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Local evaluation of the energy (in a localised spin-orbital basis)  
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p

So-called “lattice representation”

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

χp(r)
Atomic 

or localized 
molecular orbital



Local evaluation of the energy (in a localised spin-orbital basis)  
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p

q

r

s

So-called “lattice representation” ⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

One-electron 

density matrix


(1RDM)

Two-electron 

density matrix


(2RDM)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron basis of molecular spin orbitals {φP}P=1,2,3,…,ℳ

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂c†
P ̂cQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂c†
P ̂c†

Q ̂cS ̂cR

Step 2: Implement the Hamiltonian in second quantization in that basis 

See the video  for further explanations*

https://www.youtube.com/watch?v=FQBrEI57pDA*
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron basis of molecular spin orbitals {φP}P=1,2,3,…,ℳ

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂c†
P ̂cQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂c†
P ̂c†

Q ̂cS ̂cR

Step 2: Implement the Hamiltonian in second quantization in that basis 

https://www.youtube.com/watch?v=FQBrEI57pDA*

creation operator annihilation operator
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

∫ dx φP(x)(−
1
2

∇2
r + velec−nuclei(x)) φQ(x) One-electron integrals

Step 1: Choose a one-electron basis of molecular spin orbitals {φP}P=1,2,3,…,ℳ

Step 2: Implement the Hamiltonian in second quantization in that basis 

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂c†
P ̂cQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂c†
P ̂c†

Q ̂cS ̂cR
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Two-electron integrals ∫ dx1 ∫ dx2 φP(x1)φQ(x2)
1

|r1 − r2 |
φR(x1)φS(x2)

Step 1: Choose a one-electron basis of molecular spin orbitals {φP}P=1,2,3,…,ℳ

Step 2: Implement the Hamiltonian in second quantization in that basis 

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂c†
P ̂cQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂c†
P ̂c†

Q ̂cS ̂cR
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E0 = ⟨Ψ0 | Ĥ |Ψ0⟩
notation= ⟨Ĥ⟩Ψ0

Evaluation of the energy from the reduced density matrices
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E0 = ⟨Ĥ⟩Ψ0

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Evaluation of the energy from the reduced density matrices
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E0 = ⟨Ĥ⟩Ψ0

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

One-electron reduced 
density matrix (1RDM)

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Evaluation of the energy from the reduced density matrices



13

E0 = ⟨Ĥ⟩Ψ0

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

One-electron reduced 
density matrix (1RDM)

ΓPQSR = ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Two-electron reduced 
density matrix (2RDM)

Evaluation of the energy from the reduced density matrices

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0
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Let’s consider a 2D lattice of localised spin-orbitals

P

Q

R

S

Meaning of the reduced density matrices
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γPQ = ⟨Ψ0 | ̂c†
P ̂cQ |Ψ0⟩

P

Q

R

S

Meaning of the reduced density matrices
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P

Q

R

S

ΓPQSR = ⟨Ψ0 | ̂c†
P ̂c†

Q ̂cS ̂cR |Ψ0⟩

Meaning of the reduced density matrices
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P

Q

R

S

ΓPQSR = ⟨Ψ0 | ̂c†
P ̂c†

Q ̂cS ̂cR |Ψ0⟩

Meaning of the reduced density matrices



Local evaluation of the energy (in a localised spin-orbital basis)  
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p

q

r

s

So-called “lattice representation” ⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

One-electron 

density matrix


(1RDM)

Two-electron 

density matrix


(2RDM)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).



Local evaluation of the energy (in a localised spin-orbital basis)  

19

q

r

s

p

⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

One-electron 

density matrix


(1RDM)

Two-electron 

density matrix


(2RDM)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Fragmentation 
for treating strong local electron correlations 



Local evaluation of the energy (in a localised spin-orbital basis)  
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p

q

r

s

Fragment 

So-called “lattice representation” ⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

One-electron 

density matrix


(1RDM)

Two-electron 

density matrix


(2RDM)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).
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Fragment

Fragment’s environment Entanglement

p

q

r

s

Local evaluation of the energy (in a localised spin-orbital basis)  

⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩So-called “lattice representation”

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).
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Quantum entanglement of a fragment with its environment

P

Q

R

S

The  orbital fragment is NOT disconnected from the other orbitals  PQRS
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P

Q

R

S

The  orbital fragment is NOT disconnected from the other orbitals  PQRS

Open quantum  
subsystem

Quantum entanglement of a fragment with its environment
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Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR

In principle, we need to solve the Schrödinger equation 

in order to evaluate the (ground-state) energy:

Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Quantum entanglement of a fragment with its environment
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Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR

In principle, we need to solve the Schrödinger equation 

in order to evaluate the (ground-state) energy:

Ĥ |Ψ0⟩ = E0 |Ψ0⟩

A  consisting of electrons simply distributed among disconnected fragments 
cannot match !    

|Ψ0⟩
Ĥ |Ψ0⟩

Quantum entanglement of a fragment with its environment
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P

Q

R

S
Entanglement

T
hPT ≠ 0

L hLQ ≠ 0

Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR

Summation running 

over the full lattice!

Quantum entanglement of a fragment with its environment
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P

Q

R

S
Entanglement

T

M

gPMTS ≠ 0

Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR

Summation running 

over the full lattice!

Quantum entanglement of a fragment with its environment
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P

Q

R

S

The evaluation of the RDMs requires, in principle, the wave function  
of the entire system

Ψ0

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

ΓPQSR = ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Quantum entanglement of a fragment with its environment
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H

HH

H
H

H

H

H
HH

H

H

H

H
H

H

How many localized configurations in total? 
(in a minimal basis of  orbitals)1s

ℳ = 2 × N

Spin

Number of atoms 
= 

number of 
electrons
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ℳ = 2 × N

How many localized configurations in total? 
(in a minimal basis of  orbitals)1s

Nconf. =
ℳ!

