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Back in 2012… 



A few words about strong electron correlation
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A brief reminder: Multi-configurational description of the stretched hydrogen molecule 
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Multi-configurational description of the stretched hydrogen molecule 
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Consequence of the electronic  

repulsion on each atom!



“Lattice” representation of a molecular or extended system 
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Second quantization, reduced density matrices,  
and quantum entanglement 
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron orthonormal basis of molecular spin orbitals {φP}P=1,2,3,…,ℳ
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Step 1: Choose a one-electron orthonormal basis of molecular spin orbitals {φP}P=1,2,3,…,ℳ

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂c†
P ̂cQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂c†
P ̂c†

Q ̂cS ̂cR

Step 2: Write the Hamiltonian in second quantization in that basis 

See the video  for further explanations*

https://www.youtube.com/watch?v=FQBrEI57pDA*
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂c†
P ̂cQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂c†
P ̂c†

Q ̂cS ̂cR

https://www.youtube.com/watch?v=FQBrEI57pDA* creation operators

annihilation operators

Step 1: Choose a one-electron orthonormal basis of molecular spin orbitals {φP}P=1,2,3,…,ℳ

Step 2: Write the Hamiltonian in second quantization in that basis 
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

∫ dx φP(x)(−
1
2

∇2
r + velec−nuclei(x)) φQ(x) One-electron integrals 

(Kinetic energy+nuclear attraction)

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂c†
P ̂cQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂c†
P ̂c†

Q ̂cS ̂cR

Step 1: Choose a one-electron orthonormal basis of molecular spin orbitals {φP}P=1,2,3,…,ℳ

Step 2: Write the Hamiltonian in second quantization in that basis 
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Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Schrödinger equation in second quantization

Two-electron integrals 
(electronic repulsion) ∫ dx1 ∫ dx2 φP(x1)φQ(x2)

1
|r1 − r2 |

φR(x1)φS(x2)

Ĥ ≡ ∑
PQ

⟨φP | ĥ |φQ⟩ ̂c†
P ̂cQ +

1
2 ∑

PQRS

⟨φPφQ | ̂g |φRφS⟩ ̂c†
P ̂c†

Q ̂cS ̂cR

Step 1: Choose a one-electron orthonormal basis of molecular spin orbitals {φP}P=1,2,3,…,ℳ

Step 2: Write the Hamiltonian in second quantization in that basis 
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E0 = ⟨Ψ0 | Ĥ |Ψ0⟩
notation= ⟨Ĥ⟩Ψ0

Evaluation of the energy from the reduced density matrices
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E0 = ⟨Ĥ⟩Ψ0

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Evaluation of the energy from the reduced density matrices
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E0 = ⟨Ĥ⟩Ψ0

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

One-electron reduced 
density matrix (1RDM)

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Evaluation of the energy from the reduced density matrices
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E0 = ⟨Ĥ⟩Ψ0

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

One-electron reduced 
density matrix (1RDM)

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Evaluation of the energy from the reduced density matrices

Often referred to as “density matrix”,  
like in density matrix embedding theory (DMET)
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E0 = ⟨Ĥ⟩Ψ0

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

One-electron reduced 
density matrix (1RDM)

ΓPQSR = ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Two-electron reduced 
density matrix (2RDM)

Evaluation of the energy from the reduced density matrices

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0
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Let’s consider a 2D lattice of localised spin-orbitals

P

Q

R

S

Meaning of the reduced density matrices
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γPQ = ⟨Ψ0 | ̂c†
P ̂cQ |Ψ0⟩

P

Q

R

S

Meaning of the reduced density matrices

1RDM
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P

Q

R

S

ΓPQSR = ⟨Ψ0 | ̂c†
P ̂c†

Q ̂cS ̂cR |Ψ0⟩

Meaning of the reduced density matrices

2RDM
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ΓPQSR = ⟨Ψ0 | ̂c†
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Meaning of the reduced density matrices

2RDM
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E0 = ⟨Ĥ⟩Ψ0

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

One-electron reduced 
density matrix (1RDM)

ΓPQSR = ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Two-electron reduced 
density matrix (2RDM)

Evaluation of the energy from the reduced density matrices

= ∑
PQ

hPQ ⟨ ̂c†
P ̂cQ⟩Ψ0

+
1
2 ∑

PQRS

gPQRS ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

The energy is an explicit functional of the 1 and 2RDMs!
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γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

ΓPQSR = ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Evaluation of the energy from the reduced density matrices

The energy is an explicit functional of the 1 and 2RDMs!

