atom per cell but now one s
and one px orbital per atom.

a

na

unit-cell �at
s (x � ma)

�at
p (x � ma)ma

One can form two periodic functions, one made of s atomic orbitals, the
second made of p atomic orbitals, and form the corresponding Bloch
states with proper phase factor:

us/p(x) =
1√
N

N∑

n

φats/p(x − na) and ψ
s/p
k (x) =

N∑

n

e ikna√
N
φats/p(x − na)

Any Bloch state is a linear combination: ψk(x) = αkψ
s
k(x) + βkψ

p
k (x).



Exercise : 1D silicon and sp hybridization (II)

Project eigenvalue equation: Ĥ|ψk〉 = εk |ψk〉 onto 〈ψs
k | and 〈ψp

k | :

(
Hss Hsp

Hps Hpp

)(
αk

βk

)
= εk

(
αk

βk

)

with:

Hss = 〈ψs
k |H|ψs

k〉 = −ε0 − 2γ cos(ka)

Hpp = 〈ψp
k |H|ψ

p
k 〉 = +ε0 + 2γ cos(ka)

Hsp = 〈ψs
k |H|ψp

k 〉 = 2γi sin(ka)

where we assumed that onsite s energy is −ε0 and onsite p energy is +ε0

and hopping integrals are as follows:

with onsite sp coupling zero by symmetry.



Exercise : 1D silicon and sp hybridization (III)

The solution yields:

εk = ±
√
ε2

0 + 4γε0 cos(ka) + 4γ2 with k ⊂
[−π

a
,
π

a

[

that yields the following band structure with increasing γ (hopping
energy) when atoms come closer and closer:

No	sp-coupling	 With	sp-coupling	

�"0

"0

� = "0/2

With	2	electrons	per	atom,	the	s-band	is	filled	=>	insulating	for		 � < "0/2

� > "0/2For	 •  metallic	in	the	case	of	no	sp-coupling	
•  insulating	in	the	case	of	sp-coupling	

Fig: Evolution of band structure as a
function of the strength of the hopping
coupling γ with (Left) no sp coupling
and (Right) a sp coupling equal to ±γ.
For each value of γ, we plot a few
energy levels corresponding to 20
k-values in the Brillouin zone.



To conclude : band gaps with DFT (Kohn-Sham)

We compile here below the DFT-LDA Kohn-Sham gap of semiconductors
and insulators (red dots; courtesy Valério Olévano) that we compare to
the experimental values (first diagonal). We also provide the
Hartree-Fock gap (pink dots).

Clearly, the DFT Kohn-Sham gap is
too small !! On the contrary, the
Hartree-Fock gap is too large. As an
important example, the LDA, HF
and experimental band gap of silicon
are: 0.6 eV, 6.5 eV, and ... 1.2 eV.

The black dots are the results of
perturbation theory correcting the
Kohn-Sham energies: the GW
formalism will be the subject of
some of next week lectures.



Thanks



Exercise : The ionicity gap

Assume now a 1D chain of N cells with 2-atoms per cell and one atomic
orbital per atom.

n-th	cell		

x̂

~a1 = 2ax̂

A										B	

⌧B + 2na⌧A + 2na

n-th	cell		

x̂

~a1 = 2ax̂

A										B	

⌧B + 2na⌧A + 2na

n-th	cell		

x̂

~a1 = ax̂ �at(x � na)

One can form two periodic functions, one made of atomic orbitals on
atoms A, the second made of atomic orbitals on atoms B, and form the
corresponding Bloch states with proper phase factor:

uA(x) =
1√
N

N∑

n

φatA (x−2na−τA) and ψA
k (x) =

N∑

n

e ikna√
N
φatA (x−2na−τA)

and idem for B orbitals.



Exercise : The ionicity gap (II)

Any Bloch state is a linear combination: ψk(x) = αkψ
A
k (x) + βkψ

B
k (x).

