M1 "Sciences et Génies des Matériaux" & M1 franco-allemand "Polymères"

Quantum Mechanics course

Two-hour exam, session 1, December 2023 – Lecturer: E. Fromager

1. Questions on the lectures [12 points]

- a) [4 pts] Which mathematical functions are used for describing the state of a particle moving along the x axis in classical Newton and quantum mechanics, respectively? Write the fundamental time-dependent equations that these functions are supposed to fulfill.
- b) [2 pts] What is the general idea behind perturbation theory? How do we technically derive the perturbation expansion of the energies for a given Hamiltonian \hat{H} ?
- c) [6 pts] Let \hat{H} denote the Hamiltonian operator of a quantum system and $\hat{U}(t) = e^{-i\hat{H}t/\hbar}$, where t denotes the time and $i^2 = -1$. We recall that, for any quantum operator \hat{A} , the exponential of \hat{A} reads $e^{\hat{A}} \equiv \sum_{n=0}^{+\infty} \frac{\hat{A}^n}{n!}$. We consider an orthonormal basis $\{|\Psi_j\rangle\}$ of eigenvectors of \hat{H} and denote $\{E_j\}$ the associated energies. Show that $\hat{H} = \hat{H}\hat{\mathbb{1}} = \sum_k E_k |\Psi_k\rangle \langle \Psi_k|$ and $\hat{U}(t) = \hat{U}(t)\hat{\mathbb{1}} = \sum_j e^{-iE_jt/\hbar} |\Psi_j\rangle \langle \Psi_j|$. Deduce that $\hat{H}\hat{U}(t) = i\hbar \frac{d\hat{U}(t)}{dt}$ and conclude that $|\Psi(t)\rangle = \hat{U}(t) |\Psi(t=0)\rangle$ is the quantum state of the system at time t if, at time t = 0, it is in the state $|\Psi(t=0)\rangle$. Why is $\hat{U}(t)$ referred to as time evolution operator? Why are the eigenvectors of \hat{H} referred to as stationary states?

2. Exercise: The Heisenberg inequality and the harmonic oscillator (10 points)

According to the Heisenberg inequality, the standard deviations $\Delta x = \sqrt{\langle \Psi | \hat{x}^2 | \Psi \rangle - \langle \Psi | \hat{x} | \Psi \rangle^2}$ and $\Delta p_x = \sqrt{\langle \Psi | \hat{p}_x^2 | \Psi \rangle - \langle \Psi | \hat{p}_x | \Psi \rangle^2}$ for the position x and momentum p_x of a particle described by a quantum state $|\Psi\rangle$ are such that

$$\Delta x \, \Delta p_x \ge \hbar/2. \tag{1}$$

In this exercise, we consider a particle with mass m attached to a spring of constant k moving along the x axis. The corresponding (so-called one-dimensional harmonic oscillator) Hamiltonian reads

$$\hat{H} = \frac{\hat{p}_x^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2,$$
(2)

where $\omega = \sqrt{\frac{k}{m}}$. It can be shown that, by introducing the so-called annihilation operator \hat{a} defined as follows,

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega}{\hbar}} \hat{x} + \frac{i}{\sqrt{m\hbar\omega}} \hat{p}_x \right), \quad where \quad i^2 = -1,$$
(3)

and its adjoint \hat{a}^{\dagger} (referred to as creation operator), the Hamiltonian in Eq. (2) can be rewritten as

$$\hat{H} = \hbar\omega \left(\hat{N} + \frac{1}{2}\right),\tag{4}$$

where $\hat{N} = \hat{a}^{\dagger}\hat{a}$ is the so-called counting operator. By using the commutation rule $[\hat{a}, \hat{a}^{\dagger}] = \hat{a}\hat{a}^{\dagger} - \hat{a}^{\dagger}\hat{a} = 1$, it can finally be shown that the eigenvalues n of the counting operator \hat{N} are integers (n = 0, 1, 2, ...), and that the associated orthonormalized eigenvectors $\{|\Psi_n\rangle\}_{n=0,1,2,...}$ are connected through the relation

$$\hat{a}^{\dagger}|\Psi_{n}\rangle = \sqrt{n+1}|\Psi_{n+1}\rangle. \tag{5}$$

a) [1 pt] Show that

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a}^{\dagger} + \hat{a} \right) \quad \text{and} \quad \hat{p}_x = i\sqrt{\frac{m\hbar\omega}{2}} \left(\hat{a}^{\dagger} - \hat{a} \right).$$
 (6)