In fact… γPQ = −
∑R ΓPRQR

N − 1

̂c†
R ̂cQ = δRQ − ̂cQ ̂c†

R
Number of electrons



Local evaluation of the energy (in a localised spin-orbital basis)  
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s

⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

One-electron 

density matrix


(1RDM)

Two-electron 

density matrix


(2RDM)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

χp(r)
Orthonormalized  
atomic orbital  

or 
localized 

molecular orbital

So-called “lattice” representation



Local evaluation of the energy (in a localised spin-orbital basis)  

28

q

r

s

p

⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

One-electron 

density matrix


(1RDM)

Two-electron 

density matrix


(2RDM)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Fragmentation 
for treating strong local electron correlations 



Local evaluation of the energy (in a localised spin-orbital basis)  
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Fragment 

So-called “lattice representation” ⟨Ĥ⟩ = ∑
pq

hpq⟨ ̂c†
p ̂cq⟩ +

1
2 ∑

pqrs

⟨pq |rs⟩⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩

One-electron 

density matrix


(1RDM)

Two-electron 

density matrix


(2RDM)

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).
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Fragment

Fragment’s environment Entanglement

p

q

r

s

Local evaluation of the energy (in a localised spin-orbital basis)  

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

So-called “lattice” representation



31

Quantum entanglement of a fragment with its environment

P

Q

R

S

The  orbital fragment is NOT disconnected from the other orbitals  PQRS
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P

Q

R

S

The  orbital fragment is NOT disconnected from the other orbitals  PQRS

Open quantum  
subsystem

Quantum entanglement of a fragment with its environment
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Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR

In principle, we need to solve the Schrödinger equation 

in order to evaluate the (ground-state) energy:

Ĥ |Ψ0⟩ = E0 |Ψ0⟩

Quantum entanglement of a fragment with its environment
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Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR

In principle, we need to solve the Schrödinger equation 

in order to evaluate the (ground-state) energy:

Ĥ |Ψ0⟩ = E0 |Ψ0⟩

A  consisting of electrons simply distributed among disconnected fragments 
cannot be described by !    

|Ψ0⟩
Ĥ |Ψ0⟩

Quantum entanglement of a fragment with its environment
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P

Q

R

S
Entanglement

T
hPT ≠ 0

L hLQ ≠ 0

Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR

Summation running 

over the full lattice!

Quantum entanglement of a fragment with its environment
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P

Q

R

S
Entanglement

T

M

gPMTS ≠ 0

Ĥ ≡ ∑
PQ

hPQ ̂c†
P ̂cQ +

1
2 ∑

PQRS

gPQRS ̂c†
P ̂c†

Q ̂cS ̂cR

Summation running 

over the full lattice!

Quantum entanglement of a fragment with its environment
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P

Q

R

S

The evaluation of the RDMs requires, in principle, the wave function  
of the entire system

Ψ0

γPQ = ⟨ ̂c†
P ̂cQ⟩Ψ0

ΓPQSR = ⟨ ̂c†
P ̂c†

Q ̂cS ̂cR⟩Ψ0

Quantum entanglement of a fragment with its environment



Philosophy of density matrix embedding theory (DMET) 

38G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).
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Density Matrix Embedding: A Simple Alternative to Dynamical Mean-Field Theory

Gerald Knizia and Garnet Kin-Lic Chan
Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, USA

(Received 25 April 2012; published 2 November 2012)

We introduce density matrix embedding theory (DMET), a quantum embedding theory for computing

frequency-independent quantities, such as ground-state properties, of infinite systems. Like dynamical

mean-field theory, DMET maps the bulk interacting system to a simpler impurity model and is exact in the

noninteracting and atomic limits. Unlike dynamical mean-field theory, DMET is formulated in terms of

the frequency-independent local density matrix, rather than the local Green’s function. In addition, it

features a finite, algebraically constructible bath of only one bath site per impurity site, with no bath

discretization error. Frequency independence and the minimal bath make DMETa computationally simple

and efficient method. We test the theory in the one-dimensional and two-dimensional Hubbard models

at and away from half filling, and we find that compared to benchmark data, total energies, correlation

functions, and metal-insulator transitions are well reproduced, at a tiny computational cost.

DOI: 10.1103/PhysRevLett.109.186404 PACS numbers: 71.10.Fd, 71.27.+a, 71.30.+h, 74.72.!h

Dynamical mean-field theory [1–5] (DMFT) has devel-
oped into a powerful embedding framework for bulk quan-
tum systems. Its central idea is to self-consistently map the
infinite bulk system to an impurity model, which contains
only a few interacting impurity sites, embedded in an infi-
nite noninteracting bath [1–5]. In many settings, such im-
purity models can be solved using high-level many-body
methods (so called impurity solvers) [6–14]. Through the
bath embedding, DMFT yields predictions that closely
approach the bulk limit, despite the greatly simplified treat-
ment of interactions.

