M1 "Sciences et Génies des Matériaux" & M1 franco-allemand "Polymères"

Quantum Mechanics course

Two-hour exam, **session 1**, December 2023 – Lecturer: *E. Fromager*

1. Questions on the lectures [12 points]

- a) **[4 pts]** Which mathematical functions are used for describing the state of a particle moving along the *x* axis in classical Newton and quantum mechanics, respectively? Write the fundamental time-dependent equations that these functions are supposed to fulfill.
- b) **[2 pts]** What is the general idea behind perturbation theory? How do we technically derive the perturbation expansion of the energies for a given Hamiltonian \hat{H} ?
- c) [6 pts] Let \hat{H} denote the Hamiltonian operator of a quantum system and $\hat{U}(t) = e^{-i\hat{H}t/\hbar}$, where t denotes the time and $i^2 = -1$. We recall that, for any quantum operator \hat{A} , the exponential of \hat{A} reads $e^{\hat{A}} \equiv \sum_{n=1}^{+\infty} \frac{\hat{A}^n}{n!}$ consider an orthonormal basis $\{|\Psi_j\rangle\}$ of eigenvectors of \hat{H} and denote $\{E_j\}$ the associated energies. Show that $\frac{n}{n!}$. We $\hat{H} = \hat{H}\hat{\mathbb{1}} = \sum$ *k* $E_k |\Psi_k\rangle \langle \Psi_k |$ and $\hat{U}(t) = \hat{U}(t) \hat{\mathbb{1}} = \sum$ *j* $e^{-iE_jt/\hbar}|\Psi_j\rangle\langle\Psi_j|$. Deduce that $\hat{H}\hat{U}(t) = i\hbar \frac{d\hat{U}(t)}{dt}$ $\frac{\partial^2 (t)}{\partial t}$ and conclude that $|\Psi(t)\rangle = \hat{U}(t)|\Psi(t=0)\rangle$ is the quantum state of the system at time *t* if, at time $t=0$, it is in the state $|\Psi(t=0)\rangle$. Why is $\hat{U}(t)$ referred to as time evolution operator? Why are the eigenvectors of \hat{H} referred to as stationary states?

2. Exercise: The Heisenberg inequality and the harmonic oscillator (10 points)

According to the Heisenberg inequality, the standard deviations $\Delta x = \sqrt{\langle \Psi | \hat{x}^2 | \Psi \rangle - \langle \Psi | \hat{x} | \Psi \rangle^2}$ and $\Delta p_x = \sqrt{\langle \Psi | \hat{p}_x^2 | \Psi \rangle - \langle \Psi | \hat{p}_x | \Psi \rangle^2}$ for the position *x* and momentum p_x of a particle described by a quantum state $|\Psi \rangle$ *are such that*

$$
\Delta x \, \Delta p_x \ge \hbar/2. \tag{1}
$$

In this exercise, we consider a particle with mass m attached to a spring of constant k moving along the x axis. The corresponding (so-called one-dimensional harmonic oscillator) Hamiltonian reads

$$
\hat{H} = \frac{\hat{p}_x^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2,
$$
\n(2)

 $where \omega =$ \sqrt{k} $\frac{m}{m}$. It can be shown that, by introducing the so-called annihilation operator \hat{a} defined as follows,

$$
\hat{a} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega}{\hbar}} \hat{x} + \frac{i}{\sqrt{m\hbar\omega}} \hat{p}_x \right), \quad \text{where} \quad i^2 = -1,
$$
\n(3)

*and its adjoint a*ˆ † *(referred to as creation operator), the Hamiltonian in Eq. (2) can be rewritten as*

$$
\hat{H} = \hbar\omega\left(\hat{N} + \frac{1}{2}\right),\tag{4}
$$

where $\hat{N} = \hat{a}^{\dagger} \hat{a}$ is the so-called counting operator. By using the commutation rule $[\hat{a}, \hat{a}^{\dagger}] = \hat{a} \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a} = 1$, it can *finally be shown that the eigenvalues n of the counting operator* \hat{N} *are integers* $(n = 0, 1, 2, ...)$ *, and that the associated orthonormalized eigenvectors* $\{|\Psi_n\rangle\}$ *n*=0*,*1*,*2*,... are connected through the relation*

$$
\hat{a}^{\dagger}|\Psi_n\rangle = \sqrt{n+1}|\Psi_{n+1}\rangle. \tag{5}
$$

a) **[1 pt]** Show that

$$
\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a}^{\dagger} + \hat{a} \right) \quad \text{and} \quad \hat{p}_x = i\sqrt{\frac{m\hbar\omega}{2}} \left(\hat{a}^{\dagger} - \hat{a} \right). \tag{6}
$$

