M1 "Sciences et Génies des Matériaux" & M1 franco-allemand "Polymeres'

Quantum Mechanics course

Two-hour exam, session 1, December 2023 — Lecturer: E. Fromager

1. Questions on the lectures [12 points]

a) [4 pts] Which mathematical functions are used for describing the state of a particle moving along the = axis in
classical Newton and quantum mechanics, respectively? Write the fundamental time-dependent equations that

these functions are supposed to fulfill.

b) [2 pts] What is the general idea behind perturbation theory? How do we technically derive the perturbation

expansion of the energies for a given Hamiltonian H?

¢) [6 pts] Let H denote the Hamiltonian operator of a quantum system and U(t) = e~iHt/h where ¢ denotes the
time and i2 = —1. We recall that, for any quantum operator A, the exponential of A reads e = Ji:.o 77 We
consider an orthonormal basis {|W;)} of eigenvectors of H and denote {E;} the associated energies?zgtlow that
H = Hi = B|U) (U] and U(t) = UW)L = Y e P57 |0;) (¥;]. Deduce that HU(t) = ih%it) and

k J

conclude that [¥(t)) = U(t)|¥(t = 0)) is the quantum state of the system at time ¢ if, at time ¢ = 0, it is in the
state |U(t = 0)). Why is U(t) referred to as time evolution operator? Why are the eigenvectors of H referred to as

stationary states?

2. Exercise: The Heisenberg inequality and the harmonic oscillator (10 points)

According to the Heisenberg inequality, the standard deviations Az = \/(9|22|W) — (U|2|¥)2 and

Ap, = /(U|p2| W) — (V]p,| V)2 for the position x and momentum p, of a particle described by a quantum state |¥)

are such that
Az Ap, > h/2. (1)

In this exercise, we consider a particle with mass m attached to a spring of constant k moving along the x axis. The

corresponding (so-called one-dimensional harmonic oscillator) Hamiltonian reads

pi 1 o

Page 1 of 2



and its adjoint &' (referred to as creation operator), the Hamiltonian in Eq. (2) can be rewritten as
N o 1
H=ho(N+3), (4)
where N = a'a is the so-called counting operator. By using the commutation rule [d,&w =aat —ata =1, it can
finally be shown that the eigenvalues n of the counting operator N are integers (n =0,1,2,...), and that the associated
are connected through the relation
n=0,1,2,...
(5)

orthonormalized eigenvectors {|\I/n>}

al|w,) = vn+1|9,,1).

a) [1 pt] Show that
d p, =i
and P, =i/ —

h
AT A
2mw (a —|—a)

2>
Il

Conclude from Eq. (5) that (¥, |2|¥,,) = 0 = (U, || T,).
b) [0.5 pt] Explain why, according to Eq. (4), the energies of the one-dimensional harmonic oscillator are

1
E,=h(n+ 3 and the corresponding eigenstates are |¥,,) with n =0,1,2,
¢) [1 pt] Explain why E,, = (¥,,|H|¥,,) and deduce from question 2. b) and Eq. (2) that, for a given eigenstate |¥,,),
—m2w? (¥, |22|P,,).

the expectation value of $2 is obtained from that of 22 as follows, (¥,,[p2|¥,,) = mhw(2n + 1)

d) [0.5 pt] In order to determine the expectation value of 22 for |¥,,), we introduce a real parameter A and construct
(7)

the following A-dependent Hamiltonian:
) A
W2

Its normalized eigenvectors and associated eigenvalues are denoted |¥, (X)) and E,(\), respectively. For which

value of A do we recover from H (M) the problem we are interested in?
[2 pts] Explain why E,(\) = <\I'n(/\)‘f[()\)‘\lln()\)> Prove the Hellmann-Feynman theorem,
2 dE,(N)

OH() \Ifn()\)>, and conclude that (W, (\)|2%[W,(N)) = R
mw

4, ()
=(P,(A
dA < ®) [))
1
[1 pt] Explain why, according to Eqs. (2) and (7), E,()\) = VA w (n + 2). Hint: Introduce the A-dependent

frequency w(\) = wv/\, rewrite H(\) in terms of w()\), and compare the resulting expression with that of Eq. (2).

Conclude from question 2. b).
[1 pt] Conclude from questions 2. d), e), and f) that (¥,|2?|¥,) = — (n+ 3).
mw
5)-

[1 pt] Deduce from questions 2. ¢) and g) that (¥, [p2|¥,) = mhw (n+ 3)
[2 pts] Verify from questions 2. a), g) and h) that the solutions to the Schrodinger equation for the one-dimensional

i)
harmonic oscillator fulfill the Heisenberg inequality in Eq. (1). What is remarkable about the ground state [¥)?
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