N!(ℳ−N)!
=

(2N)!
(N!)2
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ℳ = 2 × N

≈
22N

πN
=

e2N ln 2

πN

N! ≈ 2πN ( N
e )

N
Stirling formula for large  valuesN

How many localized configurations in total? 
(in a minimal basis of  orbitals)1s

Nconf. =
ℳ!

N!(ℳ−N)!
=

(2N)!
(N!)2
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Nconf. ≈
e2N ln 2

πN

How many localized configurations in total? 
(in a minimal basis of  orbitals)1s

The to-be-diagonalized Hamiltonian is a  matrix! Nconf. × Nconf.
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Nconf. ≈
e2N ln 2

πN
“Exponential wall”

How many localized configurations in total? 
(in a minimal basis of  orbitals)1s

The to-be-diagonalized Hamiltonian is a  matrix! Nconf. × Nconf.
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Nconf. ≈
e2N ln 2

πN

N=50≈ 1029

How many localized configurations in total? 
(in a minimal basis of  orbitals)1s
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Nconf. ≈
e2N ln 2

πN

N=400≈ 1.88 × 10239

How many localized configurations in total? 
(in a minimal basis of  orbitals)1s



Philosophy of density matrix embedding theory (DMET) 

36G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).



Local evaluation of the energy (in a localised spin-orbital basis)  
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p

q

r

s

Fragment 

So-called “lattice representation” ⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

One-electron 

density matrix


(1RDM)

Two-electron 

density matrix


(2RDM)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).
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Embedding cluster 𝒞

Reduction in size of the problem to be solved:

⟨ ̂c†
p ̂cq⟩full system ≈ ⟨ ̂c†

p ̂cq⟩Ψ𝒞

⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩full system ≈ ⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩Ψ𝒞

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Few-electron 
correlated wave function


What are we aiming at? 

p

q

r

s
Ψ𝒞Quantum bath 


 electronic reservoir≡

Embedded fragment  
(impurities)
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Embedding cluster 𝒞

⟨ ̂c†
p ̂cq⟩full system ≈ ⟨ ̂c†

p ̂cq⟩Ψ𝒞

⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩full system ≈ ⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩Ψ𝒞

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Few-electron 
correlated wave function


What are we aiming at? 

4 orbitals here: 
Why and how?

p

q

r

s
Ψ𝒞Quantum bath 


 electronic reservoir≡

Embedded fragment  
(impurities)

Reduction in size of the problem to be solved:
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Embedding cluster 𝒞

⟨ ̂c†
p ̂cq⟩full system ≈ ⟨ ̂c†

p ̂cq⟩Ψ𝒞

⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩full system ≈ ⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩Ψ𝒞

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Few-electron 
correlated wave function


What are we aiming at? 

4 orbitals here: 
Why and how?

How many?

p

q

r

s
Ψ𝒞Quantum bath 


 electronic reservoir≡

Embedded fragment  
(impurities)

Reduction in size of the problem to be solved:
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p

q

r

s

Fragment 

So-called “lattice representation”

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Clusterization through a unitary one-electron transformation 

χp(r)
Atomic 

or localized 
molecular orbital
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Quantum bath 
(spin-orbital subspace)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

p

q

r

s

“fragment+bath”cluster’s  
environment 

(spin-orbital subspace)

|χq⟩ →
lattice

∑
p

𝒰pq |χp⟩

Fragment

Clusterization through a unitary one-electron transformation 



43

Quantum bath 
(spin-orbital subspace)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

p

q

r

s

“fragment+bath”cluster’s  
environment 

(spin-orbital subspace)

Fragment

|χq⟩ →
lattice

∑
p

𝒰pq |χp⟩

???
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Quantum bath 
(spin-orbital subspace)

p

q

r

s

Clusterization through a unitary one-electron transformation 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Fragment

Embedding cluster 𝒞
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Quantum bath 
(spin-orbital subspace)

p

q

r

s

Clusterization through a unitary one-electron transformation 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Fragment

Embedding cluster 𝒞

How much information do we loose?



Mathematical construction of the quantum bath 

46
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1ff

0ef
𝒰 =

0fe

𝒰eℰ

Bath Cluster’s  
environment

Fragment

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

|χq⟩ →
lattice

∑
p

𝒰pq |χp⟩

Quantum bath seen as a functional of the density matrix (1RDM)  

𝒰eb
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1ff

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ

Bath Cluster’s  
environment

Fragment

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Fr
ag

m
en

t
En

vi
ro

nm
en

t 
of

 th
e 

fra
gm

en
t

Quantum bath seen as a functional of the density matrix (1RDM)  
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1ff

0ef

0fe

𝒰eℰ

Cluster’s  
environment

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

𝒰eb

Quantum bath seen as a functional of the density matrix (1RDM)  

𝒰 =
Fr

ag
m

en
t

En
vi

ro
nm

en
t 

of
 th

e 
fra

gm
en

t



S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Yalouz, S. Sekaran, E. Fromager, and M. Saubanère, J. Chem. Phys. 157, 214112 (2022). 
S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

50

γ ≡ ⟨Ψ | ̂c†
p ̂cq |Ψ⟩ = ⟨ ̂c†

p ̂cq⟩ ≡

γff

γef

γ†
ef

γee

Quantum bath seen as a functional of the density matrix (1RDM)  

Fragment block

Environment-fragment  
block

Lattice  
representation!
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1ff

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γ†
ef

γeeγef

γff

γ†
ef 𝒰eℰ ≡ 0Implicit (but much simpler) definition  

of the cluster’s environment: 

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Cluster’s  
environment

Quantum bath seen as a functional of the density matrix (1RDM)  

