M1 course, February 2023, Lecturer: E. Fromager

40-minute exam: Density functional theory of extended systems

- a) [3 pts] We consider, for simplicity, the expression in one dimension of the Kohn-Sham (KS) potential at the local density level of approximation (LDA): $v_{\text{LDA}}^{\text{KS}}(x) \equiv v(x) + \frac{\partial e_{\text{xc}}(n)}{\partial n} \Big|_{n=n(x)} + \int dx' \frac{n(x')}{|x'-x|}$, where v(x) is the nuclear potential with periodicity a [i.e., v(x+a) = v(x)] of the extended system under study. We know from Bloch's theorem that, when the two-electron repulsion is neglected, the (oneelectron) solutions to the Schrödinger equation can be written as $\varphi(x) \equiv \varphi_{j,k}(x) = e^{ikx} \times u_{j,k}(x)$ where k is a given continuous wave number value, j is a (discrete) quantum number, and $u_{j,k}(x)$ is a function of the position x that has the periodicity a of the lattice. The orbital energies are denoted $\varepsilon_j(k)$. Explain the concept of band structure on that basis. Does Bloch's theorem hold also for the KS orbitals? **Hint:** Explain why the total electronic density is periodic. Deduce the periodicity of the KS-LDA potential and conclude.
- b) [3 pts] The Hartree (H) density-functional energy reads $E_{\rm H}[n] = \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} \mathbf{r}'|}$. What is its physical meaning? Does it provide an exact description of the electronic repulsion energy? The Hartree functional can be rewritten as $E_{\rm H}[n] = \int d\mathbf{r} \,\epsilon_{\rm H}[n](\mathbf{r})n(\mathbf{r})$, where $\epsilon_{\rm H}[n](\mathbf{r})$ is the density-functional Hartree energy per electron evaluated at position \mathbf{r} . Give the mathematical expression of $\epsilon_{\rm H}[n](\mathbf{r})$ and explain why the exact Hartree functional is *not* a local density functional.
- c) [2 pts] Let us consider the following local density approximation to the Hartree functional $E_{\rm H}[n] \stackrel{\rm LDA}{\approx} C \int d\mathbf{r} \, n^{\delta}(\mathbf{r})$, where the prefactor C and the exponent δ are constant. Show that a value of δ can be determined from the *exact* uniform coordinate scaling constraint $E_{\rm H}[n_{\gamma}] = \gamma E_{\rm H}[n]$, which holds for any $\gamma > 0$ and where $n_{\gamma}(\mathbf{r}) = \gamma^3 n(\gamma \mathbf{r})$.
- d) [4 pts] Let $E^{N}(\xi) = \xi \left(E_{0}^{N+1} + E_{0}^{N-1} \right) + (1 2\xi)E_{0}^{N}$ denote the so-called N-centered ensemble energy (with ensemble weight ξ in the range $0 \le \xi \le 1/2$) of a given electronic system, where E_{0}^{N} is the \mathcal{N} electron ground-state energy of the latter. What is the physical meaning of the derivative $\frac{dE^{N}(\xi)}{d\xi} \Big|_{\xi=0}$? It can be shown that, in the vicinity of $\xi = 0$,

$$E^{N}(\xi) = \xi \left(\mathcal{E}_{0}^{N+1} + \mathcal{E}_{0}^{N-1} \right) + (1 - 2\xi) \mathcal{E}_{0}^{N} + E_{\text{Hxc}}^{\xi}[n] - \int d\mathbf{r} \, v_{\text{Hxc}}[n](\mathbf{r}) n(\mathbf{r}), \tag{1}$$

where $E_{\text{Hxc}}^{\xi}[n]$ is the (ξ -dependent) *N*-centered Hxc ensemble functional, $v_{\text{Hxc}}[n](\mathbf{r})$ and $n(\mathbf{r})$ are the (ξ -independent) Hxc potential and *N*-electron ground-state density, respectively, and $\mathcal{E}_{0}^{\mathcal{N}}$ is the ground-state energy of the *non-interacting* \mathcal{N} -electron KS system. Explain why the KS ionization potential $\mathcal{E}_{0}^{N-1} - \mathcal{E}_{0}^{N}$ and electron affinity $\mathcal{E}_{0}^{N} - \mathcal{E}_{0}^{N+1}$ are trivially obtained from the KS HOMO (ε_{H}) and LUMO (ε_{L}) energies. Deduce from Eq. (1) an expression of $\frac{dE^{N}(\xi)}{d\xi}\Big|_{\xi=0}$ in terms of the latter energies. Comment on the result and its practical implications regarding the computation of material properties with DFT methods.