Mathematical aspects of electronic structure theory

Eric CANCES

Ecole des Ponts and Inria Paris, France

Aussois, June 19th - July 1st, 2022

École des Ponts ParisTech

erc **European Research Council**

Established by the European Commission

Extreme-scale Mathematically-based Computational Chemistry

Introduction 11 (1)

Question 1

A Fortran library for solving $A\mathbf{x} = \mathbf{b}$ gives the following results:

$$
\mathbf{A} = \begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix} \qquad \qquad \text{Solution: } \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}
$$

$$
\mathbf{A} = \begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 32.001 \\ 22.999 \\ 33.001 \\ 30.999 \end{pmatrix} \qquad \qquad \text{Solution: } \mathbf{x} = \begin{pmatrix} 1.082 \\ 0.862 \\ 1.035 \\ 0.979 \end{pmatrix}
$$

$$
\mathbf{A} = \begin{pmatrix} 10 & 7.021 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix} \qquad \qquad \text{Solution: } \mathbf{x} = \begin{pmatrix} -2.77... \\ 7.19... \\ -0.51... \\ 1.90... \end{pmatrix}
$$

Should you trust this library?

Question 2

Constrained optimization is ubiquitous in quantum physics and chemistry (e.g. Hartree-Fock, DFT, etc.). In Physics and Chemistry textbooks, such problems are solved using the Lagrangian method.

Example: solve inf $g(x)=0$ $E(x)$ where $E: \mathbb{R}^d \to \mathbb{R}$ and $g: \mathbb{R}^d \to \mathbb{R}^m$ are regular. Introduce the Lagrangian $L:\mathbb{R}^d \times \mathbb{R}^m \rightarrow \mathbb{R}$ defined as

$$
L(x,\lambda) = E(x) + \lambda^T g(x).
$$

Then, the minimizers are obtained by solving the system of equations

 \int \int $\overline{\mathcal{L}}$ $\nabla_x L(x,\lambda) = 0$ $\nabla_{\lambda}L(x,\lambda) = 0,$

Application: $d = 1, m = 1, E(x) = x, g(x) = x^2$

 $\int 1 + 2\lambda x = 0$ $x^2 = 0$ \Rightarrow No solution, though $x=0$ is obviously a minimizer! What's the catch?

Introduction 3

Question 3

Diagonalizing the translation operators $(T_{\mathbf{R}})_{\mathbf{R}\in\mathbb{Z}^3}$

$$
(T_{\mathbf{R}}\psi)(\mathbf{r})=\psi(\mathbf{r}-\mathbf{R})
$$

Let $\psi \neq 0$ be such that $T_\mathbf{R} \psi = C(R) \psi$ for all $\mathbf{R} \in \mathbb{Z}^3$ with $C(R) \in \mathbb{C}$. Since

$$
|C(\mathbf{R})|^2 \int |\psi(\mathbf{r})|^2 d\mathbf{r} = \int |C(R)\psi(\mathbf{r})|^2 d\mathbf{r} = \int |(T_{\mathbf{R}}\psi)(\mathbf{r})|^2 d\mathbf{r} = \int |\psi(\mathbf{r} - \mathbf{R})|^2 d\mathbf{r}
$$

=
$$
\int |\psi(\mathbf{r})|^2 d\mathbf{r},
$$
 (1)

then $|C(R)|=1$ and therefore $C(R)=e^{i\alpha(R)}$. Since $T_{\mathbf{R}+\mathbf{R'}}=T_{\mathbf{R}}T_{\mathbf{R'}}$, we get $C(\mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}$ for some $\mathbf{k} \in \mathbb{R}^3$. And from there, we get

 $\psi(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u(\mathbf{r})$ where u is an \mathbb{Z}^3 -periodic function

But then, $\int |\psi(\mathbf{r})|^2 d\mathbf{r} = +\infty$, and we can't infer from (1) that $|C(R)| = 1$.

How to make this (physically correct) argument mathematically correct?

Introduction 4

Question 4

The bound states of the hydrogen atom Hamiltonian are known

$$
\hat{h} = -\frac{1}{2}\Delta - \frac{1}{r} \qquad \hat{h}\,\varphi_{n,\ell,m}(r,\theta,\phi) = E_n\varphi_{n,\ell,m}(r,\theta,\phi), \qquad \begin{cases} n \in \mathbb{N}^* \\ 0 \le \ell \le n-1 \\ -\ell \le m \le \ell \end{cases}
$$

When two hydrogen atoms are at distance $R \gg 1$ a.u., their interaction energy can be expanded as

$$
\Delta E(R) = -\frac{C_6}{R^6} + \text{h.o.t.} \quad \textbf{(van der Waals interaction)}
$$

The C_6 coefficient can be computed by perturbation theory

Using the "sum over state" technique in the basis $(\varphi_{n,\ell,m})$ we get $C_6 \simeq 3.923$ u.a. to be compared with the correct value $C_6 \simeq 6.499$ u.a.

What's wrong in this approach?

Introduction 5

Question 5

Which spin states can you actually represent with your two hands?

Outline of the course 6

- 1. Spectral theory of self-adjoint operators
- 2. From molecules to materials

- 3. A bit of numerical analysis
- 4. Constrained optimization and Lagrange multipliers

1 - Spectral theory of self-adjoint operators

References:

- E.B. Davies, *Linear operators and their spectra*, Cambridge University Press 2007.
- B. Helffer, *Spectral theory and its applications*, Cambridge University Press 2013.
- M. Reed and B. Simon, *Modern methods in mathematical physics*, in 4 volumes, 2nd edition, Academic Press 1972-1980.
- M. Lewin, *Théorie spectrale et mécanique quantique*, Springer 2022.