Will be justified later on…

Env.-fragment block
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1ff

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γ†
ef

γeeγef

γff

γ†
ef 𝒰eℰ ≡ 0

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Cluster’s  
environment

Orthogonality constraint

Quantum bath seen as a functional of the density matrix (1RDM)  

Env.-fragment block



53

1ff

0ef 𝒰eb
𝒰 =

0fe

𝒰eℰ
γ =

γ†
ef

γeeγef

γff

γ†
ef 𝒰eℰ ≡ 0

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Cluster’s  
environment

Orthogonality constraint

{
environment

∑
e

γef |χe⟩}
f

Quantum bath ≡

Quantum bath seen as a functional of the density matrix (1RDM)  

Env.-fragment block

Spin-orbital  
subspace
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γ =

γ†
ef

γeeγef

γff

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

{
environment

∑
e

γef |χe⟩}
f

Quantum bath ≡

Quantum bath seen as a functional of the density matrix (1RDM)  

Env.-fragment block
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γ =

γ†
ef

γeeγef

γff

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

{
environment

∑
e

γef |χe⟩}
f

Quantum bath ≡

Quantum bath seen as a functional of the density matrix (1RDM)  

Env.-fragment block

In principle as many bath spin-orbitals  
as the dimension of the fragment  

(number of “impurities”) 

✅
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γ =

γ†
ef

γeeγef

γff

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

{
environment

∑
e

γef |χe⟩}
f

Quantum bath ≡

Quantum bath seen as a functional of the density matrix (1RDM)  

Env.-fragment block

To-be orthonormalized 
(SVD, Householder transformation, …)
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γff
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S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Cluster’s  
environment

Orthogonality constraint

Quantum bath seen as a functional of the density matrix (1RDM)  

Env.-fragment block

🤔
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1ff
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γff

γef

γ†
ef

γee

γ̃ = 𝒰†γ𝒰 ≡

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Let’s visualize the clusterization in the 1RDM…
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γ̃ = 𝒰†γ𝒰 ≡

γff
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=
0

= 0

Orthogonality constraint

Orthogonality constraint

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

“fragment+bath”  
embedding cluster
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γ̃ = 𝒰†γ𝒰 ≡

γff

γ̃bf

γ̃†
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γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
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0ℰf

0fℰ

“fragment+bath”  
embedding cluster

Cluster’s  
environment

Unitary transformed density matrix 

Entanglement 

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).
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What if the full-system density matrix is idempotent? 
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0⋱

0
0 0

11
1⋱ Molecular orbital  
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φ2

φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Mean-field (HF)  
or Kohn-Sham DFT
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What if the full-system density matrix is idempotent? 

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

γ ≡
1

0⋱

0
0 0

11
1⋱ Molecular orbital  

representation!

φ2

φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Mean-field (HF)  
or Kohn-Sham DFTNote that Tr γ = N Total number of electrons  

(in the full system)
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What if the full-system density matrix is idempotent? 
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γ ≡
1

0⋱

0
0 0

11
1⋱ Molecular orbital  

representation!

φ2

φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

γ2

=

Mean-field (HF)  
or Kohn-Sham DFT
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γ̃ = 𝒰†γ𝒰 ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
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0ℰf

0fℰ

“fragment+bath”  
embedding cluster

Cluster’s  
environment

Unitary transformed density matrix 

= 0bℰ

if  thenγ2 = γ

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

idempotency
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γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ

γ̃2 = γ̃ = 𝒰†γ𝒰 ≡

Disconnected  
embedding cluster

Cluster’s  
environment0

0

Unitary transformed density matrix 

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

✅

idempotency
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γff
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Cluster’s  

environment0

0

Unitary transformed density matrix 

Lf Lf

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

γff+γ̃−1
bf γ̃bbγ̃bf = 1ff

γ2 = γ

idempotency
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γff

γ̃bf

γ̃†
bf

γ̃bb
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Cluster’s  

environment0

0

Unitary transformed density matrix 

Lf Lf

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

γff+γ̃−1
bf γ̃bbγ̃bf = 1ff

γ2 = γ

Tr[γff] + Tr [γ̃bb] = Lf

idempotency
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γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ
Cluster’s  

environment0

0

Unitary transformed density matrix 

Lf Lf

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

γff+γ̃−1
bf γ̃bbγ̃bf = 1ff

γ2 = γ

Tr[γff] + Tr [γ̃bb] = Lf

The number of electrons in the cluster 

equals the number of embedded impurities

✅

idempotency
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Density matrix of the full system

Starting a DMET calculation… 

= ???γ =

γff

γef

γ†
ef

γee

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).
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Density matrix of the full system

Starting a DMET calculation… 

γ =

γff

γef

γ†
ef

γee

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Idempotent (γ2 = γ)

Mean-field evaluation in practice
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Hubbard model for rings of hydrogen atoms
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Effective  
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G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
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S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.
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∑
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i↓ ̂ci↓ ̂ci↑



Approximate embedding of interacting Hamiltonians
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ĥ𝒞
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Approximate embedding of interacting Hamiltonians
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ĥ𝒞 single impurity
→ ĥ𝒞 + ⟨pp |pp⟩ ̂c†

p↑ ̂c†
p↓ ̂cp↓ ̂cp↑
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Exact non-interacting
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ĥ𝒞 single impurity
→ ĥ𝒞 + ⟨pp |pp⟩ ̂c†

p↑ ̂c†
p↓ ̂cp↓ ̂cp↑
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ĥ𝒞 single impurity
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Chemical potential 
on the impurity
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ĥ𝒞 single impurity
→ ĥ𝒞 + ⟨pp |pp⟩ ̂c†

p↑ ̂c†
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̂c†
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Chemical potential 
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FIG. 9. Ht-DMFET per-site energies plotted as a function of the
lattice filling n for various correlation regimes. Results obtained with
a single impurity are shown as (colored) solid lines. The blue color
corresponds to the noninteracting bath (NIB) case. In the strongly
correlated U/t = 8 regime (bottom panel), NIB results obtained with
two (Nimp = 2) and three (Nimp = 3) impurities are also shown (as
points), for analysis purposes (see Sec. III C for further details).
Comparison is made with the exact Bethe ansatz (BA) results (black
solid lines). In the weakly U/t = 1 correlated case (top panel), exact
and approximate results are almost indistinguishable.