The basic quantum variable in DMFT is the local
Green’s function, igijð!Þ ¼ hayi ½!! ðH! EÞ&!1aji. As
a function of frequency, it provides access to the local
density of states as well as to static quantities such as
energies. However, there are reasons to consider simpler
frequency-independent quantum variables, too. For many
applications frequency information is not required; for
example, energies can be calculated from time-
independent states alone, as can energy derivatives such
as compressibilities or static correlation functions, and
many other properties. Additionally, calculating stationary
states, such as the ground state, is much easier than calcu-
lating Green’s functions, not the least due to the practical
availability of many powerful numerical techniques (e.g.,
the density matrix renormalization group and its tensor
network extensions [15,16], coupled cluster and configu-
ration interaction theories [17], and lattice diffusion [18],
auxiliary field [19], and variational Monte Carlo calcula-
tions [20,21]). An embedding framework based on a
frequency-independent variable offers a potentially more
efficient as well as a more flexible route to access static
properties of bulk systems, including the possibility of
using ground-state methods as impurity solvers.

Here, we propose a density matrix embedding theory
(DMET) with the following features: (i) the infinite bulk

problem is mapped onto a self-consistent impurity prob-
lem, consisting of interacting impurity and noninteracting
bath sites, (ii) the single-particle density matrix hayi aji is
the quantum variable, rather than the Green’s function, and
no frequency-dependent quantities appear in the theory,
(iii) the bath representation consists of a single bath site per
impurity site (which is sufficient to exactly capture embed-
ding effects at the mean-field level), and (iv) the bath can
be constructed algebraically without any fitting. Feature (i)
is analogous to DMFT, and as we show below, the basic
physics of DMET is similar to DMFT. Features (ii–iv),
however, are different. They allow for the primary numeri-
cal advantage of DMET: computing ground-state proper-
ties of a cluster model with L impurity sites requires only
solving for the ground state of a cluster plus bath problem
of size 2L, and this is much cheaper than the corresponding
DMFT calculation.
To motivate the DMET construction, we first consider an

exact single-site embedding of the infinite lattice Hubbard
model, with the Hamiltonian

H ¼
X

hiji!
tayi!aj! þ

X

i

Uni"ni#: (1)

For simplicity, we focus on ground-state properties, but we
outline the extension to excited and thermal states below.
The ground state j!i of H can be mapped to the ground
state of a simple impurity model, consisting of a single
impurity site embedded with a single bath site, and with
Hamiltonian H0. This follows from the Schmidt decom-
position of j!i, j!i ¼ PM

i "ij#iij$ii [22], where j#ii are
states of a single Hubbard site (viewed as an impurity) and
j$ii are states in the Hilbert space of the remaining lattice
sites. Note that the number of j$ii states, M, equals the
number of states of the single impurity site. Consequently,
j$ii can be interpreted as the states of a single bath site.
With this identification, the exact impurity HamiltonianH0

PRL 109, 186404 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

2 NOVEMBER 2012

0031-9007=12=109(18)=186404(5) 186404-1 ! 2012 American Physical Society
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Fragment
p

q

r

s

Local evaluation of the energy (in a localised spin-orbital basis)  

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Open quantum system!

So-called “lattice” representation
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Quantum bath 
(spin-orbital subspace)

p

q

r

s

Clusterization procedure

Embedding cluster 𝒞

Embedded fragment  
(impurities)
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Embedding cluster 𝒞

Reduction in size of the problem to be solved:

⟨ ̂c†
p ̂cq⟩full system ≈ ⟨ ̂c†

p ̂cq⟩Ψ𝒞

⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩full system ≈ ⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩Ψ𝒞

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Few-electron 
correlated wave function


p

q

r

s
Ψ𝒞Quantum bath 


 electronic reservoir≡

Embedded fragment  
(impurities)

Clusterization procedure
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Embedding cluster 𝒞

⟨ ̂c†
p ̂cq⟩full system ≈ ⟨ ̂c†

p ̂cq⟩Ψ𝒞

⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩full system ≈ ⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩Ψ𝒞

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Few-electron 
correlated wave function


How many  
bath orbitals? 

p

q

r

s
Ψ𝒞Quantum bath 


 electronic reservoir≡

Embedded fragment  
(impurities)

Reduction in size of the problem to be solved:

Clusterization procedure
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Embedding cluster 𝒞

⟨ ̂c†
p ̂cq⟩full system ≈ ⟨ ̂c†

p ̂cq⟩Ψ𝒞

⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩full system ≈ ⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩Ψ𝒞

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Few-electron 
correlated wave function


How many  
bath orbitals? 

p

q

r

s
Ψ𝒞Quantum bath 


 electronic reservoir≡

Embedded fragment  
(impurities)

Reduction in size of the problem to be solved:

Clusterization procedure

As many as the number of orbitals 

in the fragment…
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Embedding cluster 𝒞

⟨ ̂c†
p ̂cq⟩full system ≈ ⟨ ̂c†

p ̂cq⟩Ψ𝒞

⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩full system ≈ ⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩Ψ𝒞

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Few-electron 
correlated wave function


4 orbitals here: 
Why and how?

