
Exam in Advanced Quantum Chemistry – M2 course
January 2025, Two-hour exam

Lecturer: Emmanuel Fromager

1. Essay [10 points]

Write a structured and concise essay on the topic “Electron correlation and Chemistry”. What is electron corre-

lation? Why do chemists refer to different types of correlations in electronic structure theory? Quantum mechanics

relies on a single fundamental equation, the Schrödinger equation. Nevertheless, there is a plethora of theories and

methods in quantum chemistry. How is that possible? These are the questions you are expected to address in your

essay, with a particular focus on accuracy versus computational feasibility. You are encouraged to illustrate your prose

with well-explained and enlightening equations.

2. Exercise: Quantum embedding of molecular fragments [13 points]

The present exercise is an intuitive introduction to density matrix embedding theory (DMET), a theory that was

proposed in 2012 by Knizia and Chan [Phys. Rev. Lett. 109, 186404 (2012)] as an efficient strategy for computing

large electronic systems “piece-by-piece”. We will assume throughout the exercise that the full system under study is

described at the Hartree–Fock (HF) level of approximation. Real algebra will be used.

a) We denote {ϕI}1≤I≤N the orthonormal set of occupied canonical HF molecular spin-orbitals. The corresponding N -

electron Slater determinant reads |Φ〉 =
∏N
I=1 â

†
I |vac〉 in second quantization. As further explained in the following,

it is essential, in order to achieve the quantum embedding of a molecular fragment (i.e., a part of the full system),

to use another orthonormal basis {ϕ̃I}1≤I≤N . The two bases are connected through a unitary transformation that

reads as follows in second quantization,

|Φ〉 ≡ |ϕ1ϕ2 . . . ϕN | →
∣∣Φ̃〉 ≡ |ϕ̃1ϕ̃2 . . . ϕ̃N | =

N∏
I=1

â†
Ĩ
|vac〉 = e−κ̂ |Φ〉 , (1)

where κ̂ =
∑N

1≤I<J κIJ

(
â†I âJ − â

†
J âI

)
. [1 pt] Explain why κ̂ |Φ〉 = 0 and conclude that

∣∣Φ̃〉 = |Φ〉. We recall that

e−κ̂ =
∑+∞
p=0

(−κ̂)p

p! .

b) We consider in the following an arbitrary fragment F of the full system, which is defined mathematically as

the one-electron Hilbert subspace consisting of Lfrag (where Lfrag << N) orthonormal spin-orbitals, i.e., F ={
|χF 〉 ≡ ĉ†F |vac〉

}
1≤F≤Lfrag

, these spin-orbitals being essentially localized in the spatial region of that fragment.

The remaining localized spin-orbitals {|χE〉}E>Lfrag
span the fragment’s environment, i.e., the rest of the system.

The (one-electron reduced) density matrix elements in the localized spin-orbital basis read DPQ =
〈

Φ̃
∣∣∣ĉ†P ĉQ∣∣∣Φ̃〉 ,

where ĉ†P =
∑N
I=1 〈ϕ̃I |χP 〉 â

†
Ĩ
and ĉQ =

∑N
J=1 〈ϕ̃J |χQ〉 âJ̃ . [1 pt] Show that

DPQ =
N∑
I=1
〈ϕ̃I |χP 〉 〈ϕ̃I |χQ〉 . (2)
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c) We now define explicitly the first Lfrag rotated occupied spin-orbitals {ϕ̃I}1≤I≤Lfrag
by projecting the fragment

spin-orbitals onto the complete space of occupied HF spin-orbitals,

|uF 〉 =
1≤F≤Lfrag

P̂occ |χF 〉 , where P̂occ =
N∑
I=1
|ϕ̃I〉 〈ϕ̃I | =

N∑
I=1
|ϕI〉 〈ϕI | , (3)

and orthonormalizing the projections, thus leading to

|ϕ̃I〉 =
1≤I≤Lfrag

Lfrag∑
F=1

[
S−1/2

]
IF
|uF 〉 , (4)

where the Lfrag × Lfrag overlap matrix S is defined through its elements as follows, [S]FF ′ = 〈uF |uF ′〉. [2 pts]