are not allowed in our approximate embedding. As discussed
in Sec. II B, away from half-filling, the cluster becomes an
open subsystem as soon as U/t deviates from zero. Surpris-
ingly, in this density regime, per-site energies are in better
agreement with the BA values when the interaction in the bath
is neglected. Again, in the latter case, we recover the single-
impurity DMET results of Ref. [30]. As expected [30,35] and
shown in the bottom panel of Fig. 9, the results dramatically
improve when a larger fragment (consisting of two or three
impurities) is embedded, even at the simplest NIB level of
approximation.

Finally, we investigate in Fig. 10 the density-driven Mott-
Hubbard transition via the evaluation of the density-functional
µ(n) = ∂e(n)/∂n chemical potential from the Ht-DMFET en-
ergy expression of Eq. (69). As expected from Ref. [30], at
the single-impurity level, there is no gap opening when the
interaction in the bath is neglected. Restoring the interaction
in the bath has actually no impact on the transition. In the
light of Sec. II B, we can reasonably assume that Ht-DMFET
fails in this case because it relies on a closed two-electron
“single impurity+single bath” cluster. Already at the NIB
level of approximation, the embedding of a larger fragment
(consisting of two or three impurities) substantially improves
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FIG. 10. Lattice filling plotted, via the relation µ ≡ µ(n) =
∂e(n)/∂n, as a function of the (lattice) chemical potential µ at
the Ht-DMFET level of calculation for various correlation regimes.
(Single-impurity) noninteracting bath (NIB) results are shown as
solid blue lines. In the strongly correlated U/t = 8 case, NIB results
obtained with Nimp = 2 and Nimp = 3 impurities are also shown (as
points), for analysis purposes. Comparison is made with the exact
Bethe ansatz (BA) results.

the results. Nevertheless, even in this case, the gap remains
closed, which is in perfect agreement with the DET results of
Ref. [35]. As we perform single-shot embeddings (where we
only require the embedded impurity to reproduce the correct
filling n), we expect from Ref. [35] the transition to be better
described at the multiple-impurity level when the interactions
in the bath are taken into account. It would also be interesting
to see how Ht-DMFET performs when a correlated (through
the density matrix) bath is employed. This is left for future
work.

V. CONCLUSIONS AND PERSPECTIVES

Similar in spirit to DMET, a (static and zero-temperature)
single-impurity Householder-transformed density matrix
functional embedding theory (Ht-DMFET) has been derived.
The theory has been applied to the 1D Hubbard model. In the
noninteracting case, the formal reduction of the full lattice
to a two-electron dimer is exact. Thanks to the Householder
transformation, the bath site can be determined (analytically)
from the density matrix of the (full) lattice. Alternatively,
one may determine, in principle exactly, the Householder
vector v (which defines the transformation) by minimizing
the sum of the v-dependent Householder cluster and envi-
ronment energies. While the two-site “impurity+bath” cluster
problem is trivially solved, the ground-state energy of the
cluster’s environment must be evaluated for each trial vec-
tor v. Even though such a strategy is uselessly complicated
in practice, because the noninteracting full-size problem can
be solved directly, it is enlightening in many ways. First, it
clearly shows that the optimal cluster cannot be determined
without learning from its environment (and therefore from the
full lattice). The two subsystems “communicate” through the
Householder vector. Second, the resulting variational charac-
ter of the bath might be exploited when electron correlation

035121-12

(Hubbard) model of a stretched 400-atom hydrogen ring 

Single embedded

hydrogen atom

 DMET≡
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FIG. 9. Ht-DMFET per-site energies plotted as a function of the
lattice filling n for various correlation regimes. Results obtained with
a single impurity are shown as (colored) solid lines. The blue color
corresponds to the noninteracting bath (NIB) case. In the strongly
correlated U/t = 8 regime (bottom panel), NIB results obtained with
two (Nimp = 2) and three (Nimp = 3) impurities are also shown (as
points), for analysis purposes (see Sec. III C for further details).
Comparison is made with the exact Bethe ansatz (BA) results (black
solid lines). In the weakly U/t = 1 correlated case (top panel), exact
and approximate results are almost indistinguishable.

are not allowed in our approximate embedding. As discussed
in Sec. II B, away from half-filling, the cluster becomes an
open subsystem as soon as U/t deviates from zero. Surpris-
ingly, in this density regime, per-site energies are in better
agreement with the BA values when the interaction in the bath
is neglected. Again, in the latter case, we recover the single-
impurity DMET results of Ref. [30]. As expected [30,35] and
shown in the bottom panel of Fig. 9, the results dramatically
improve when a larger fragment (consisting of two or three
impurities) is embedded, even at the simplest NIB level of
approximation.