Notation: in this section, H denotes a separable complex Hilbert space, $\langle \cdot | \cdot \rangle$ its inner product, and $\|\cdot\|$ the associated norm.

Fundamental principles of quantum mechanics

- 1. To each quantum system is associated a separable complex Hilbert space H
- 2. If the state of the system at time t is completely known (pure state), it can be described by a normalized vector $\psi(t)$ of \mathcal{H} . The set of physically admissible pure states is the projective space $P(\mathcal{H})$.
- 3. Physical observables are represented by self-adjoint operators on H .
- 4. Let a be a physical observable represented by the self-adjoint operator A . The outcome of a measurement of a is always in $\sigma(A)$, the spectrum of A.
- 5. If, just before the measurement, the system is in the pure state $\psi(t_0)$, then the probability that the outcome lays in the interval $I \subset \mathbb{R}$ is $||\mathbb{1}_I(A)\psi(\overline{t}_0)||^2$, where $\mathbb{1}_I$ is the characteristic function of *I* and $\mathbb{1}_I(A)$ is defined by functional calculus.
- 6. If the system is isolated, its dynamics between two successive measures is given by $\psi(t) = U(t - t_0)\dot{\psi}(t_0)$ where $U(\tau) = e^{-i\tau H/\hbar}$, H being the Hamiltonian, i.e. the self-adjoint operator associated with the energy.

Definition (Hilbert space). A Hilbert space is a real or complex vector space H endowed with a inner product $\langle \cdot | \cdot \rangle$ and complete for the associated norm $\| \cdot \|$.

Definition (completeness). A sequence $(\psi_n)_{n\in\mathbb{N}}$ of elements of a normed vector space $(\mathcal{H}, \|\cdot\|)$ is Cauchy if

$$
\forall \varepsilon > 0, \quad \exists N \in \mathbb{N} \quad \text{s.t.} \quad \forall q \ge p \ge N, \quad \|\psi_p - \psi_q\| \le \varepsilon.
$$

The normed vector space $(H, \|\cdot\|)$ is called complete if any Cauchy sequence of elements of H converges in H.

Example: all finite-dimensional normed \mathbb{R} **- or** \mathbb{C} **-vector spaces are complete.** • Endowed with the hermitian inner product, \mathbb{C}^d is a Hilbert space:

$$
\langle \mathbf{x} | \mathbf{y} \rangle = \sum_{1 \leq i \leq d} \overline{x_i} \, y_i, \qquad \|\mathbf{x}\| = \langle \mathbf{x} | \mathbf{s} \rangle^{1/2} = \left(\sum_{1 \leq i \leq d} |x_i|^2 \right)^{1/2}.
$$

• Let $S \in \mathbb{C}^{d \times d}$ be a positive definite hermitian matrix $(S_{ji} = \overline{S_{ij}}$ for all $1 \leq i, j \leq d$ and $\mathbf{x}^* S \mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{C}^d \setminus \{0\}$). Then $\langle \mathbf{x} | \mathbf{y} \rangle_S = \mathbf{x}^* S \mathbf{y}$ defines a inner product on \mathbb{C}^d and $\forall \mathbf{x} \in \mathbb{C}^d$, $\lambda_1(S) \|\mathbf{x}\| \le \|\mathbf{x}\|_S \le \lambda_d(S) \|\mathbf{x}\|$, where $\lambda_1(S) \leq \lambda_2(S) \leq \cdots \leq \lambda_d(S)$ are the eigenvalues of S.

1 - Spectral theory of self-adjoint operators 10

Fundamental examples: the Hilbert space $L^2(\mathbb{R}^d,\mathbb{C})$.

• The sequilinear form

$$
\langle \varphi | \psi \rangle := \int_{\mathbb{R}^d} \overline{\varphi} \psi := \int_{\mathbb{R}^d} \overline{\varphi(\mathbf{r})} \, \psi(\mathbf{r}) \, d\mathbf{r}
$$

defines a inner product on

 $C_{\rm c}^\infty$ $C^{\infty}_c(\mathbb{R}^d,\mathbb{C}):=\left\{\varphi\in C^{\infty}(\mathbb{R}^d,\mathbb{C})\,\,|\,\,\,\varphi=0\;\textrm{outside some bounded set}\right\},$

but $C_{\rm c}^{\infty}$ $\mathcal{C}^\infty_c(\mathbb{R}^d,\mathbb{C})$, endowed with the inner product $\langle \varphi|\psi\rangle$, is not a Hilbert space.

• To obtain a Hilbert space, we have to "complete" it with "all the limits of the Cauchy sequences of elements of $C_{\rm c}^\infty$ $\mathbb{C}^\infty(\overline{\mathbb{R}}^d)$ ''. We thus obtain the set

$$
L^2(\mathbb{R}^d,\mathbb{C}):=\left\{\varphi:\mathbb{R}^d\to\mathbb{C}\;|\;\int_{\mathbb{R}^d}|\varphi|^2<\infty\right\},
$$

which, endowed with the inner product $\langle \varphi | \psi \rangle$, is a Hilbert space.

- Technical details:
	- one must use the Lebesgue integral (doesn't work with Riemann integral);
	- the elements of $L^2(\mathbb{R}^d,\mathbb{C})$ are in fact equivalence classes of measurable functions (for the Lebesgue measure) for the equivalence relation $\varphi \sim \varphi'$ iff $\varphi = \varphi'$ everywhere except possibly on a set of zero Lebesgue measure.

