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Electronic Hamiltonian in (so-called) first quantization

N-electron Hamiltonian within the Born-Oppenheimer approximation:
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—  kinetic energy

— electron-nuclei attraction

—  electron-electron repulsion

We want to solve the electronic Schrédinger equation for fixed nuclei positions {R 4 }.




Quantum theory of a single electron

Let us start with Schridinger’s theory: the quantum state of a single electron is described by a wave

function (referred to as orbital) | ¥ = W(r) |which is a function of the electronic space coordinates r.

In Pauli’s theory, the spin o = «, B (also denoted o =t, |) of the electron is an additional degree of

freedom. The quantum state of a single electron is now described by a wave function | ¥ = ¥(r, o)

which is a function of both space coordinates and spin.

In the following we denote X = (r,o) and | ¥ = V(X)) |

Normalization condition:

(Uo)y=1= >»" /dr|\IJ(r,a)|2 notation /dX|\If(X)|2

o=a,f

In the non-relativistic case, a single electron will have a spin g which is either up or down. The

corresponding wave function ¥, can then be written as a spin-orbital | U4, (r,0) = ¥(r)dsoq |




Quantum theory of two electrons

The quantum state of two electrons is described by the following wave function:

VU = \P(Xl,XQ),

where X and X> are the space-spin coordinates of the first and second electron,

Normalization condition:

/XmdeQ U(X1, X2)|? =1.

Electrons are indistinguishable particles:

real algebra

respectively.

U (X1, X2)|? = |[¥(X2, X1)|? = U(X1,Xo) = +¥(Xo, X1)

Electrons are fermionic particles. Therefore, they fulfill Pauli’s exclusion principle

(X, X))> =0

Conclusion: a physical two-electron wave function must fulfill the anti-symmetrization principle

U(X1,X2) = —U(X2, X1)




Slater determinants

Let {gp x (X )} denote an orthonormal basis of (molecular) spin-orbitals. Two electrons that

occupy the spin-orbitals ¢;(X) and ¢ ;(X) will be described by the (normalized) Slater
determinant

1 Dirac notation
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Note that Slater determinants and, consequently, linear combinations of Slater determinants are
anti-symmetric.

Therefore, Slater determinants are convenient "building blocks" for computing the electronic
wavefunction.

Still, we may wonder if we really need this complicated expression obtained from the determinant
(obviously things get worse for a larger number of electrons).

Another drawback of the current formulation: Both Slater determinant and Hamiltonian expressions
depend on the number of electrons.




Many-electron wave functions and Dirac notation

e An N-electron system will be described by the following wave function:

\IJE\IJ(Xl,XQ,...,XN).

e In this (more general) case, the anti-symmetrization principle reads as

U(X1,Xo,...,X;,... T U(Xy, X, X, Xy, XN

e If we consider a basis of (orthonormal and anti-symmetric) N-electron Slater determinants

{CI)g(XL o XN) = \/%det [{9011' (Xj)}1<z',j<N]}

£5(117[2a-'-aIN)

the physical N-electron wave function of interest ¥ can be written as

7
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“What is occupied?” rather than “Who occupies what?”

Since electrons are indistinguishable, there is no need to know that electron 1 occupies ¢; and
electron 2 occupies ¢ or the other way around...

The important information is that spin-orbitals ¢ ; and ¢ ; are occupied and the remaining ones are
empty.

Second quantization is a formalism that relies on this idea. Let me tell you a story...

At the beginning there was “nothing”:  |vac) <— normalized “vacuum state”, i.e., (vac|vac) = 1.

Then came the idea of introducing the quantum operator &; that creates an electron occupying ¢r:
&; [vac) = |pr).