Finally, we investigate in Fig. 10 the density-driven Mott-
Hubbard transition via the evaluation of the density-functional
µ(n) = ∂e(n)/∂n chemical potential from the Ht-DMFET en-
ergy expression of Eq. (69). As expected from Ref. [30], at
the single-impurity level, there is no gap opening when the
interaction in the bath is neglected. Restoring the interaction
in the bath has actually no impact on the transition. In the
light of Sec. II B, we can reasonably assume that Ht-DMFET
fails in this case because it relies on a closed two-electron
“single impurity+single bath” cluster. Already at the NIB
level of approximation, the embedding of a larger fragment
(consisting of two or three impurities) substantially improves
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FIG. 10. Lattice filling plotted, via the relation µ ≡ µ(n) =
∂e(n)/∂n, as a function of the (lattice) chemical potential µ at
the Ht-DMFET level of calculation for various correlation regimes.
(Single-impurity) noninteracting bath (NIB) results are shown as
solid blue lines. In the strongly correlated U/t = 8 case, NIB results
obtained with Nimp = 2 and Nimp = 3 impurities are also shown (as
points), for analysis purposes. Comparison is made with the exact
Bethe ansatz (BA) results.

the results. Nevertheless, even in this case, the gap remains
closed, which is in perfect agreement with the DET results of
Ref. [35]. As we perform single-shot embeddings (where we
only require the embedded impurity to reproduce the correct
filling n), we expect from Ref. [35] the transition to be better
described at the multiple-impurity level when the interactions
in the bath are taken into account. It would also be interesting
to see how Ht-DMFET performs when a correlated (through
the density matrix) bath is employed. This is left for future
work.

V. CONCLUSIONS AND PERSPECTIVES

Similar in spirit to DMET, a (static and zero-temperature)
single-impurity Householder-transformed density matrix
functional embedding theory (Ht-DMFET) has been derived.
The theory has been applied to the 1D Hubbard model. In the
noninteracting case, the formal reduction of the full lattice
to a two-electron dimer is exact. Thanks to the Householder
transformation, the bath site can be determined (analytically)
from the density matrix of the (full) lattice. Alternatively,
one may determine, in principle exactly, the Householder
vector v (which defines the transformation) by minimizing
the sum of the v-dependent Householder cluster and envi-
ronment energies. While the two-site “impurity+bath” cluster
problem is trivially solved, the ground-state energy of the
cluster’s environment must be evaluated for each trial vec-
tor v. Even though such a strategy is uselessly complicated
in practice, because the noninteracting full-size problem can
be solved directly, it is enlightening in many ways. First, it
clearly shows that the optimal cluster cannot be determined
without learning from its environment (and therefore from the
full lattice). The two subsystems “communicate” through the
Householder vector. Second, the resulting variational charac-
ter of the bath might be exploited when electron correlation
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Mott-Hubbard density-driven transition and multiple impurities
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Self-consistency and formal connection with DFT  
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Abstract: Quantum embedding is a divide and conquer strategy that aims at solving the electronic
Schrödinger equation of sizeable molecules or extended systems. We establish in the present work
a clearer and in-principle-exact connection between density matrix embedding theory (DMET)
and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard
model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder
transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified
density-functional approximations, a self-consistent local potential functional embedding theory
(LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with
our formally exact density-functional embedding theory reveals that a single statically embedded
impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a
complementary density-functional correlation potential (which is neglected in both DMET and
LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple
impurities (which would enable to circumvent the modeling of DDs) and its generalization to
quantum chemical Hamiltonians are left for future work.
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1. Introduction

Kohn–Sham density-functional theory (KS-DFT) [1] has become over the last two
decades the method of choice for computational chemistry and physics studies, essentially
because it often provides a relatively accurate description of the electronic structure of large
molecular or extended systems at a low computational cost. The major simplification of
the electronic structure problem in KS-DFT lies in the fact that the ground-state energy is
evaluated, in principle exactly, from a non-interacting single-configuration wave function,
which is simply referred to as the KS determinant. The latter is obviously not the exact
solution to the Schrödinger equation. However, its density matches the exact interacting
ground-state density, so that the Hartree-exchange-correlation (Hxc) energy of the physical
system, which is induced by the electronic repulsion, can be recovered from an appropriate
(in principle exact and universal) Hxc density functional. Despite the success of KS-DFT,
standard density-functional approximations still fail in describing strongly correlated
electrons. To overcome this issue, various strategies have been explored and improved over
the years, both in condensed matter physics [2–7] and quantum chemistry [8]. Note that,
in the latter case, in-principle-exact multi-determinantal extensions of DFT based on the
adiabatic connection formalism have been developed [9–12]. In these approaches, the KS
system is only referred to in the design of density-functional approximations. In practice,

Computation 2022, 10, 45. https://doi.org/10.3390/computation10030045 https://www.mdpi.com/journal/computation

!"#!$%&'(!
!"#$%&'

Citation: Sekaran, S.; Saubanère, M.;

Fromager, E. Local Potential

Functional Embedding Theory:

A Self-Consistent Flavor of Density

Functional Theory for Lattices

without Density Functionals.

Computation 2022, 10, 45. https://

doi.org/10.3390/computation10030045

Academic Editor: Henry Chermette

Received: 15 February 2022

Accepted: 14 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Local Potential Functional Embedding Theory: A Self-Consistent

Flavor of Density Functional Theory for Lattices without

Density Functionals

Sajanthan Sekaran
1,

* , Matthieu Saubanère
2

and Emmanuel Fromager
1

1 Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 Rue Blaise Pascal,
67000 Strasbourg, France; fromagere@unistra.fr

2 ICGM, Université de Montpellier, CNRS, ENSCM, 34000 Montpellier, France;
matthieu.saubanere@umontpellier.fr

* Correspondence: s.sekaran@unistra.fr

Abstract: Quantum embedding is a divide and conquer strategy that aims at solving the electronic
Schrödinger equation of sizeable molecules or extended systems. We establish in the present work
a clearer and in-principle-exact connection between density matrix embedding theory (DMET)
and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard
model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder
transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified
density-functional approximations, a self-consistent local potential functional embedding theory
(LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with
our formally exact density-functional embedding theory reveals that a single statically embedded
impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a
complementary density-functional correlation potential (which is neglected in both DMET and
LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple
impurities (which would enable to circumvent the modeling of DDs) and its generalization to
quantum chemical Hamiltonians are left for future work.
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1. Introduction