Conclude from Eq. (5) that $\langle \Psi_n | \hat{x} | \Psi_n \rangle = 0 = \langle \Psi_n | \hat{p}_x | \Psi_n \rangle$.

- b) **[0.5 pt]** Explain why, according to Eq. (4), the energies of the one-dimensional harmonic oscillator are $E_n = \hbar \omega \left(n + \frac{1}{2}\right)$ 2 and the corresponding eigenstates are $|\Psi_n\rangle$ with $n = 0, 1, 2, \ldots$
- c) **[1 pt]** Explain why $E_n = \langle \Psi_n | \hat{H} | \Psi_n \rangle$ and deduce from question 2. b) and Eq. (2) that, for a given eigenstate $|\Psi_n\rangle$, the expectation value of \hat{p}_x^2 is obtained from that of \hat{x}^2 as follows, $\langle \Psi_n | \hat{p}_x^2 | \Psi_n \rangle = m \hbar \omega (2n+1) - m^2 \omega^2 \langle \Psi_n | \hat{x}^2 | \Psi_n \rangle$.
- d) [0.5 pt] In order to determine the expectation value of \hat{x}^2 for $|\Psi_n\rangle$, we introduce a real parameter λ and construct the following *λ*-dependent Hamiltonian:

$$
\hat{H}(\lambda) = \frac{\hat{p}_x^2}{2m} + \frac{\lambda}{2}m\omega^2 \hat{x}^2.
$$
\n(7)

Its normalized eigenvectors and associated eigenvalues are denoted $|\Psi_n(\lambda)\rangle$ and $E_n(\lambda)$, respectively. For which value of λ do we recover from $\hat{H}(\lambda)$ the problem we are interested in?

- e) [2 pts] Explain why $E_n(\lambda) = \langle \Psi_n(\lambda) | \hat{H}(\lambda) | \Psi_n(\lambda) \rangle$. Prove the Hellmann–Feynman theorem, $\mathrm{d}E_n(\lambda)$ $\frac{\partial u(x)}{\partial \lambda}$ = * $\Psi_n(\lambda)$ $\partial \hat{H}$ (λ) *∂λ* $\Psi_n(\lambda)$ \setminus , and conclude that $\langle \Psi_n(\lambda) | \hat{x}^2 | \Psi_n(\lambda) \rangle = \frac{2}{m\omega}$ *mω*² $dE_n(\lambda)$ $\frac{\partial u(x)}{\partial \lambda}$.
- f) **[1 pt]** Explain why, according to Eqs. (2) and (7), $E_n(\lambda) = \sqrt{\lambda} \hbar \omega \left(n + \frac{1}{2}\right)$ 2 . **Hint**: Introduce the *λ*-dependent frequency $\omega(\lambda) = \omega$ $\sqrt{\lambda}$, rewrite $\hat{H}(\lambda)$ in terms of $\omega(\lambda)$, and compare the resulting expression with that of Eq. (2). Conclude from question 2. b).
- g) [1 pt] Conclude from questions 2. d), e), and f) that $\langle \Psi_n | \hat{x}^2 | \Psi_n \rangle =$ \hbar $\frac{n}{m\omega}\left(n+\frac{1}{2}\right).$
- h) **[1 pt]** Deduce from questions 2. c) and g) that $\langle \Psi_n | \hat{p}_x^2 | \Psi_n \rangle = m \hbar \omega \left(n + \frac{1}{2} \right)$.
- i) **[2 pts]** Verify from questions 2. a), g) and h) that the solutions to the Schrödinger equation for the one-dimensional harmonic oscillator fulfill the Heisenberg inequality in Eq. (1). What is remarkable about the ground state $|\Psi_0\rangle$?