How many?

p

q

r

s
Ψ𝒞Quantum bath 


 electronic reservoir≡

Embedded fragment  
(impurities)

Reduction in size of the problem to be solved:

Clusterization procedure
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Embedding cluster 𝒞

⟨ ̂c†
p ̂cq⟩full system ≈ ⟨ ̂c†

p ̂cq⟩Ψ𝒞

⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩full system ≈ ⟨ ̂c†
p ̂c†

q ̂cs ̂cr⟩Ψ𝒞

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Few-electron 
correlated wave function


4 orbitals here: 
Why and how?

How many?

p

q

r

s
Ψ𝒞Quantum bath 


 electronic reservoir≡

Embedded fragment  
(impurities)

Reduction in size of the problem to be solved:

Clusterization procedure

As many as the number of spin-orbitals 

in the fragment


(half-filled embedding cluster)… 



Mathematical construction and justification  
of the DMET quantum bath 
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Clusterization through a unitary one-electron transformation 

Original lattice

representation 

Embedding 
representation 

|χp⟩ → |ϕp⟩ = ∑
q

|χq⟩⟨χq | |ϕp⟩ = ∑
q

⟨χq |ϕp⟩ |χq⟩

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Resolution of the identity (RI)
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Clusterization through a unitary one-electron transformation 

Original lattice

representation 

Embedding 
representation 

|ϕp⟩ p∈Fragment= |χp⟩

{ |ϕb⟩} Bath subspace 

(not defined yet) 

Fragment 

{ |ϕℰ⟩} Cluster’s environment 

(not defined yet) 

{ |χp⟩} ≡

Same space,

different basis

|χp⟩ → |ϕp⟩ = ∑
q

|χq⟩⟨χq | |ϕp⟩ = ∑
q

⟨χq |ϕp⟩ |χq⟩

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).
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p

q

r

s

Fragment 

So-called “lattice representation”

Clusterization through a unitary one-electron transformation 

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).
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Quantum bath 
(spin-orbital subspace)

p

q

r

s

“fragment+bath”cluster’s  
environment 

(spin-orbital subspace)

Fragment

Clusterization through a unitary one-electron transformation 

{ϕb}

{χp}

{ϕℰ}

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).
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Quantum bath 
(spin-orbital subspace)

p

q

r

s

“fragment+bath”cluster’s  
environment 

(spin-orbital subspace)

Fragment

Clusterization through a unitary one-electron transformation 

{ϕb}

{χp}

{ϕℰ}

Span the original lattice without overlapping with the fragment

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).
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Unitary one-electron transformation in second quantization 

|χp⟩ → |ϕp⟩ ≡ ̂d†
p |vac⟩ = ∑

q

⟨χq |ϕp⟩ ̂c†
q |vac⟩

|χq⟩

|χp⟩ → |ϕp⟩ = ∑
q

⟨χq |ϕp⟩ |χq⟩

⇔
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Unitary one-electron transformation in second quantization 

|χp⟩ → |ϕp⟩ ≡ ̂d†
p |vac⟩ = ∑

q

⟨χq |ϕp⟩ ̂c†
q |vac⟩

̂d†
p = ∑

q

⟨χq |ϕp⟩ ̂c†
q

Embedding  
representation

Lattice 

representation



Unitary transformed density matrix 
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γ̃ = ⟨ ̂d†
p

̂dq⟩ ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

“fragment+bath”  
embedding cluster



Unitary transformed density matrix 
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γ̃ = ⟨ ̂d†
p

̂dq⟩ ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

0

0

We impose that constraint (this is what we want!)

“fragment+bath”  
embedding cluster



Unitary transformed density matrix 
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γ̃ = ⟨ ̂d†
p

̂dq⟩ ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

0

0
“fragment+bath”  

embedding cluster

⟨ ̂d†
ℰ ̂cf⟩ =

lattice

∑
e∉Fragment

⟨χe |ϕℰ⟩⟨ ̂c†
e ̂cf⟩

γef

Density matrix in the original 

lattice representation 


(supposed to be known!)