Show that the projector onto the corresponding “fragment occupied” subspace F̂occ =
∑Lfrag
I=1 |ϕ̃I〉 〈ϕ̃I | reads

F̂occ =
Lfrag∑
F=1

Lfrag∑
F ′=1

[
S−1]

FF ′ |uF 〉 〈uF ′ | , (5)

and check that F̂occ |uG〉= |uG〉, 1 ≤ G ≤ Lfrag. We recall that the elements of the matrix product AB of two real

Hermitian matrices A and B are evaluated as follows, [AB]FF ′ =
∑
I [A]FI [B]IF ′ =

∑
I [A]IF [B]IF ′ .

d) [1 pt] Show that the overlap 〈ϕ̃I |χF 〉 between a rotated occupied spin-orbital ϕ̃I (1 ≤ I ≤ N) and a fragment one

χF (1 ≤ F ≤ Lfrag) can be written equivalently as follows, 〈ϕ̃I |χF 〉 = 〈ϕ̃I |uF 〉. For that purpose, use Eq. (3), and

the fact that |ϕ̃I〉 = P̂occ |ϕ̃I〉 and P̂occ is Hermitian.

e) [2 pts] The projection operator P̂core =
∑N
I>Lfrag

|ϕ̃I〉 〈ϕ̃I | onto the complementary part of the occupied spin-orbital

space (the so-called “core” subspace) is simply determined as follows, P̂core = P̂occ − F̂occ. Deduce from questions

2. c) and d) that the core and fragment spin-orbitals do not overlap, i.e., 〈ϕ̃I |χF 〉 =
Lfrag<I≤N

〈
ϕ̃I

∣∣∣P̂core

∣∣∣uF〉 = 0.

For that purpose, use the fact that |ϕ̃I〉 =
Lfrag<I≤N

P̂core |ϕ̃I〉, P̂core is Hermitian, and P̂2
occ = P̂occ.

f) [3 pts] Deduce from questions 2. b) and e) that the density matrix elements involving at least one fragment spin-

orbital index F can be evaluated exactly from the Lfrag-electron Slater determinant
∣∣Φ̃cluster

〉
=
∏Lfrag
I=1 â†

Ĩ
|vac〉 as

follows, DFQ =
1≤F≤Lfrag

∑Lfrag
I=1 〈ϕ̃I |χF 〉 〈ϕ̃I |χQ〉 =

〈
Φ̃cluster

∣∣∣ĉ†F ĉQ∣∣∣Φ̃cluster

〉
. Why is this a remarkable result? Why

are {ϕ̃I}Lfrag<I≤N referred to as core spin-orbitals?

g) [BONUS] In order to determine variationally the “fragment occupied” spin-orbitals {ϕ̃I}1≤I≤Lfrag
, we can dis-

tribute the “active” Lfrag electrons among the Lfrag spin-orbitals of the fragment F plus the Lfrag orthonormalized

(so-called bath) spin-orbitals
{
ψ̃B
}

1≤B≤Lfrag
that are obtained by projection (and orthonormalization) onto the frag-

ment’s environment (see question 2. b)), i.e.,
∣∣ψ̃B〉 =

1≤B≤Lfrag

∑Lfrag
F=1

[
B−1/2]

BF
|vF 〉, where [B]FF ′ = 〈vF |vF ′〉 and

|vF 〉 =
∑N
E>Lfrag

〈χE |uF 〉 |χE〉. The resulting 2Lfrag-dimensional “fragment+bath” spin-orbital space is referred to

as embedding cluster. [3 pts] Show that, according to Eqs. (2) and (3), the bath spin-orbitals can be determined

directly from the density matrix as follows, |vF 〉 =
∑N
E>Lfrag

DEF |χE〉. Check that the bath is orthogonal to the

core, i.e., 〈ϕ̃I |vF 〉 =
Lfrag<I≤N

0. For that purpose, use the alternative expression |vF 〉 = |uF 〉−
∑Lfrag
F ′=1 〈χF ′ |uF 〉 |χF ′〉

with questions 2. d) and e). How could the present embedding scheme be exploited for performing (approximate)

large-scale correlated computations?
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