1 - Spectral theory of self-adjoint operators 11

Fundamental examples: the Sobolev spaces $H^1(\mathbb{R}^d,\mathbb{C})$ and $H^2(\mathbb{R}^d,\mathbb{C})$.

• The sets

$$
H^1(\mathbb{R}^d, \mathbb{C}) := \{ \varphi \in L^2(\mathbb{R}^d, \mathbb{C}) \mid \nabla \varphi \in (L^2(\mathbb{R}^d, \mathbb{C}))^d \},
$$

$$
H^2(\mathbb{R}^d, \mathbb{C}) := \{ \varphi \in L^2(\mathbb{R}^d, \mathbb{C}) \mid \nabla \varphi \in (L^2(\mathbb{R}^d, \mathbb{C}))^d \text{ and } D^2 \varphi \in (L^2(\mathbb{R}^d, \mathbb{C}))^{d \times d} \}
$$

are vector spaces. Respectively endowed with the inner products

$$
\begin{aligned}\n\langle \varphi | \psi \rangle_{H^1} &:= \int_{\mathbb{R}^d} \overline{\varphi} \psi + \int_{\mathbb{R}^d} \overline{\nabla \varphi} \cdot \nabla \psi, \\
\langle \varphi | \psi \rangle_{H^2} &:= \int_{\mathbb{R}^d} \overline{\varphi} \psi + \int_{\mathbb{R}^d} \overline{\nabla \varphi} \cdot \nabla \psi + \int_{\mathbb{R}^d} \overline{D^2 \varphi} : D^2 \psi,\n\end{aligned}
$$

they are Hilbert spaces.

• Technical detail: the gradient and the second derivatives are defined by means of distribution theory.

Remark. Let $\varphi \in H^1(\mathbb{R}^d)$. A function $\widetilde{\varphi} \in H^1(\mathbb{R}^d)$ can be a very accurate approximation of φ in $H^1(\mathbb{R}^d)$ approximation of φ in $L^2(\mathbb{R}^d)$ and a terrible approximation of φ in $H^1(\mathbb{R}^d)$.

For instance, let $\varphi(x)=\frac{1}{1+x^2}$ and $\varphi_n(x)=\left(1+\frac{\sin(n^2x^2)}{n}\right)$ \overline{n} \setminus $\varphi(x)$. The sequence $(\varphi_n)_{n \in \mathbb{N}^*}$ converges to φ in $L^2(\mathbb{R})$ and goes to infinity in $H^1(\mathbb{R})$.

Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on H is a linear map $\hat{A}: \mathcal{H} \to \mathcal{H}$ such that

$$
\|\hat{A}\|:=\sup_{\Psi\in\mathcal{H}\backslash\{0\}}\frac{\|\hat{A}\Psi\|}{\|\Psi\|}<\infty.
$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Remark. A bounded linear operator A is uniquely defined by the values of the sesquilinear form $\mathcal{H} \times \mathcal{H} \ni (\Psi_1, \Psi_2) \mapsto \langle \Psi_1 | \hat{A} \Psi_2 \rangle \in \mathbb{C}.$

Definition-Theorem (adjoint of a bounded linear operator). Let $A \in \mathcal{B}(\mathcal{H})$. The operator $\hat{A}^{\dagger} \in \mathcal{B}(\mathcal{H})$ defined by

$$
\forall (u, v) \in \mathcal{H} \times \mathcal{H}, \quad \langle u | \hat{A}^{\dagger} v \rangle = \langle A u | v \rangle,
$$

is called the adjoint of A. The operator A is called self-adjoint if $\hat{A}^{\dagger} = A$.

Endowed with its norm $\|\cdot\|$ and the $*$ operation, $\mathcal{B}(\mathcal{H})$ is a C[∗]-algebra.

(Non necessarily bounded) linear operators on Hilbert spaces

Definition (linear operator). A linear operator on H is a linear map $\hat{A}: D(\hat{A}) \to H$, where $D(\hat{A})$ is a subspace of H called the domain of \hat{A} . Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let \hat{A}_1 and \hat{A}_2 be operators on \mathcal{H} . \hat{A}_2 is called an extension of \hat{A}_1 if $D(\hat{A}_1) \subset D(\hat{A}_2)$ and if $\forall u \in D(\hat{A}_1)$, $\hat{A}_2u = \hat{A}_1u$.

Definition (unbounded linear operator). An operator \hat{A} on H which does not possess a bounded extension is called an unbounded operator on H .

Definition (symmetric operator). A linear operator \hat{A} on H with dense domain $D(\hat{A})$ is called symmetric if

$$
\forall \Psi_1, \Psi_2 \in D(\hat{A}) \times D(\hat{A}), \quad \langle \Psi_1 | \hat{A} \Psi_2 \rangle = \langle \hat{A} \Psi_1 | \Psi_2 \rangle.
$$

Symmetric operators are not very interesting. Only self-adjoint operators represent physical observables and have nice mathematical properties:

- real spectrum;
- spectral decomposition and functional calculus.