Unitary transformed density matrix 
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γ̃ = ⟨ ̂d†
p

̂dq⟩ ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

0

0
“fragment+bath”  

embedding cluster

Orthogonality constraint

⟨ ̂d†
ℰ ̂cf⟩ = ∑

e∉Fragment

⟨χe |ϕℰ⟩⟨ ̂c†
e ̂cf⟩ = ⟨ ∑

e∉Fragment

γef χe ϕℰ⟩ != 0, ∀f



The bath is a functional of the density matrix 
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S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

⟨ ∑
e∉Fragment

γef χe ϕℰ⟩ != 0, ∀f

Embedding 

cluster’s environment

lattice

∑
e∉ Fragment

γef | χe⟩

f ∈ Fragment

The bath is a functional of the full-system

density matrix γ ≡ ⟨ ̂c†

p ̂cq⟩

≡ ℬ



The bath is a functional of the density matrix 
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lattice

∑
e∉ Fragment

γef | χe⟩

f ∈ Fragment

The bath is a functional of the full-system

density matrix γ ≡ ⟨ ̂c†

p ̂cq⟩

≡ ℬ

dim ℬ = dim Fragment ✅



The bath is a functional of the density matrix 
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S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

lattice

∑
e∉ Fragment

γef | χe⟩

f ∈ Fragment

The bath is a functional of the full-system

density matrix γ ≡ ⟨ ̂c†

p ̂cq⟩

≡ ℬ

The bath orbital basis needs to be orthonormalized 
(SVD, Householder transformation, …)
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Orthonormalisation of the bath orbitals 

|uf⟩ = ∑
e∉ Fragment

γef |χe⟩

Sff′￼
= ⟨uf |uf′￼

⟩ =: [S]ff′￼
Overlap matrix
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Orthonormalisation of the bath orbitals 

|uf⟩ = ∑
e∉ Fragment

γef |χe⟩

Sff′￼
= ⟨uf |uf′￼

⟩ =: [S]ff′￼
Overlap matrix

SX = λX → λ = ∑
ff′￼

Xf Sff′￼Xf′￼ = ⟨∑
f

Xfuf ∑
f′￼

Xf′￼uf′￼⟩ > 0

Normalised 

eigenvector

Eigenvalue If the  are linearly independent

(usually the case) 

|uf⟩
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Orthonormalisation of the bath orbitals 

|uf⟩ = ∑
e∉ Fragment

γef |χe⟩

Sff′￼
= ⟨uf |uf′￼

⟩ =: [S]ff′￼
Overlap matrix

|ϕb⟩ = ∑
f

[S−1/2]bf
|uf⟩ℬ ≡

⟨ϕb |ϕb′￼⟩ = ∑
ff′￼

[S−1/2]bf [S−1/2]b′￼f′￼[S]ff′￼
= δbb′￼

✅



Unitary transformed density matrix 
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γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

0

0
γ̃ = ⟨ ̂d†

p
̂dq⟩ ≡

Frag. Bath Cluster env.

Fr
ag

.
Ba

th
C

lu
st

er
 e

nv
.
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What if the full-system density matrix is idempotent? 

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

⟨ ̂a†
p ̂aq⟩ ≡

1

0⋱

0
0 0

11
1⋱ Molecular orbital  

representation!

φ2

φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Mean-field (HF)  
or Kohn-Sham DFT

|φp⟩ = ̂a†
p |vac⟩
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What if the full-system density matrix is idempotent? 

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

γ ≡

1

0⋱

0
0 0

11
1⋱ Molecular orbital  

representation!

φ2

φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

Mean-field (HF)  
or Kohn-Sham DFTNote that Tr γ = N Total number of electrons  

(in the full system)
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What if the full-system density matrix is idempotent? 

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

γ ≡

1

0⋱

0
0 0

11
1⋱ Molecular orbital  

representation!

φ2

φ1

φN

φN+1

φN+2

φN+3

φN+4

φℳ−1

φℳ

γ2

=

Mean-field (HF)  
or Kohn-Sham DFT



Unitary transformed idempotent density matrix 

69

=
γ̃ℰbγ̃bf

γ̃2 = γ̃ ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

0ℰf

0fℰ

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).



Unitary transformed idempotent density matrix 
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=
γ̃ℰbγ̃bf

γ̃2 = γ̃ ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

0ℰf

0fℰ

γ̃bf = ⟨ ̂d†
b ̂cf⟩ = ∑

e∉Fragment

⟨χe |ϕb⟩γef = ⟨uf |ϕb⟩ = ∑
f′￼

[S]ff′￼
[S−1/2]bf′￼

= [S1/2]bf



Unitary transformed idempotent density matrix 
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=
γ̃ℰbγ̃bf

γ̃2 = γ̃ ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

0ℰf

0fℰ

γ̃bf = ⟨ ̂d†
b ̂cf⟩ = ∑

e∉Fragment

⟨χe |ϕb⟩γef = ⟨uf |ϕb⟩ = ∑
f′￼

[S]ff′￼
[S−1/2]bf′￼

= [S1/2]bf

Invertible!