Kohn–Sham density-functional theory (KS-DFT) [1] has become over the last two
decades the method of choice for computational chemistry and physics studies, essentially
because it often provides a relatively accurate description of the electronic structure of large
molecular or extended systems at a low computational cost. The major simplification of
the electronic structure problem in KS-DFT lies in the fact that the ground-state energy is
evaluated, in principle exactly, from a non-interacting single-configuration wave function,
which is simply referred to as the KS determinant. The latter is obviously not the exact
solution to the Schrödinger equation. However, its density matches the exact interacting
ground-state density, so that the Hartree-exchange-correlation (Hxc) energy of the physical
system, which is induced by the electronic repulsion, can be recovered from an appropriate
(in principle exact and universal) Hxc density functional. Despite the success of KS-DFT,
standard density-functional approximations still fail in describing strongly correlated
electrons. To overcome this issue, various strategies have been explored and improved over
the years, both in condensed matter physics [2–7] and quantum chemistry [8]. Note that,
in the latter case, in-principle-exact multi-determinantal extensions of DFT based on the
adiabatic connection formalism have been developed [9–12]. In these approaches, the KS
system is only referred to in the design of density-functional approximations. In practice,
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and compute approximate per-site energies as follows,

E(µ)
L

+ µn(µ) ⇡
LPFET

⌦
t̂01 + Û0

↵
YC (µ�ṽHxc,ṽHxc)

, (88)

since the approximation in Equation (75) is also used in LPFET, as discussed above.

Figure 1. Graphical representation of the LPFET procedure. Note that the same Hxc potential ṽHxc is
used in the KS lattice and the embedding Householder cluster. It is optimized self-consistently in
order to fulfill the density constraint of Equation (85). See text for further details.

Note that Ht-DMFET (which is equivalent to DMET in the present context) and LPFET
use the same per-site energy expression (see Equation (47)), which is a functional of the
interacting cluster’s wave function. In both approaches, the latter and the non-interacting
lattice share the same density. Therefore, if the per-site energy or the double occupation⌦

n̂0"n̂0#
↵

were plotted as functions of the (converged) lattice filling n, as it is usually done
in the literature [15], both methods would give exactly the same results. The reason
is that, at convergence of the LPFET algorithm, the density constraint of Equation (85)
should be fulfilled, exactly like in Ht-DMFET (see Equations (45) and (46)). However, if
properties were plotted as functions of the chemical potential value µ in the true interacting
lattice, LPFET and Ht-DMFET would give different results, simply because the densities
obtained (for a given µ value) with the two methods would be different. Indeed, as
shown in Section 2.3.2, Ht-DMFET can be viewed as an approximation to KS-DFT where
the Hxc density-functional potential of Equation (78) is employed. As readily seen from
Equation (86), the LPFET and Ht-DMFET Hxc potentials differ by the Householder kinetic
correlation potential (which is neglected in LPFET). If the corresponding KS densities
were the same then the Hxc potential, the Householder transformation, and, therefore,
the chemical potential on the interacting embedded impurity would be the same, which
is impossible according to Equations (78) and (86). In summary, differences in properties
between LPFET and Ht-DMFET are directly related to differences in density. This is
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should be fulfilled, exactly like in Ht-DMFET (see Equations (45) and (46)). However, if
properties were plotted as functions of the chemical potential value µ in the true interacting
lattice, LPFET and Ht-DMFET would give different results, simply because the densities
obtained (for a given µ value) with the two methods would be different. Indeed, as
shown in Section 2.3.2, Ht-DMFET can be viewed as an approximation to KS-DFT where
the Hxc density-functional potential of Equation (78) is employed. As readily seen from
Equation (86), the LPFET and Ht-DMFET Hxc potentials differ by the Householder kinetic
correlation potential (which is neglected in LPFET). If the corresponding KS densities
were the same then the Hxc potential, the Householder transformation, and, therefore,
the chemical potential on the interacting embedded impurity would be the same, which
is impossible according to Equations (78) and (86). In summary, differences in properties
between LPFET and Ht-DMFET are directly related to differences in density. This is
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The converged LPFET densities are plotted in Figure 5 as functions of the chemical
potential µ in various correlation regimes. The non-interacting U = 0 curve describes
the KS lattice at the zeroth iteration of the LPFET calculation. Thus, we can visualize, as
U deviates from zero, how much the KS lattice learns from the interacting two-electron
Householder cluster. LPFET is actually quite accurate (even more than Ht-DMFET, probably
because of error cancellations) in the low filling regime. Even though LPFET deviates
from Ht-DMFET when electron correlation is strong, as expected, their chemical-potential-
density maps are quite similar. This is an indication that neglecting the Householder
kinetic correlation potential contribution to the Hxc potential, as done in LPFET, is not a
crude approximation, even in the strongly correlated regime. As expected [15,31], LPFET
and Ht-DMFET poorly perform when approaching half filling. Like the well-established
single-site DMFT (see Figure 7 of Ref. [5]), they are unable to describe the density-driven
Mott–Hubbard transition (i.e., the opening of the gap). As discussed in Ref. [31], this might
be related to the fact that, in the exact theory, the Householder cluster is not disconnected
from its environment and it contains a fractional number of electrons, away from half
filling, unlike in the (approximate) Ht-DMFET and LPFET schemes. In the language of
KS-DFT, modeling the gap opening is equivalent to modeling the derivative discontinuity
in the density-functional correlation potential vc(n) = µ(n)� µs(n)� U