1 - Spectral theory of self-adjoint operators 14

Definition (adjoint of a linear operator with dense domain). Let A be a linear operator on H with dense domain $D(\hat{A})$, and $D(\hat{A}^\dagger)$ the vector space defined as

$$
D(\hat{A}^{\dagger}) = \left\{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(\hat{A}), \ \langle Au | v \rangle = \langle u | w_v \rangle \right\}.
$$

The linear operator \hat{A}^{\dagger} on ${\cal H}$, with domain $D(\hat{A}^{\dagger}),$ defined by

$$
\forall v \in D(\hat{A}^{\dagger}), \quad \hat{A}^{\dagger}v = w_v,
$$

(if w_v exists, it is unique since $D(\hat{A})$ is dense) is called the adjoint of A .

This definition agrees with the previous one for bounded operators.

 $\not\Rightarrow$

Definition (self-adjoint operator). A linear operator \hat{A} with dense domain is called self-adjoint if $\hat{A}^{\dagger} = \hat{A}$ (that is if \hat{A} symmetric and $D(\hat{A}^{\dagger}) = D(\hat{A})$).

Case of bounded operators:

symmetric \Leftrightarrow self-adjoint.

Case of unbounded operators:

symmetric (easy to check)

self-adjoint (sometimes difficult to check)

Some unbounded self-adjoint operators arising in quantum mechanics

• position operator along the j axis:

$$
-\mathcal{H} = L^{2}(\mathbb{R}^{d}),
$$

$$
-D(\widehat{r}_{j}) = \{u \in L^{2}(\mathbb{R}^{d}) \mid r_{j}u \in L^{2}(\mathbb{R}^{d})\}, (\widehat{r}_{j}\phi)(\mathbf{r}) = r_{j}\phi(\mathbf{r});
$$

• momentum operator along the j axis:

$$
-\mathcal{H} = L^{2}(\mathbb{R}^{d}),
$$

$$
-D(\widehat{p}_{j}) = \{ u \in L^{2}(\mathbb{R}^{d}) \mid \partial_{r_{j}} u \in L^{2}(\mathbb{R}^{d}) \}, (\widehat{p}_{j}\phi)(\mathbf{r}) = -i\partial_{r_{j}}\phi(\mathbf{r});
$$

• kinetic energy operator:

$$
-\mathcal{H} = L^2(\mathbb{R}^d),
$$

$$
-D(T) = H^2(\mathbb{R}^d) := \{ u \in L^2(\mathbb{R}^d) \mid \Delta u \in L^2(\mathbb{R}^d) \}, T = -\frac{1}{2}\nabla^2 = -\frac{1}{2}\Delta;
$$

• Schrödinger operators in 3D: let $V\in L^2_\mathrm{unif}(\mathbb{R}^3,\mathbb{R})$ $(V({\bf r})=-\frac{Z}{|{\bf r}|}$ OK)

$$
-\mathcal{H} = L^{2}(\mathbb{R}^{3}),
$$

$$
-D(H) = H^{2}(\mathbb{R}^{3}), H = -\frac{1}{2}\Delta + V.
$$

Definition-Theorem (spectrum of a linear operator). Let A be a closed¹ linear operator on H .

• The open set $\rho(A) = \left\{ z \in \mathbb{C} \mid (z - A) \, : \, D(\hat{A}) \to \mathcal{H} \text{ invertible} \right\}$ is called the resolvent set of A . The analytic function

 $\rho(A) \ni z \mapsto R_z(A) := (z - A)^{-1} \in \mathcal{B}(\mathcal{H})$

is called the resolvent of A . It holds $R_z(A) - R_{z'}(A) = (z'-z)R_z(A)R_{z'}(A)$.

- The closed set $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is called the spectrum of A.
- If A is self-adjoint, then $\sigma(A) \subset \mathbb{R}$ and it holds $\sigma(A) = \sigma_{\text{p}}(A) \cup \sigma_{\text{c}}(A)$, where $\sigma_{\rm p}(A)$ and $\sigma_{\rm c}(A)$ are respectively the point spectrum and the continuous spectrum of A defined as

$$
\sigma_{\rm p}(A) = \left\{ z \in \mathbb{C} \mid (z - A) : D(\hat{A}) \to \mathcal{H} \text{ non-injective} \right\} = \left\{ \text{eigenvalues of } A \right\}
$$

 $\sigma_\mathrm{c}(A) \ = \ \Big\{ z \in \mathbb{C} \ | \ (z - A) \, : \, D(\hat{A}) \to \mathcal{H}$ injective but non surjective $\Big\} .$

 $^{-1}$ The operator A is called closed if its graph $\Gamma(A):=\left\{(u,Au),\, u\in D(\hat{A})\right\}$ is a closed subspace of $\mathcal{H}\times\mathcal{H}$.

On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let H be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$ with no singular continuous spectrum. [Ex.: the Hamiltonian of the hydrogen atom.]

Let $\mathcal{H}_p=\overline{\mathbf{Span}\, \{\text{eigenvectors of}\ H\}}$ and $\mathcal{H}_c=\mathcal{H}^{\perp}_p$. [Ex.: for the Hamiltonian of the hydrogen atom, $\text{dim}(\mathcal{H}_p) = \text{dim}(\mathcal{H}_c) = \infty$.] Let χ_{B_R} be the characteristic function of the ball $B_R = \big\{ \textbf{r} \in \mathbb{R}^d \mid |\textbf{r}| < R \big\}.$ Then

$$
(\phi_0 \in \mathcal{H}_p) \Leftrightarrow \forall \varepsilon > 0, \exists R > 0, \forall t \ge 0, \left\| (1 - \chi_{B_R}) e^{-itH} \phi_0 \right\|_{L^2}^2 \le \varepsilon;
$$

$$
(\phi_0 \in \mathcal{H}_c) \Leftrightarrow \forall R > 0, \lim_{t \to +\infty} \left\| \chi_{B_R} e^{-itH} \phi_0 \right\|_{L^2}^2 = 0.
$$