Unitary transformed idempotent density matrix 
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γ̃ℰb = 0

=
γ̃ℰbγ̃bf

γ̃2 = γ̃ ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰγ̃ℰb

γ̃†
ℰb

0ℰf

0fℰ

Invertible!

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).



Unitary transformed density matrix 
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γ̃ ≡

γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ0

0
0

Frag. Bath Cluster env.
Frag.

Bath
C

luster env.

Mean-field or  
non-interacting 

full-size calculation

If γ2 = γ

0



Unitary transformed idempotent density matrix 
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γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ0ℰf

0fℰ

=γ̃bf γff+γ̃bbγ̃bf

0ℰb

0bℰ
≡ γ̃ = γ̃2

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).



Unitary transformed idempotent density matrix 
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γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ0ℰf

0fℰ

=γ̃bf γff+γ̃bbγ̃bf

0ℰb

0bℰ

Tr[γff] + Tr [γ̃bb] = Lf

γff+γ̃−1
bf γ̃bbγ̃bf = 1f

≡ γ̃ = γ̃2

The embedding cluster  
contains exactly   electrons!Lf

Lf Lf

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Invertible!



Unitary transformed density matrix 
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γff

γ̃bf

γ̃†
bf

γ̃bb

γ̃ℰℰ0

0
0γ̃ ≡

Frag. Bath Cluster env.
Frag.

Bath
C

luster env.

Mean-field or  
non-interacting 

full-size calculation

0

Tr[γff ] + Tr [γ̃bb] = LFrag.

If γ2 = γ

Dimension of the fragment
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Quantum bath 
(spin-orbital subspace)

p

q

r

s

Fragment

Clusterization through a unitary one-electron transformation 

S. Sekaran, O. Bindech, and E. Fromager, J. Chem. Phys. 159, 034107 (2023).

Ψ𝒞

-electron embedding cluster LFrag. 𝒞

Exact at the 

non-interacting


or 

mean-field 


level of calculation!



Illustrative example 
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Rings of hydrogen atoms (Hubbard model)

79

Two-electron system

-electron systemN

H φbath

H

H

HH

H

H

H

H

H

HH

H

H

H

H
H

Effective  
neighbouring atom 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Ĥ = ∑
σ=↑,↓

L−1

∑
i=0

−t ( ̂c†
iσ ̂c(i+1)σ + ̂c†

(i+1)σ ̂ciσ)+U
L−1

∑
i=0

̂c†
i↑ ̂c†

i↓ ̂ci↓ ̂ci↑



Approximate embedding of interacting Hamiltonians
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ĥ𝒞

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Exact non-interacting (i.e., for )

embedding

U = 0

One-electron Hamiltonian  
of the cluster H φbath



Approximate embedding of interacting Hamiltonians
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ĥ𝒞 single impurity
→ ĥ𝒞 + ⟨pp |pp⟩ ̂c†

p↑ ̂c†
p↓ ̂cp↓ ̂cp↑

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Exact non-interacting

embedding

One-electron Hamiltonian  
of the cluster

Two-electron repulsion

on the impurity 



Approximate embedding of interacting Hamiltonians

82

ĥ𝒞 single impurity
→ ĥ𝒞 + ⟨pp |pp⟩ ̂c†

p↑ ̂c†
p↓ ̂cp↓ ̂cp↑

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Exact non-interacting

embedding

One-electron Hamiltonian  
of the cluster

U

=
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0.0 0.2 0.4 0.6 0.8
-1.5

-1.2

-0.9

-0.6

-0.3

0.0

U/(U+4t)

pe
r-s

ite
 e

ne
rg

y

Ht-DMFET  

Ht-DMFET (NIB) 

exact (BA)     

                                

n = 1

E/L

Half-filled uniform Hubbard ring with  atomic sites  L = 400

Ĥ = ∑
σ=↑,↓

L−1

∑
i=0

−t ( ̂c†
iσ ̂c(i+1)σ + ̂c†

(i+1)σ ̂ciσ)+U
L−1

∑
i=0

̂c†
i↑ ̂c†

i↓ ̂ci↓ ̂ci↑

Non-interacting bath

 DMET≡

= N/L

This is what  
we get!

