Numéro d'étudiant :

Examen de Mécanique Quantique pour la Chimie – session 1 (cours de L3)

janvier 2024 – Durée de l'épreuve : 60 minutes – Enseignant : Emmanuel Fromager

À LIRE AVANT DE COMMENCER : Vous devez répondre directement sur l'énoncé (et non sur une copie). Les documents et les calculatrices ne sont pas autorisés. N'oubliez pas d'inscrire votre numéro d'étudiant en haut.

- 1. Ecrire l'équation de Schrödinger décrivant un électron en présence de plusieurs noyaux A de numéro atomiques \mathcal{Z}_A fixés à des positions quelconques $\vec{R}_A \equiv (x_A, y_A, z_A)$. Quel nom donnent les chimistes aux solutions de cette équation? **Réponse : [3 pts]**
- 2. L'orbitale 1s de l'atome d'hydrogène vérifie la condition de normalisation suivante : $\int d\vec{r} |\Psi_{1s}(\vec{r})|^2 = \int_0^{+\infty} dr \; \rho_{1s}(r) = 1, \text{ où la fonction } \rho_{1s}(r) = \frac{4}{a_0^3} r^2 e^{-\frac{2r}{a_0}} \text{ (appelée densité radiale) est intégrée sur toutes les valeurs que peut prendre la distance <math>r$ de l'électron au noyau, a_0 étant le rayon de Bohr. Quelle information concrète fournit cette fonction? **Réponse : [1 pt]**

Commenter la valeur de $\rho_{1s}(r)$ en r=0. Réponse : [1 pt]

À quelle distance r_{max} du noyau se trouve le maximum de $\rho_{1s}(r)$? Commenter le résultat. **Réponse : [2 pts]**

3. On considère un système quantique à 3 états dont une base orthonormée de l'espace de Hilbert de ces états est notée $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$. On suppose que l'opérateur hamiltonien \hat{H} de ce système est représenté comme suit dans cette base : $\left[\hat{H}\right] = \begin{bmatrix} \alpha & \beta & \beta \\ \beta & \alpha & \beta \\ \beta & \beta & \alpha \end{bmatrix}$, où α et β sont des nombres réels. Soit l'état quantique $|\Psi\rangle = \frac{1}{\sqrt{2}} (|u_1\rangle - |u_2\rangle)$. Qu'obtient-on en appliquant l'opérateur \hat{H} à $|\Psi\rangle$? **Réponse :** [3 pts]

En déduire que l'énergie mesurée sera $\alpha-\beta$ si le système se trouve dans l'état $|\Psi\rangle$ juste avant la mesure.

Réponse: [2 pts]

4. En mécanique classique, une particule de masse M se déplaçant librement à la vitesse v sur un cercle de rayon fixe R (dans le plan xy) a pour moment cinétique orbitalaire $L_z = RMv$. En déduire que, en mécanique quantique, son opérateur hamiltonien s'écrit $\hat{H} = \frac{1}{2MR^2}\hat{L}_z^2$. **Réponse :** [1 pt]

On peut montrer que $\hat{L}_z \equiv -i\hbar \frac{\partial}{\partial \varphi}$, où $i^2 = -1$ et φ est l'angle de rotation sur le cercle. En déduire que les fonctions d'onde $\Phi_m(\varphi) = e^{im\varphi}$, où $m = 0, \pm 1, \pm 2, \ldots$ est le nombre quantique magnétique orbitalaire, sont solutions de l'équation de Schrödinger. Quels sont les niveaux d'énergie associés E_m ?

Réponse: [1 pt]

Pourquoi m ne prend que des valeurs entières (et pas d'autres valeurs réelles)?

Réponse : [1 pt]

On note $\nu_m = (E_{m+1} - E_m)/h$, où $h = 2\pi\hbar$, la fréquence d'absorption associée à la transition $m \to m+1$. On observe en spectroscopie rotationnelle que l'écart $\nu_{m+1} - \nu_m$ entre deux fréquences d'absorption est constant (c'est-à-dire indépendant de m). Retrouve-t-on ce résultat?

Réponse : [1 pt]

En déduire qu'il est possible de mesurer R qui, dans ce contexte, correspondrait à la longueur de liaison d'une diatomique, par exemple.

Réponse : [1 pt]

5. L'hamiltonien d'un ressort quantique de pulsation ω peut s'écrire $\hat{H} = \hbar \omega \left(\hat{a}^{\dagger} \hat{a} + \frac{\hat{1}}{2} \right)$, où $\hat{1}$ est l'opérateur identité. L'opérateur annihilation \hat{a} et son adjoint \hat{a}^{\dagger} (appelé opérateur création) vérifient la relation $\left[\hat{a}, \hat{a}^{\dagger} \right] = \hat{1}$. On note $|\Psi_n\rangle$ un vecteur propre de $\hat{a}^{\dagger}\hat{a}$ associé à la valeur propre n où $n = 0, 1, 2, \ldots$ Montrer que $|\Psi_n\rangle$ est solution de l'équation de Schrödinger associée à l'énergie $E_n = \hbar \omega \left(n + \frac{1}{2} \right)$.

Réponse: [1 pt]

Montrer que le commutateur $[\hat{a}^{\dagger}\hat{a}, \hat{a}^{\dagger}]$ se simplifie comme suit, $[\hat{a}^{\dagger}\hat{a}, \hat{a}^{\dagger}] = \hat{a}^{\dagger}$.

Réponse: [1 pt]

En déduire que $\hat{a}^{\dagger}\hat{a}\hat{a}^{\dagger}|\Psi_{n}\rangle - n\hat{a}^{\dagger}|\Psi_{n}\rangle = \hat{a}^{\dagger}|\Psi_{n}\rangle$, puis que $\hat{a}^{\dagger}|\Psi_{n}\rangle = |\Psi_{n+1}\rangle$ est solution de l'équation de Schrödinger associée au niveau d'énergie E_{n+1} .

Réponse: [1 pt]

En spectroscopie vibrationnelle, la probabilité que la transition $n \to m$ entre les niveaux d'énergie E_n et E_m se produise est proportionnelle à $|V_{mn}|^2$ où le terme dit de couplage V_{mn} vaut $V_{mn} = \langle \Psi_m | \hat{a} + \hat{a}^{\dagger} | \Psi_n \rangle$. Montrer que $V_{mn} = \langle \Psi_{m+1} | \Psi_n \rangle + \langle \Psi_m | \Psi_{n+1} \rangle$.

Réponse: [1 pt]

En déduire la règle de sélection qui dit que les transitions vibrationnelles ne peuvent se faire qu'entre niveaux quantiques adjacents (c'est-à-dire $n \to n+1$ ou $n \to n-1$). **Réponse :** [1 pt]