 $\mathcal{H}_{\rm p}$: subspace of localized states, $\mathcal{H}_{\rm c}$: subspace of scattering states

Electronic problem for a given nuclear configuration ${R_A}_{1 \leq A \leq M}$

Ex: water molecule H₂O
\n
$$
M = 3, N = 10, z_1 = 8, z_2 = 1, z_3 = 1
$$

\n $v_{\text{nuc}}(\mathbf{r}) = -\sum_{k=1}^{M} \frac{z_A}{|\mathbf{r} - \mathbf{R}_A|}$

$$
\left(-\frac{1}{2} \sum_{i=1}^N \Delta_{\mathbf{r}_i} + \sum_{i=1}^N v_{\text{nuc}}(\mathbf{r}_i) + \sum_{1 \leq i < j \leq N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right) \Psi(\mathbf{x}_1, \cdots, \mathbf{x}_N) = E \ \Psi(\mathbf{x}_1, \cdots, \mathbf{x}_N)
$$

 $\forall p \in \mathfrak{S}_N, \quad \Psi(\mathbf{x}_{p(1)}, \cdots, \mathbf{x}_{p(N)}) = \varepsilon(p)\Psi(\mathbf{x}_1, \cdots, \mathbf{x}_N),$ (Pauli principle) $\Psi \in \mathcal{H}_N = \bigwedge$ N $\mathcal{H}_1, \qquad \mathcal{H}_1 = L^2(\mathbb{R}^3 \times \{\uparrow, \downarrow\}; \mathbb{C})$ N N

Theorem (Kato '51). The operator $\hat{H}_N := -$ 1 2 \sum $i=1$ $\Delta_{\mathbf{r}_i} + \sum$ $i=1$ $v_{\rm ext}({\bf r}_i)$ + \sum $1\leq i < j \leq N$ 1 $|{\bf r}_i-{\bf r}_j|$ with domain $D(\hat{H}_N) := \mathcal{H}_N \cap H^2((\mathbb{R}^3 \times \{\uparrow,\downarrow\})^N;\mathbb{C})$ is self-adjoint on \mathcal{H}_N .

Theorem (spectrum of \hat{H}_N).

1. HVZ theorem (Hunziger '66, van Winten '60, Zhislin '60)

 $\sigma_{\rm c}(\hat{H}_N) = [\Sigma_N, +\infty)$ with $\Sigma_N = \min \sigma(\hat{H}_{N-1}) \leq 0$ and $\Sigma_N < 0$ iff $N \geq 2$.

2. Bound states of neutral molecules and positive ions (Zhislin '61)

If $N\leq Z:=\sum z_A$, then \hat{H}_N has an infinite number of bound states. M $A=1$

3. Bound states of negative ions (Yafaev '72) If $N \geq Z + 1$, then \hat{H}_N has at most a finite number of bound states. Spectra of Schrödinger operators with confining potentials

$$
\mathcal{H} = L^{2}(\mathbb{R}^{d}), \qquad V \in C^{0}(\mathbb{R}^{d}), \qquad \lim_{|\mathbf{r}| \to +\infty} V(\mathbf{r}) = +\infty \text{ (confining potential)}
$$

$$
D(\hat{H}) = \left\{ \varphi \in L^{2}(\mathbb{R}^{d}) \mid -\frac{1}{2}\Delta\varphi + V\varphi \in L^{2}(\mathbb{R}^{d}) \right\}, \quad \forall \varphi \in D(\hat{H}), \ \hat{H}\varphi = -\frac{1}{2}\Delta\varphi + V\varphi.
$$

 \hat{H} is bounded below and its spectrum is purely discrete $(\sigma_d(\hat{H}) = \sigma(\hat{H}), \sigma_{\text{ess}}(\hat{H}) = \emptyset$).

As a consequence, H is diagonalizable in a orthonormal basis: there exist

- a non-decreasing sequence $(E_n)_{n\in\mathbb{N}}$ of real numbers going to $+\infty$;
- an orthonormal basis $(\psi_n)_{n\in\mathbb{N}}$ of H composed of vectors of $D(H)$, such that

$$
\forall n \in \mathbb{N}, \quad \hat{H}\psi_n = E_n \psi_n.
$$

In addition, the ground state eigenvalue E_0 is non-degenerate and the corresponding eigenvector can be chosen positive on \mathbb{R}^d .

Spectra of 3D Schrödinger operators with potentials decaying at infinity

W such that $\forall \varepsilon > 0, \ \exists (V_2, V_\infty) \in L^2(\mathbb{R}^3) \times L^\infty(\mathbb{R}^3)$ s.t. $V = V_2 + V_\infty$ and $||V_\infty||_{L^\infty} \le \varepsilon$, $\mathcal{H}=L^2(\mathbb{R}^3),\qquad D(\hat{h})=H^2(\mathbb{R}^3),\qquad \forall \varphi\in D(\hat{h}),\;\hat{h}\varphi=-1,$ 1 2 $\Delta\varphi+V\varphi.$

The operator H is self-adjoint, bounded below, and $\sigma_{\rm c}(\hat{h}) = [0, +\infty)$.

Depending on V, the discrete spectrum of \hat{h} may be

- the empty set;
- a finite number of negative eigenvalues;
- a countable infinite number of negative eigenvalues accumulating at 0 (ex: Ridberg states).