Project eigenvalue equation: Ĥ|ψk〉 = εk |ψk〉 onto 〈ψs
k | and 〈ψd

k | :

(
HAA HAB

HBA HBB

)(
αk

βk

)
= εk

(
αk

βk

)

with:

HAA = 〈ψA
k |H|ψA

k 〉 = εA0 (A atoms are 2nd neighbours => no hopping)

HBB = 〈ψB
k |H|ψB

k 〉 = εB0 (B atoms are 2nd neighbours => no hopping)

HAB = 〈ψA
k |H|ψB

k 〉 = 2t cos(ka) (hopping between nearest neighbors atoms)

Figure 3: (a) Atomic orbitals of the same type of atoms (A or B) cannot be first-
nearest-neighbors. (b) Each atomic orbitals of a given type (e.g. �at

A ) has two nearest-
neighbor orbitals of the other type (e.g. �at

B ), one in the same cell, the other in another
cell.

NOTE. Do not confuse the Hamiltonian and overlap matrix elements in the  A
k

and  B
k basis (e.g. HAB or SAB) with the Hamiltonian and overlap matrix ele-

ments in the localized atomic basis, e.g. h�at
A (r�⌧A�2na)|Ĥ|�at

B (r�⌧B�2ma)i.
We will now express the former with the latter.

Let’s calculate first HAA that is:

HAA =
1

NC

NCX

n,m

e�ik(⌧A+2na)eik(⌧A+2ma)h�at
A (r�⌧A�2na)|Ĥ|�at

A (r�⌧A�2ma)i

Remember that for Hamiltonian matrix elements between atomic orbitals, we
keep 2 kind of terms : terms where the 2 atomic orbitals (bra and ket) are
on the same atom (onsite energy) AND terms where the atomic orbitals are
on first-nearest-neighbor atoms (hoping terms). But in the present case, �at

A

atomic orbitals can never be on first-nearest-neighbor atoms since two A atoms
are separated by a B atom (see Fig. 3a). The only non-zero terms left are the
onsite matrix elements for A-type atomic orbitals that we label "0A, that is:

h�at
A (r � ⌧A � 2na)|Ĥ|�at

A (r � ⌧A � 2ma)i = �nm "A
0

As a result

HAA =
1

NC

NCX

n,m

eik(m�n)a�nm"
A
0 =

1

NC
NC"

0
A = "0A

Similarly for two �at
B atomic orbitals on the same atom we define a ”B” onsite

energy "0B = h�at
B (r � ⌧B � 2na)|Ĥ|�at

B (r � ⌧B � 2na)i and

HBB = "0B

We are now left with calculating :

HAB =
1

NC

NCX

n,m

e�ik(⌧A+2na)eik(⌧B+2ma)h�at
A (r � ⌧A � 2na)|Ĥ|�at

B (r � ⌧B � 2ma)i

=
eik(⌧B�⌧A)

NC

NCX

n,m

eik(m�n)2ah�at
A (r � ⌧A � 2na)|Ĥ|�at

B (r � ⌧B � 2ma)i
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Exercise : The ionicity gap (III)

The equation to solve is (εk − εA0 )(εk − εB0 ) = 4t2 cos2(ka) yielding:

εk =
εA0 + εB0

2
±
√

4t2 cos2(ka) + (εB0 − εA0 )2/4 with k ⊂
[−π

2a
,
π

2a

[

that yields a band structure with a gap |εB0 − εA0 | opening at the BZ
boundary due to ionicity (different onsite energies on atoms A and B) :

wavevector k
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-º/2a º/2a

2.0

-2.0

Peierls gapIonicity gap Gap = |"B
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0 |"B
0 + "A
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2

The magnitude of the gap is controlled
by the ionicity. The grey dashed line is
the band structure in the absence of
onsite difference. This exercise may
explain the difference between graphene
and h-BN.



Exercise : The Peierls distorsion

Assume now a 1D chain with 2 identical atoms per cell and one atomic
orbital per atom but with bond alternation. Assume onsite energy ε0 = 0.

n"th%cell%%

x̂

~a1 = 2ax̂

A%%%%%%%%%%B%

⌧B + 2na⌧A + 2na

n"th%cell%%

x̂

~a1 = 2ax̂

A%%%%%B%

t + �tt � �t

A%%%%%%B% A%%%%%%B%

(n"1)"th%cell%%

Then: εk = ±2t
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A gap opens at BZ boundary with a
magnitude controlled by the bond
alternation. The shaded area is the
energy gained by the electrons if the
lower subband was filled and the
upper subband empty.