2 n at half filling.
As clearly shown in Figure 6, Ht-DMFET and LPFET do not reproduce this feature. In the
language of the exact density-functional embedding theory derived in Section 2.3, both
Ht-DMFET and LPFET approximations neglect the complementary density-functional
correlation energy ec(n) that is induced by the interacting bath and the environment of
the (closed) density-functional Householder cluster. As readily seen from Equation (74), it
should be possible to describe the density-driven Mott–Hubbard transition with a single
statically embedded impurity, provided that we can model the derivative discontinuity in
∂ec(n)/∂n at half filling. This is obviously a challenging task that is usually bypassed by
embedding more impurities [15,31]. The implementation of a multiple-impurity LPFET as
well as its generalization to higher-dimension lattice or quantum chemical Hamiltonians is
left for future work.
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Figure 5. Converged LPFET densities (red solid lines) plotted as functions of the chemical potential
µ in various correlation regimes. Comparison is made with the exact BA (black solid lines) and Ht-
DMFET (blue dotted lines) results. In the latter case, the chemical potential is evaluated via the numer-
ical differentiation of the density-functional Ht-DMFET per-site energy (see Equations (62) and (76)).
The non-interacting (U = 0) chemical-potential-density map (see Equation (60)) is shown for
analysis purposes.
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ABSTRACT: Density matrix embedding theory (DMET) for-
mally requires the matching of density matrix blocks obtained from
high-level and low-level theories, but this is sometimes not
achievable in practical calculations. In such a case, the global band
gap of the low-level theory vanishes, and this can require additional
numerical considerations. We find that both the violation of the
exact matching condition and the vanishing low-level gap are
related to the assumption that the high-level density matrix blocks
are noninteracting pure-state v-representable (NI-PS-V), which
assumes that the low-level density matrix is constructed following
the Aufbau principle. To relax the NI-PS-V condition, we develop
an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for
the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle
directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

1. INTRODUCTION
Density matrix embedding theory (DMET)1−8 is a quantum
embedding theory designed to treat strong correlation effects
in large quantum systems. DMET and its related variants have
been successfully applied to a wide range of systems such as
Hubbard models,1,4,9−15 quantum spin models,16−18 and a
number of strongly correlated molecular and periodic
systems.2,5,8,19−29 The main idea of DMET is to partition the
global quantum system into several “quantum impurities”.
Each impurity is treated accurately via a high-level theory
(such as full configuration interaction (FCI),30−32 coupled
cluster theory,33 density matrix renormalization group
(DMRG),34 etc.). Global information, in particular the one-
electron reduced density matrix (1-RDM), is made consistent
between all of the impurities with the help of a low-level
Hartree−Fock (HF) type of theory. In the self-consistent-field
DMET (SCF-DMET), this global information is then used to
update the impurity problems in the next self-consistent
iteration, until a certain consistency condition of the 1-RDM is
satisfied between the high-level and low-level theories.1−4,35,36

(Throughout this Article, DMET refers to SCF-DMET. This is
in contrast to one-shot DMET, in which the impurity problem
is only solved once without self-consistent updates.)
In DMET, the self-consistency condition can be achieved by

optimizing a correlation potential, which can be viewed as a
Lagrange multiplier associated with the matching condition of
the 1-RDMs. For instance, if the self-consistency condition
only requires electron densities from the high-level and low-
level theories to match (e.g., in ref 4), then the problem of
finding the correlation potential strongly resembles the v-

representability problem in density functional theory
(DFT).37−41 Omitting the spin degree of freedom, an electron
density ρ (often obtained from a many-body calculation) with
N electrons is called noninteracting pure-state v-representable
(NI-PS-V), if ρ can be reconstructed (1) from a single particle
Hamiltonian with potential v (2) using the energetically lowest
N orbitals. Condition (2) is also referred to as the Aufbau
principle. There are densities that are not NI-PS-V, but for
DFT such densities are rare exceptions rather than the norm.41

DMET requires the matching condition for certain 1-RDM
matrix blocks corresponding to the high-level 1-RDMs. The
correlation potential (denoted by u following the convention in
the literature) then consists of matrix blocks of matching
dimensions. While v-representability in DFT usually concerns
a diagonal potential in the real-space basis, the correlation
potential in DMET is expressed as a block diagonal matrix in
the fragment-orbital basis. In a typical DMET calculation, the
1-RDM is assumed to be NI-PS-V; in particular, the low-level
1-RDM is reconstructed following the Aufbau principle.
However, from the very beginning of the development of
DMET, it was noticed that the exact matching of the 1-RDMs
often cannot be achieved.1,2,4 Therefore, as a practical solution,
the matching condition is relaxed into a least-squares
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ABSTRACT: Density matrix embedding theory (DMET) for-
mally requires the matching of density matrix blocks obtained from
high-level and low-level theories, but this is sometimes not
achievable in practical calculations. In such a case, the global band
gap of the low-level theory vanishes, and this can require additional
numerical considerations. We find that both the violation of the
exact matching condition and the vanishing low-level gap are
related to the assumption that the high-level density matrix blocks
are noninteracting pure-state v-representable (NI-PS-V), which
assumes that the low-level density matrix is constructed following
the Aufbau principle. To relax the NI-PS-V condition, we develop
an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for
the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle
directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

1. INTRODUCTION
Density matrix embedding theory (DMET)1−8 is a quantum
embedding theory designed to treat strong correlation effects
in large quantum systems. DMET and its related variants have
been successfully applied to a wide range of systems such as
Hubbard models,1,4,9−15 quantum spin models,16−18 and a
number of strongly correlated molecular and periodic
systems.2,5,8,19−29 The main idea of DMET is to partition the
global quantum system into several “quantum impurities”.
Each impurity is treated accurately via a high-level theory
(such as full configuration interaction (FCI),30−32 coupled
cluster theory,33 density matrix renormalization group
(DMRG),34 etc.). Global information, in particular the one-
electron reduced density matrix (1-RDM), is made consistent
between all of the impurities with the help of a low-level
Hartree−Fock (HF) type of theory. In the self-consistent-field
DMET (SCF-DMET), this global information is then used to
update the impurity problems in the next self-consistent
iteration, until a certain consistency condition of the 1-RDM is
satisfied between the high-level and low-level theories.1−4,35,36