If h has a ground state, then its energy is a non-degenerate eigenvalue and the corresponding eigenvector can be chosen positive on \mathbb{R}^d .

The special case of Kohn-Sham LDA Hamiltonians

$$
\hat{h}_{\rho}^{\text{KS}} = -\frac{1}{2}\Delta + V_{\rho}^{\text{KS}} \quad \text{with} \quad V_{\rho}^{\text{KS}}(\mathbf{r}) = -\sum_{A=1}^{M} \frac{z_A}{|\mathbf{r} - \mathbf{R}_A|} + \int_{\mathbb{R}^3} \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + \frac{de_{\text{xc}}^{\text{LDA}}}{d\rho}(\rho(\mathbf{r}))
$$

For any $\rho\in L^1(\mathbb{R}^3)\cap L^3(\mathbb{R}^3)$, the KS potential $V_o^{\rm KS}$ $\ell_\rho^{\rm KS}$ satisfies the assumptions of the previous slide. In particular H_ρ is bounded below and $\sigma_{\rm c}(\hat{h}_\rho)=[0,+\infty)$.

Let $Z=\sum z_A$ be the total nuclear charge of the molecular system and $N=$ M $A=1$ Z \mathbb{R}^3 ρ_{\bullet}

- If $N < Z$ (positive ion), $\hat{h}^{\text{KS}}_{\rho}$ has a countable infinite number of negative eigenvalues accumulating at 0.
- If $N = Z$ (neutral molecular system) and if $\rho_{\rm GS}$ is a ground state density of the system, then $\hat{h}^{\text{KS}}_{\rho_{\text{GS}}}$ has at least N non-positive eigenvalues.

1 - Spectral theory of self-adjoint operators 23

Spectra of (restricted) Hartree-Fock Hamiltonians

Let
$$
\Phi = (\phi_1, \dots, \phi_N) \in (H^1(\mathbb{R}^3))^N
$$
 be such that $\int_{\mathbb{R}^3} \phi_i \phi_j = \delta_{ij}$,
\n
$$
\gamma(\mathbf{r}, \mathbf{r}') = \sum_{i=1}^N \phi_i(\mathbf{r}) \phi_i(\mathbf{r}'), \qquad \rho_\gamma(\mathbf{r}) = 2\gamma(\mathbf{r}, \mathbf{r}) = 2 \sum_{i=1}^N |\phi_i(\mathbf{r})|^2.
$$
\n
$$
\mathcal{H} = L^2(\mathbb{R}^3), \qquad D(H) = H^2(\mathbb{R}^3),
$$
\n
$$
(\hat{h}_\gamma^{\text{HF}} \phi)(\mathbf{r}) = -\frac{1}{2} \Delta \phi(\mathbf{r}) - \sum_{A=1}^M \frac{z_A}{|\mathbf{r} - \mathbf{R}_A|} \phi(\mathbf{r}) + \left(\int_{\mathbb{R}^3} \frac{\rho_\gamma(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'\right) \phi(\mathbf{r}) - \int_{\mathbb{R}^3} \frac{\gamma(\mathbf{r}, \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \phi(\mathbf{r}') d\mathbf{r}'
$$

Let $Z:=\sum_{A=1}^M z_A$. The operator $\hat h_\gamma^{\rm HF}$ is self-adjoint, bounded below, and we have: • $\sigma_{\rm c} = [0, +\infty);$

- \bullet if $N < Z$ (positive ion), $\hat{h}^{\mathrm{HF}}_{\gamma}$ has a countable infinite number of negative eigenvalues accumulating at 0;
- if $N = Z$ (neutral molecular system) and if Φ _{GS} is a HF ground state, then $\hat{h}^{\text{HF}}_{\gamma_{\text{GS}}}$ has at least N negative eigenvalues (counting multiplicities).

Spectra of Dirac Hamiltonians

$$
\mathcal{H} = L^{2}(\mathbb{R}^{3}; \mathbb{C}^{4}), \qquad D(\hat{D}_{0}) = H^{1}(\mathbb{R}^{3}; \mathbb{C}^{4}), \qquad \hat{D}_{0} = c\vec{p} \cdot \vec{\alpha} + mc^{2}\beta
$$

$$
\hat{p}_{j} = -i\hbar\partial_{j}, \qquad \alpha_{j} = \begin{pmatrix} 0 & \sigma_{k} \\ \sigma_{k} & 0 \end{pmatrix} \in \mathbb{C}^{4 \times 4}, \qquad \beta = \begin{pmatrix} I_{2} & 0 \\ 0 & -I_{2} \end{pmatrix} \in \mathbb{C}^{4 \times 4}
$$

$$
\sigma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad \textbf{(Pauli matrices)}
$$

The free Dirac operator \hat{D}_0 is self-adjoint and

$$
\sigma(\hat{D}_0) = \sigma_{\rm c}(\hat{D}_0) = (-\infty, -mc^2] \cup [mc^2, +\infty).
$$

Theorem. Let $\alpha := \frac{e^2}{4\pi\varepsilon\alpha}$ $\frac{e^2}{4\pi\varepsilon_0\hbar c}\simeq 1/137.036$ be the fine structure constant. Let $\hat{D}_Z = \hat{D}_0 -$ Z $|\mathbf{r}|$ $Z \in \mathbb{R}$ (physical cases: $Z = 1, 2, 3, \cdots$).

