
M1 "Sciences et Génies des Matériaux" & M1 franco-allemand "Polymères"

Quantum Mechanics course

Two-hour exam, session 1, December 2023 – Lecturer: E. Fromager

1. Questions on the lectures [12 points]

a) [4 pts] Which mathematical functions are used for describing the state of a particle moving along the x axis in

classical Newton and quantum mechanics, respectively? Write the fundamental time-dependent equations that

these functions are supposed to fulfill.

b) [2 pts] What is the general idea behind perturbation theory? How do we technically derive the perturbation

expansion of the energies for a given Hamiltonian Ĥ?

c) [6 pts] Let Ĥ denote the Hamiltonian operator of a quantum system and Û(t) = e−iĤt/~, where t denotes the

time and i2 = −1. We recall that, for any quantum operator Â, the exponential of Â reads eÂ ≡
+∞∑
n=0

Ân

n! . We

consider an orthonormal basis {|Ψj〉} of eigenvectors of Ĥ and denote {Ej} the associated energies. Show that

Ĥ = Ĥ1̂ =
∑

k

Ek |Ψk〉 〈Ψk| and Û(t) = Û(t)1̂ =
∑

j

e−iEjt/~ |Ψj〉 〈Ψj |. Deduce that ĤÛ(t) = i~dÛ(t)
dt

and

conclude that |Ψ(t)〉 = Û(t) |Ψ(t = 0)〉 is the quantum state of the system at time t if, at time t = 0, it is in the

state |Ψ(t = 0)〉. Why is Û(t) referred to as time evolution operator? Why are the eigenvectors of Ĥ referred to as

stationary states?

2. Exercise: The Heisenberg inequality and the harmonic oscillator (10 points)

According to the Heisenberg inequality, the standard deviations ∆x =
√
〈Ψ|x̂2|Ψ〉 − 〈Ψ|x̂|Ψ〉2 and

∆px =
√
〈Ψ|p̂2

x|Ψ〉 − 〈Ψ|p̂x|Ψ〉2 for the position x and momentum px of a particle described by a quantum state |Ψ〉

are such that

∆x∆px ≥ ~/2. (1)

In this exercise, we consider a particle with mass m attached to a spring of constant k moving along the x axis. The

corresponding (so-called one-dimensional harmonic oscillator) Hamiltonian reads

Ĥ = p̂2
x

2m + 1
2mω

2x̂2, (2)

where ω =
√
k

m
. It can be shown that, by introducing the so-called annihilation operator â defined as follows,

â = 1√
2

(√
mω

~
x̂+ i√

m~ω
p̂x

)
, where i2 = −1, (3)
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and its adjoint â† (referred to as creation operator), the Hamiltonian in Eq. (2) can be rewritten as

Ĥ = ~ω
(
N̂ + 1

2

)
, (4)

where N̂ = â†â is the so-called counting operator. By using the commutation rule
[
â, â†

]
= ââ† − â†â = 1, it can

finally be shown that the eigenvalues n of the counting operator N̂ are integers (n = 0, 1, 2, . . .), and that the associated

orthonormalized eigenvectors
{
|Ψn〉

}
n=0,1,2,...

are connected through the relation

â†|Ψn〉 =
√
n+ 1|Ψn+1〉. (5)

a) [1 pt] Show that

x̂ =
√

~
2mω

(
â† + â

)
and p̂x = i

√
m~ω

2
(
â† − â

)
. (6)

Conclude from Eq. (5) that 〈Ψn|x̂|Ψn〉 = 0 = 〈Ψn|p̂x|Ψn〉.

b) [0.5 pt] Explain why, according to Eq. (4), the energies of the one-dimensional harmonic oscillator are

En = ~ω
(
n+ 1

2

)
and the corresponding eigenstates are |Ψn〉 with n = 0, 1, 2, . . .

c) [1 pt] Explain why En = 〈Ψn|Ĥ|Ψn〉 and deduce from question 2. b) and Eq. (2) that, for a given eigenstate |Ψn〉,

the expectation value of p̂2
x is obtained from that of x̂2 as follows, 〈Ψn|p̂2

x|Ψn〉 = m~ω(2n+ 1)−m2ω2〈Ψn|x̂2|Ψn〉.

d) [0.5 pt] In order to determine the expectation value of x̂2 for |Ψn〉, we introduce a real parameter λ and construct

the following λ-dependent Hamiltonian:

Ĥ(λ) = p̂2
x

2m + λ

2mω
2x̂2. (7)

Its normalized eigenvectors and associated eigenvalues are denoted |Ψn(λ)〉 and En(λ), respectively. For which

value of λ do we recover from Ĥ(λ) the problem we are interested in?

e) [2 pts] Explain why En(λ) =
〈

Ψn(λ)
∣∣∣Ĥ(λ)

∣∣∣Ψn(λ)
〉
. Prove the Hellmann–Feynman theorem,

dEn(λ)
dλ =

〈
Ψn(λ)

∣∣∣∣∣∂Ĥ(λ)
∂λ

∣∣∣∣∣Ψn(λ)
〉
, and conclude that

〈
Ψn(λ)

∣∣x̂2
∣∣Ψn(λ)

〉
= 2
mω2

dEn(λ)
dλ .

f) [1 pt] Explain why, according to Eqs. (2) and (7), En(λ) =
√
λ~ω

(
n+ 1

2

)
. Hint: Introduce the λ-dependent

frequency ω(λ) = ω
√
λ, rewrite Ĥ(λ) in terms of ω(λ), and compare the resulting expression with that of Eq. (2).

Conclude from question 2. b).

g) [1 pt] Conclude from questions 2. d), e), and f) that 〈Ψn|x̂2|Ψn〉 = ~
mω

(
n+ 1

2
)
.

h) [1 pt] Deduce from questions 2. c) and g) that 〈Ψn|p̂2
x|Ψn〉 = m~ω

(
n+ 1

2
)
.

i) [2 pts] Verify from questions 2. a), g) and h) that the solutions to the Schrödinger equation for the one-dimensional

harmonic oscillator fulfill the Heisenberg inequality in Eq. (1). What is remarkable about the ground state |Ψ0〉?
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