(Throughout this Article, DMET refers to SCF-DMET. This is
in contrast to one-shot DMET, in which the impurity problem
is only solved once without self-consistent updates.)
In DMET, the self-consistency condition can be achieved by

optimizing a correlation potential, which can be viewed as a
Lagrange multiplier associated with the matching condition of
the 1-RDMs. For instance, if the self-consistency condition
only requires electron densities from the high-level and low-
level theories to match (e.g., in ref 4), then the problem of
finding the correlation potential strongly resembles the v-

representability problem in density functional theory
(DFT).37−41 Omitting the spin degree of freedom, an electron
density ρ (often obtained from a many-body calculation) with
N electrons is called noninteracting pure-state v-representable
(NI-PS-V), if ρ can be reconstructed (1) from a single particle
Hamiltonian with potential v (2) using the energetically lowest
N orbitals. Condition (2) is also referred to as the Aufbau
principle. There are densities that are not NI-PS-V, but for
DFT such densities are rare exceptions rather than the norm.41

DMET requires the matching condition for certain 1-RDM
matrix blocks corresponding to the high-level 1-RDMs. The
correlation potential (denoted by u following the convention in
the literature) then consists of matrix blocks of matching
dimensions. While v-representability in DFT usually concerns
a diagonal potential in the real-space basis, the correlation
potential in DMET is expressed as a block diagonal matrix in
the fragment-orbital basis. In a typical DMET calculation, the
1-RDM is assumed to be NI-PS-V; in particular, the low-level
1-RDM is reconstructed following the Aufbau principle.
However, from the very beginning of the development of
DMET, it was noticed that the exact matching of the 1-RDMs
often cannot be achieved.1,2,4 Therefore, as a practical solution,
the matching condition is relaxed into a least-squares
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Non-Hermitian quantum mechanics? 
Non-Hermitian but idempotent density matrix, static self-energy, … 

https://www.youtube.com/watch?v=8zgMa-MhoZg 
https://www.youtube.com/watch?v=mDkzmSJwwkQ&t=726s

🤔
Using an enlarged bath (ghost orbitals)? 

N. Lanatà, Phys. Rev. B 108, 235112 (2023).

https://www.youtube.com/watch?v=8zgMa-MhoZg
https://www.youtube.com/watch?v=mDkzmSJwwkQ&t=726s
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ABSTRACT: Quantum embedding is an appealing route to fragment a
large interacting quantum system into several smaller auxiliary “cluster”
problems to exploit the locality of the correlated physics. In this work, we
critically review approaches to recombine these fragmented solutions in
order to compute nonlocal expectation values, including the total energy.
Starting from the democratic partitioning of expectation values used in
density matrix embedding theory, we motivate and develop a number of
alternative approaches, numerically demonstrating their e!ciency and
improved accuracy as a function of increasing cluster size for both
energetics and nonlocal two-body observables in molecular and solid state
systems. These approaches consider the N-representability of the resulting
expectation values via an implicit global wave function across the clusters, as
well as the importance of including contributions to expectation values
spanning multiple fragments simultaneously, thereby alleviating the fundamental locality approximation of the embedding. We
clearly demonstrate the value of these introduced functionals for reliable extraction of observables and robust and systematic
convergence as the cluster size increases, allowing for significantly smaller clusters to be used for a desired accuracy compared to
traditional approaches in ab initio wave function quantum embedding.

1. INTRODUCTION
Quantum chemical methods to describe explicit correlations in
an ab initiomany-electron system can be highly accurate, though
their applicability is often stymied by a steep computational
scaling with respect to system size, which (despite significant
recent progress) limits their use for extended systems.1−6 To
combat this, the locality of this correlated physics is increasingly
exploited, enabling a reduction in scaling to be competitive
compared to mean-field or density functional approaches, while
remaining free from empiricism.7,8 The field of “local
correlation” methods in quantum chemistry generally build
these locality constraints in the particle-hole excitation picture of
the system, localizing each of these spaces separately.9−11 While
highly related, “quantum embedding” approaches from
condensed matter physics are also increasingly coming to the
fore as an alternative paradigm and being applied to quantum
chemical and ab initio systems.12
A loose (and necessarily imperfect) characterization of a key

di"erence in these approaches could be that quantum
embedding does not build this locality from a particle-hole
picturerather, a fully local set of “atomic-orbital-like” degrees
of freedom are chosen initially (which will in general have
neither fully occupied nor unoccupied mean-field character),
which we will call the “fragment” space, though it is also often
called the “impurity” space for historical reasons in traditional
quantum embedding literature. A larger space is then
constructed by augmenting these fragment orbitals with

additional orbitals (often called “bath” orbitals). These are
designed to reproduce the quantum fluctuations, entanglement,
and/or hybridization between the fragment and the rest of the
system, as characterized by some tractable (generally mean-
field) level of theory which can be performed on the full system.
These individual local quantum problems of the fragment and
bath orbitals define a “cluster”, which is then solved to provide
the correlated properties of the original fragment space,
potentially with a subsequent self-consistency then applied to
update the original mean-field/low-level theory on the full
system.
The general algorithm in most quantum embeddings is

therefore summarized as: a) fragment the system; b) for each
fragment, construct a bath space describing the coupling to the
wider system; c) solve an interacting problem in the cluster
space of each fragment via a “high-level” correlated method; d)
extract properties of the system; and e) optionally, perform a
self-consistency to embed the correlated e"ects from the cluster
model back into the low-level full system method to update the
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