- \bullet if $|Z| <$ √ 3 $\frac{\sqrt{3}}{2\alpha} \simeq 118.677$, the Dirac operator \hat{D}_Z is essentially self-adjoint (meaning that there exists a unique domain $D(\hat{D}_Z)$ containing C_c^∞ $\mathcal{C}^{\infty}(\mathbb{R}^3; \mathbb{C}^4)$ for which \hat{D}_Z is self-adjoint); √
- if $|Z|>$ 3 $\frac{\sqrt{3}}{2\alpha} \simeq 118.677$, \hat{D}_Z has many self-adjoint extensions;
- \bullet if $|Z| < \frac{1}{\alpha}$ $\frac{1}{\alpha} \simeq 137.036$, \hat{D}_Z has a special self-adjoint extension, considered as the physical one. The essential spectrum of this self-adjoint extension is $(-\infty,-mc^2] \cup [mc^2,+\infty)$ and its discrete spectrum consist of the eigenvalues

$$
E_{nj} = mc^2 \left[1 + \left(\frac{Z\alpha}{n-j - \frac{1}{2} + \sqrt{(j + \frac{1}{2})^2 - Z^2\alpha^2}} \right)^2 \right], \quad n \in \mathbb{N}^*, \ j = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \dots \le n - \frac{1}{2}.
$$

Many-body Dirac-Coulomb Hamiltonian are not understood mathematically.

Functional calculus for diagonalizable self-adjoint operators

Let \hat{A} be a self-adjoint operator that can be diagonalized in an orthonormal basis $(\varphi_n)_{n\in\mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$
\hat{A} = \sum_{n \in \mathbb{N}} \lambda_n |\varphi_n\rangle \langle \varphi_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle \varphi_m | \varphi_n \rangle = \delta_{mn}.
$$

I nen,

- the operator \hat{A} is bounded if and only if $\|\hat{A}\| = \sup_n |\lambda_n| < \infty$;
- $D(\hat{A}) = \left\{ |\psi\rangle = \sum_{n \in \mathbb{N}} c_n |\varphi_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |\lambda_n|^2)|c_n|^2 < \infty \right\};$
- \bullet $\sigma_p(\hat{A}) = \{\lambda_n\}_{n\in\mathbb{N}}$ and $\sigma_c(\hat{A}) = \{$ accumulation points of $\{\lambda_n\}_{n\in\mathbb{N}}\}\backslash\sigma_p(\hat{A})$;
- $\mathcal{H}_p = \mathcal{H}$ and $\mathcal{H}_c = \{0\}$ (if \hat{A} is a Hamiltonian: no scattering states!);
- functional calculus for diagonalizable self-adjoint operators: for all
	- $f : \mathbb{R} \to \mathbb{C}$, the operator $f(\hat{A})$ defined by

$$
D(f(\hat{A})) = \left\{ |\psi\rangle = \sum_{n \in \mathbb{N}} c_n |\varphi_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |f(\lambda_n)|^2) |c_n|^2 < \infty \right\}, \quad f(\hat{A}) = \sum_{n \in \mathbb{N}} f(\lambda_n) |\varphi_n\rangle \langle \varphi_n|
$$

is independent of the choice of the spectral decomposition of \hat{A} .

Theorem (functional calculus for bounded functions). Let $\mathfrak{B}(\mathbb{R},\mathbb{C})$ be the ∗-algebra of bounded C-valued Borel functions on R and let Aˆ be any selfadjoint operator on H . Then there exists a unique map

$$
\Phi_A: \mathfrak{B}(\mathbb{R}, \mathbb{C}) \ni f \mapsto f(\hat{A}) \in \mathcal{B}(\mathcal{H})
$$

satisfies the following properties:

- 1. Φ_A is a homomorphism of ∗-algebras: $(\alpha f + \beta g)(\hat{A}) = \alpha f(\hat{A}) + \beta g(\hat{A}), \quad (fg)(\hat{A}) = f(\hat{A})g(\hat{A}), \quad f^*(\hat{A}) = f(\hat{A})^{\dagger};$ 2. $||f(\hat{A})|| \leq \sup$ $x\in\mathbb{\bar{R}}$ $|f(x)|$;
- 3. if $f_n(x) \to x$ pointwise and $|f_n(x)| \le |x|$ for all n and all $x \in \mathbb{R}$, then $\forall \psi \in D(\hat{A}), \quad f_n(\hat{A})\psi \to \hat{A}\psi$ in \mathcal{H} ;

4. if $f_n(x) \to f(x)$ pointwise and $\sup_n \sup_{x \in \mathbb{R}} |f_n(x)| < \infty$, then $\forall \psi \in \mathcal{H}, \quad f_n(\hat{A})\psi \rightarrow f(\hat{A})\psi$ in \mathcal{H} ;

In addition, if $\psi \in \mathcal{H}$ is such that $\hat{A}\psi = \lambda \psi$, then $f(\hat{A})\psi = f(\lambda)\psi$.

Theorem (spectral projections and functional calculus - general case -). Let \hat{A} be a self-adjoint operator on \mathcal{H} .

- For all $\lambda\in\mathbb{R}$, the bounded operator $\hat{P}_\lambda^A:=1\hspace{-1mm}1_{(-\infty,\lambda]}(\hat{A}),$ where $1\hspace{-1mm}1_{(-\infty,\lambda]}(\cdot)$ is the characteristic function of $(-\infty, \lambda]$, is an orthogonal projection.
- Spectral decomposition of $\hat A$: for all $\psi\in D(\hat A)$ and $\psi'\in {\cal H,}$ it holds

 $\langle \psi' | \hat{A} \psi \rangle =$ Z R $\lambda \frac{d}{\psi'}|\hat{P}_{\lambda}^{A}\psi\rangle$, which we denote by $\hat{A} =$ J R
Bounded complex measure on R Z R $\lambda d\hat{P}^A_{\lambda}$.