Conclude from Eq. (5) that $\langle \Psi_n | \hat{x} | \Psi_n \rangle = 0 = \langle \Psi_n | \hat{p}_x | \Psi_n \rangle$.

- b) [0.5 pt] Explain why, according to Eq. (4), the energies of the one-dimensional harmonic oscillator are $E_n = \hbar \omega \left(n + \frac{1}{2}\right)$ and the corresponding eigenstates are $|\Psi_n\rangle$ with n = 0, 1, 2, ...
- c) [1 pt] Explain why $E_n = \langle \Psi_n | \hat{H} | \Psi_n \rangle$ and deduce from question 2. b) and Eq. (2) that, for a given eigenstate $|\Psi_n \rangle$, the expectation value of \hat{p}_x^2 is obtained from that of \hat{x}^2 as follows, $\langle \Psi_n | \hat{p}_x^2 | \Psi_n \rangle = m\hbar\omega(2n+1) - m^2\omega^2 \langle \Psi_n | \hat{x}^2 | \Psi_n \rangle$.
- d) [0.5 pt] In order to determine the expectation value of \hat{x}^2 for $|\Psi_n\rangle$, we introduce a real parameter λ and construct the following λ -dependent Hamiltonian:

$$\hat{H}(\lambda) = \frac{\hat{p}_x^2}{2m} + \frac{\lambda}{2}m\omega^2 \hat{x}^2.$$
(7)

Its normalized eigenvectors and associated eigenvalues are denoted $|\Psi_n(\lambda)\rangle$ and $E_n(\lambda)$, respectively. For which value of λ do we recover from $\hat{H}(\lambda)$ the problem we are interested in?

- e) **[2 pts]** Explain why $E_n(\lambda) = \left\langle \Psi_n(\lambda) \middle| \hat{H}(\lambda) \middle| \Psi_n(\lambda) \right\rangle$. Prove the Hellmann–Feynman theorem, $\frac{\mathrm{d}E_n(\lambda)}{\mathrm{d}\lambda} = \left\langle \Psi_n(\lambda) \middle| \frac{\partial \hat{H}(\lambda)}{\partial \lambda} \middle| \Psi_n(\lambda) \right\rangle, \text{ and conclude that } \left\langle \Psi_n(\lambda) \middle| \hat{x}^2 \middle| \Psi_n(\lambda) \right\rangle = \frac{2}{m\omega^2} \frac{\mathrm{d}E_n(\lambda)}{\mathrm{d}\lambda}.$
- f) [1 pt] Explain why, according to Eqs. (2) and (7), $E_n(\lambda) = \sqrt{\lambda}\hbar\omega\left(n+\frac{1}{2}\right)$. Hint: Introduce the λ -dependent frequency $\omega(\lambda) = \omega\sqrt{\lambda}$, rewrite $\hat{H}(\lambda)$ in terms of $\omega(\lambda)$, and compare the resulting expression with that of Eq. (2). Conclude from question 2. b).
- g) [1 pt] Conclude from questions 2. d), e), and f) that $\langle \Psi_n | \hat{x}^2 | \Psi_n \rangle = \frac{\hbar}{m\omega} \left(n + \frac{1}{2} \right)$.
- h) [1 pt] Deduce from questions 2. c) and g) that $\langle \Psi_n | \hat{p}_x^2 | \Psi_n \rangle = m \hbar \omega \left(n + \frac{1}{2} \right)$.
- i) [2 pts] Verify from questions 2. a), g) and h) that the solutions to the Schrödinger equation for the one-dimensional harmonic oscillator fulfill the Heisenberg inequality in Eq. (1). What is remarkable about the ground state $|\Psi_0\rangle$?