We can also annihilate an electron occupying ¢; with the quantum operator ar, which is the adjoint
o
of a;.
I
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“What is occupied?” rather than “Who occupies what?”

e Applying to the vacuum two creation operators successively leads to another representation of a
two-electron Slater determinant:

CALICALT]|V8JC> = |(I)]J> = —

V2

t notation 1 (

lores)  — |90JSOI>)-
N——

not anti-symmetrized

e If we interpret &}& 1 as the occupation operator for the spin-orbital 7, then we should have

<Vac|&}d[|vac) =0 & arlvac) =0 (rule1)

e In order to have a representation that is equivalent to the one used in first quantization, we only
need two more rules:

(rule 2)

(rule 3)




“What is occupied?” rather than “Who occupies what?”

e Rule 2 describes the indistinguishability of the electrons, &TJ&; |vac) = —&}d?} |vac),

and Pauli’s principle, &;&} [vac) = 0.

e Rule 3 ensures that you can only annihilate what has already been created:

d[&mvac) = 47 7|vac) — &Tjdﬂvac) = d77|vac).

e Itis now very easy to generate representations of Slater determinants for an arbitrary number /N of
electrons through products of creation operators!
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One-electron operators in second quantization

e Let h denote a one-electron operator (¢ + ne for example): it acts on the one-electron states |pr)

e Resolution of the identity:

D lener =1
I

«— |@) = > _lpr)Cr, where Cr = (¢1lp)
I

which leads to the conventional representation h =1 h1 = Z erlhler)|er) (vl
J
where

* > notation
(rlhles) = [ AX 100 x (hips ) (X)" 2 h

are the one-electron integrals

e Second-quantized representation

EZ prlhler)aya
I,J
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e What is convenient is that this second-quantized representation is valid for any number N of
electrons:

> lerlhlppyaa; = h
I,J

The information about /V has been completely transferred to the states. It does not appear in the
operator anymore.

Two-electron operator representation in second quantization:

] 1 ) e
Wee = 5 Z (prog|Weelvrer) a}aTjaLCLK
IJKL

where

(proglweelprpr) = / / dX1d X2 05 (X1)9%(X2) X Wee (apK(Xl)goL(XQ))”"“2“’”<IJ|KL>

are the (non-antisymmetrized) two-electron integrals.




Indeed,

> (ereslbecleorer) @ 107 |eelorcpL) aal|vac) (vaclapax

I1JKL

> |
IJKL
> {erpslbeelen o)) (kL
IJKL

where ‘q)IJ> = % (‘g01g0J> — ‘QDJQOI» = —‘q)JI> and ‘(I)KL> = —‘CI)LK> (redundancies), thus leading to
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Full second-quantized Hamiltonian

The total electronic Hamiltonian reads in second quantization as follows,

. 1
A=Y hrjala; + 5 N (IJIKLY alalapar
1J

IJKL

Note that the above expression holds for relativistic Hamiltonians. Two- or four-component spinors
should be used instead of spin-orbitals.

In four-component relativistic quantum chemical calculations, the Dirac (Breit) Coulomb
Hamiltonian is employed.




Why “second” quantization?

e Let us consider a one-electron local (i.e. multiplicative) potential operator (the electron-nuclei one, for

N
example) which, in second quantization, reads V= Z (1) =
i=1

(orldlps) = / X v(X)@} (X)p s (X),

thus leading to

V= /dX v(X) (Z @(X)&}) (Z W(X)@) = /dXU(X)xiﬁ(X)xif(X) =V
1 J
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Ut (X) U(X)  « field operators

e For a single electron occupying the spin-orbital ¥ (X ), the corresponding expectation value for ¢
equals

(\If|@|\1!):/dX o (X)U* (X )T (X).




Some useful remarks

Ut(X) = Ul (r, o) creates an electron at position r with spin o.

A

U (X)) is the corresponding annihilation operator.

UT(X)U(X) = a(r, o) is the (spin) density operator.

The electron (spin) density ng (X) = ne(r, o) of any normalized N-electron wave function & is
evaluated as ng (X) = (®|n(X)|P).

The one-electron reduced density matrix (IRDM) of ® is defined as va (X, X’) = (®|UT(X)¥U(X')|D)

Time-dependent field operators can be constructed as follows:

UH(X1,t1) = OT (1) = eTHHEGT (x;)e1HEL,

The latter are the key ingredients in the definition of the one- and more-electron Green functions.