• Functional calculus: let f be a (not necessarily bounded) $\mathbb{C}\text{-valued Borel}$ function on \mathbb{R} . The operator $f(A)$ can be defined by

$$
D(f(\hat{A})) := \left\{ \psi \in \mathcal{H} \mid \int_{\mathbb{R}} |f(\lambda)|^2 \frac{d \langle \psi | P_{\lambda}^A \psi \rangle}{\text{Bounded positive measure on } \mathbb{R}} \right\}
$$

and

$$
\forall (\psi, \psi') \in D(f(\hat{A})) \times \mathcal{H}, \ \langle \psi' | f(\hat{A}) \psi \rangle := \int_{\mathbb{R}} f(\lambda) d \langle \psi' | \hat{P}_{\lambda}^A \psi \rangle.
$$

Application of spectral theory and functional calculus: one-body density matrices

1-RDM associated with an N-body wavefunction Ψ_N

$$
\gamma_{\Psi_N}(\mathbf{x}, \mathbf{x}') := \langle \psi_N | \hat{\Psi}^{\dagger}(\mathbf{r}) \hat{\Psi}(\mathbf{r}') | \Psi_N \rangle \n= N \int_{(\mathbb{R}^3 \times {\{\uparrow, \downarrow\}})^{N-1}} \Psi_N(\mathbf{x}, \mathbf{x}_2, \cdots, \mathbf{x}_N) \Psi_N(\mathbf{x}', \mathbf{x}_2, \cdots, \mathbf{x}_N)^* d\mathbf{x}_2 \cdots d\mathbf{x}_N
$$

It is extremely fruitful to consider $\gamma_{\Psi_N}(\mathbf{x},\mathbf{x}')$ as the integral kernel of an operator $\hat{\gamma}_{\Psi_N}$ on \mathcal{H}_1 (also called 1-RDM or DM for short)

$$
\forall \varphi \in \mathcal{H}_1, \quad (\hat{\gamma}_{\Psi_N}\varphi)(\mathbf{x}) = \int_{\mathbb{R}^3 \times {\{\uparrow, \downarrow\}}} \gamma_{\Psi_N}(\mathbf{x}, \mathbf{x}') \, \varphi(\mathbf{x}') \, d\mathbf{x}'
$$

The operator $\hat\gamma_{\Psi_N}$ is self-adjoint, diagonalizable, $\sigma(\hat\gamma_{\Psi_N})\subset[0,1]$, and $\text{Tr}(\hat\gamma_{\Psi_N})=N$

$$
\hat{\gamma}_{\Psi_N} = \sum_{j=1}^{+\infty} n_j |\varphi_j\rangle \langle \varphi_j|, \quad \langle \varphi_j | \varphi_{j'} \rangle = \delta_{jj'}, \quad 0 \le n_j \le 1, \quad \sum_{j=1}^{+\infty} n_j = N
$$

The φ_j 's are called the natural orbitals (associated with Ψ_N), and the n_j 's the natural occupation numbers

Application of spectral theory and functional calculus: one-body density matrices

When Ψ_N is the Slater determinant of orthonormal orbitals $(\varphi_1, \cdots, \varphi_N)$, then $\hat{\gamma}_{\Psi_N}$ is the orthogonal projector on $\textbf{span}(\varphi_1,\cdots,\varphi_N)$:

$$
\hat{\gamma}_{\Psi_N} = \sum_{j=1}^N |\varphi_j\rangle\langle\varphi_j|, \qquad \hat{\gamma}_{\Psi_N}^2 = \hat{\gamma}_{\Psi_N} = \hat{\gamma}_{\Psi_N}^\dagger
$$

Application of spectral theory and functional calculus: one-body density matrices Consider a system of non-interacting "electrons" with one-body Hamiltonian \hat{h}

Assume that \hat{h} has at least N eigenvalues $\varepsilon_1 \leq \varepsilon_2 \leq \cdots \leq \varepsilon_N$ (counting multiplicities) and that $\varepsilon_N < \varepsilon_{N+1}$ (energy gap). Then

• NVE ground-state density matrix is

$$
\hat{\gamma}_{\text{NVE}} = \mathbb{1}_{(-\infty,\mu_\text{F}]}(\hat{h})
$$

where μ_F is any number in the range $[\varepsilon_N, \varepsilon_{N+1})$ (Fermi level)

Assume that \hat{h} is diagonalizable: $\hat{h} = \sum_{i=1}^{n} h_i$ $+\infty$ $j=1$ $\varepsilon_j|\varphi_j\rangle\langle\varphi_j|$, $\langle\varphi_j|\varphi_{j'}\rangle=\delta_{jj'}$

• NVT (canonical) ground-state density matrix:

$$
\hat{\gamma}_{\text{NVT}} = f_{\beta}(\hat{h} - \mu), \quad \mu \text{ such that } \text{Tr}(\hat{\gamma}_{\text{NVT}}) = N, \quad f_{\beta}(\varepsilon) = \frac{1}{1 + e^{\beta \varepsilon}}
$$

• μ VT (grand-canonical) ground-state density matrix:

$$
\hat{\gamma}_{\mu VT} = f_{\beta}(\hat{h} - \mu)
$$