😟
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0.00 0.25 0.50 0.75 1.00

0.25

0.50

0.75

1.00

filling n

im
pu

rit
y 

si
te

 o
cc

up
at

io
n 

                             

U/t = 0.2

U/t = 8
U/t = 4
U/t = 1

Dotted lines: Non-interacting bath (NIB)

 atomsL = 400

S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

∑
σ=↑,↓

⟨Ψ𝒞 | ̂c†
pσ ̂cpσ |Ψ𝒞⟩

= N/L



Approximate embedding of interacting Hamiltonians
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ĥ𝒞 single impurity
→ ĥ𝒞 + ⟨pp |pp⟩ ̂c†

p↑ ̂c†
p↓ ̂cp↓ ̂cp↑ −μ̃imp ∑

σ=↑,↓

̂c†
pσ ̂cpσ

Chemical potential 
on the impurity

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Exact non-interacting

embedding

One-electron Hamiltonian  
of the cluster

U

=



Approximate embedding of interacting Hamiltonians
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ĥ𝒞 single impurity
→ ĥ𝒞 + ⟨pp |pp⟩ ̂c†

p↑ ̂c†
p↓ ̂cp↓ ̂cp↑ −μ̃imp ∑

σ=↑,↓

̂c†
pσ ̂cpσ

Chemical potential 
on the impurity

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Exact non-interacting

embedding

Approximate interacting 
embedding

One-electron Hamiltonian  
of the cluster

U

=
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0.0 0.2 0.4 0.6 0.8
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-1.2

-0.9

-0.6

-0.3

0.0

U/(U+4t)

pe
r-s

ite
 e

ne
rg

y

Ht-DMFET  

Ht-DMFET (NIB) 

exact (BA)     

                                

n = 1

E/L Ĥ = ∑
σ=↑,↓

L−1

∑
i=0

−t ( ̂c†
iσ ̂c(i+1)σ + ̂c†

(i+1)σ ̂ciσ)+U
L−1

∑
i=0

̂c†
i↑ ̂c†

i↓ ̂ci↓ ̂ci↑

Non-interacting bath

 DMET≡
with  μ̃imp

without  
 μ̃imp

Half-filled uniform Hubbard ring with  atomic sites  L = 400

= N/L
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= Nelectrons/400

SAJANTHAN SEKARAN et al. PHYSICAL REVIEW B 104, 035121 (2021)
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FIG. 9. Ht-DMFET per-site energies plotted as a function of the
lattice filling n for various correlation regimes. Results obtained with
a single impurity are shown as (colored) solid lines. The blue color
corresponds to the noninteracting bath (NIB) case. In the strongly
correlated U/t = 8 regime (bottom panel), NIB results obtained with
two (Nimp = 2) and three (Nimp = 3) impurities are also shown (as
points), for analysis purposes (see Sec. III C for further details).
Comparison is made with the exact Bethe ansatz (BA) results (black
solid lines). In the weakly U/t = 1 correlated case (top panel), exact
and approximate results are almost indistinguishable.

are not allowed in our approximate embedding. As discussed
in Sec. II B, away from half-filling, the cluster becomes an
open subsystem as soon as U/t deviates from zero. Surpris-
ingly, in this density regime, per-site energies are in better
agreement with the BA values when the interaction in the bath
is neglected. Again, in the latter case, we recover the single-
impurity DMET results of Ref. [30]. As expected [30,35] and
shown in the bottom panel of Fig. 9, the results dramatically
improve when a larger fragment (consisting of two or three
impurities) is embedded, even at the simplest NIB level of
approximation.

Finally, we investigate in Fig. 10 the density-driven Mott-
Hubbard transition via the evaluation of the density-functional
µ(n) = ∂e(n)/∂n chemical potential from the Ht-DMFET en-
ergy expression of Eq. (69). As expected from Ref. [30], at
the single-impurity level, there is no gap opening when the
interaction in the bath is neglected. Restoring the interaction
in the bath has actually no impact on the transition. In the
light of Sec. II B, we can reasonably assume that Ht-DMFET
fails in this case because it relies on a closed two-electron
“single impurity+single bath” cluster. Already at the NIB
level of approximation, the embedding of a larger fragment
(consisting of two or three impurities) substantially improves
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FIG. 10. Lattice filling plotted, via the relation µ ≡ µ(n) =
∂e(n)/∂n, as a function of the (lattice) chemical potential µ at
the Ht-DMFET level of calculation for various correlation regimes.
(Single-impurity) noninteracting bath (NIB) results are shown as
solid blue lines. In the strongly correlated U/t = 8 case, NIB results
obtained with Nimp = 2 and Nimp = 3 impurities are also shown (as
points), for analysis purposes. Comparison is made with the exact
Bethe ansatz (BA) results.

the results. Nevertheless, even in this case, the gap remains
closed, which is in perfect agreement with the DET results of
Ref. [35]. As we perform single-shot embeddings (where we
only require the embedded impurity to reproduce the correct
filling n), we expect from Ref. [35] the transition to be better
described at the multiple-impurity level when the interactions
in the bath are taken into account. It would also be interesting
to see how Ht-DMFET performs when a correlated (through
the density matrix) bath is employed. This is left for future
work.

