M1 course, February 2023, *Lecturer: E. Fromager*

40-minute **exam: Density functional theory of extended systems**

- a) **[3 pts]** *We consider, for simplicity, the expression in one dimension of the Kohn–Sham (KS) potential at the local density level of approximation (LDA):* $v_{\text{LDA}}^{\text{KS}}(x) \equiv v(x) + \frac{\partial e_{\text{xc}}(n)}{\partial n}$ *∂n* $\bigg|_{n=n(x)}$ $+\int dx' \frac{n(x')}{\sqrt{2}}$ $\frac{w(x)}{|x'-x|}$ *where* $v(x)$ *is the nuclear potential with periodicity a [i.e.,* $v(x + a) = v(x)$ *of the extended system under study. We know from Bloch's theorem that, when the two-electron repulsion is neglected, the (oneelectron)* solutions to the Schrödinger equation can be written as $\varphi(x) \equiv \varphi_{j,k}(x) = e^{ikx} \times u_{j,k}(x)$ where k *is a given continuous wave number value, j is a (discrete) quantum number, and uj,k*(*x*) *is a function of the position x that has the periodicity a of the lattice. The orbital energies are denoted* $\varepsilon_j(k)$. Explain the concept of band structure on that basis. Does Bloch's theorem hold also for the KS orbitals? **Hint:** Explain why the total electronic density is periodic. Deduce the periodicity of the KS-LDA potential and conclude.
- b) [3 pts] The Hartree (H) density-functional energy reads $E_{\text{H}}[n] = \frac{1}{2}$ $\int d\mathbf{r} \int d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{n}$ $\frac{|\mathbf{r} - \mathbf{r}'|}{|\mathbf{r} - \mathbf{r}'|}$. What is its physical meaning? Does it provide an exact description of the electronic repulsion energy? The Hartree $\text{functional can be rewritten as } E_{\text{H}}[n] = \int d\mathbf{r} \, \epsilon_{\text{H}}[n](\mathbf{r})n(\mathbf{r}), \text{where } \epsilon_{\text{H}}[n](\mathbf{r}) \text{ is the density-functional Hartree}$ energy per electron evaluated at position **r**. Give the mathematical expression of $\epsilon_{\text{H}}[n](\mathbf{r})$ and explain why the exact Hartree functional is *not* a local density functional.
- c) [**2 pts**] Let us consider the following local density approximation to the Hartree functional $E_{\text{H}}[n] \stackrel{\text{LDA}}{\approx} C \int d\mathbf{r} \, n^{\delta}(\mathbf{r})$, where the prefactor *C* and the exponent *δ* are constant. Show that a value of *δ* can be determined from the *exact* uniform coordinate scaling constraint $E_H[n_\gamma] = \gamma E_H[n]$, which holds for any $\gamma > 0$ and where $n_{\gamma}(\mathbf{r}) = \gamma^3 n(\gamma \mathbf{r}).$
- d) [4 pts] Let $E^N(\xi) = \xi \left(E_0^{N+1} + E_0^{N-1} \right) + (1 2\xi)E_0^N$ denote the so-called *N*-centered ensemble energy (with ensemble weight ξ in the range $0 \leq \xi \leq 1/2$) of a given electronic system, where $E_0^{\mathcal{N}}$ is the \mathcal{N} electron ground-state energy of the latter. What is the physical meaning of the derivative $\frac{dE^N(\xi)}{d\xi}\Big|_{\xi=0}$? It can be shown that, in the vicinity of $\xi = 0$.

$$
E^N(\xi) = \xi \left(\mathcal{E}_0^{N+1} + \mathcal{E}_0^{N-1} \right) + (1 - 2\xi)\mathcal{E}_0^N + E_{\text{Hxc}}^{\xi}[n] - \int d\mathbf{r} \, v_{\text{Hxc}}[n](\mathbf{r})n(\mathbf{r}),\tag{1}
$$

where $E_{\text{Hxc}}^{\xi}[n]$ is the (*ξ*-dependent) *N*-centered Hxc ensemble functional, $v_{\text{Hxc}}[n](\mathbf{r})$ and $n(\mathbf{r})$ are the (ξ -independent) Hxc potential and *N*-electron ground-state density, respectively, and $\mathcal{E}_0^{\mathcal{N}}$ is the groundstate energy of the *non-interacting* N-electron KS system. Explain why the KS ionization potential $\mathcal{E}_0^{N-1}-\mathcal{E}_0^N$ and electron affinity $\mathcal{E}_0^N-\mathcal{E}_0^{N+1}$ are trivially obtained from the KS HOMO (ε_H) and LUMO (ε_{L}) energies. Deduce from Eq. (1) an expression of $\frac{dE^{N}(\xi)}{d\xi}|_{\xi=0}$ in terms of the latter energies. Comment on the result and its practical implications regarding the computation of material properties with DFT methods.