V. CONCLUSIONS AND PERSPECTIVES

Similar in spirit to DMET, a (static and zero-temperature)
single-impurity Householder-transformed density matrix
functional embedding theory (Ht-DMFET) has been derived.
The theory has been applied to the 1D Hubbard model. In the
noninteracting case, the formal reduction of the full lattice
to a two-electron dimer is exact. Thanks to the Householder
transformation, the bath site can be determined (analytically)
from the density matrix of the (full) lattice. Alternatively,
one may determine, in principle exactly, the Householder
vector v (which defines the transformation) by minimizing
the sum of the v-dependent Householder cluster and envi-
ronment energies. While the two-site “impurity+bath” cluster
problem is trivially solved, the ground-state energy of the
cluster’s environment must be evaluated for each trial vec-
tor v. Even though such a strategy is uselessly complicated
in practice, because the noninteracting full-size problem can
be solved directly, it is enlightening in many ways. First, it
clearly shows that the optimal cluster cannot be determined
without learning from its environment (and therefore from the
full lattice). The two subsystems “communicate” through the
Householder vector. Second, the resulting variational charac-
ter of the bath might be exploited when electron correlation
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FIG. 9. Ht-DMFET per-site energies plotted as a function of the
lattice filling n for various correlation regimes. Results obtained with
a single impurity are shown as (colored) solid lines. The blue color
corresponds to the noninteracting bath (NIB) case. In the strongly
correlated U/t = 8 regime (bottom panel), NIB results obtained with
two (Nimp = 2) and three (Nimp = 3) impurities are also shown (as
points), for analysis purposes (see Sec. III C for further details).
Comparison is made with the exact Bethe ansatz (BA) results (black
solid lines). In the weakly U/t = 1 correlated case (top panel), exact
and approximate results are almost indistinguishable.

are not allowed in our approximate embedding. As discussed
in Sec. II B, away from half-filling, the cluster becomes an
open subsystem as soon as U/t deviates from zero. Surpris-
ingly, in this density regime, per-site energies are in better
agreement with the BA values when the interaction in the bath
is neglected. Again, in the latter case, we recover the single-
impurity DMET results of Ref. [30]. As expected [30,35] and
shown in the bottom panel of Fig. 9, the results dramatically
improve when a larger fragment (consisting of two or three
impurities) is embedded, even at the simplest NIB level of
approximation.

Finally, we investigate in Fig. 10 the density-driven Mott-
Hubbard transition via the evaluation of the density-functional
µ(n) = ∂e(n)/∂n chemical potential from the Ht-DMFET en-
ergy expression of Eq. (69). As expected from Ref. [30], at
the single-impurity level, there is no gap opening when the
interaction in the bath is neglected. Restoring the interaction
in the bath has actually no impact on the transition. In the
light of Sec. II B, we can reasonably assume that Ht-DMFET
fails in this case because it relies on a closed two-electron
“single impurity+single bath” cluster. Already at the NIB
level of approximation, the embedding of a larger fragment
(consisting of two or three impurities) substantially improves
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the Ht-DMFET level of calculation for various correlation regimes.
(Single-impurity) noninteracting bath (NIB) results are shown as
solid blue lines. In the strongly correlated U/t = 8 case, NIB results
obtained with Nimp = 2 and Nimp = 3 impurities are also shown (as
points), for analysis purposes. Comparison is made with the exact
Bethe ansatz (BA) results.

the results. Nevertheless, even in this case, the gap remains
closed, which is in perfect agreement with the DET results of
Ref. [35]. As we perform single-shot embeddings (where we
only require the embedded impurity to reproduce the correct
filling n), we expect from Ref. [35] the transition to be better
described at the multiple-impurity level when the interactions
in the bath are taken into account. It would also be interesting
to see how Ht-DMFET performs when a correlated (through
the density matrix) bath is employed. This is left for future
work.

V. CONCLUSIONS AND PERSPECTIVES

Similar in spirit to DMET, a (static and zero-temperature)
single-impurity Householder-transformed density matrix
functional embedding theory (Ht-DMFET) has been derived.
The theory has been applied to the 1D Hubbard model. In the
noninteracting case, the formal reduction of the full lattice
to a two-electron dimer is exact. Thanks to the Householder
transformation, the bath site can be determined (analytically)
from the density matrix of the (full) lattice. Alternatively,
one may determine, in principle exactly, the Householder
vector v (which defines the transformation) by minimizing
the sum of the v-dependent Householder cluster and envi-
ronment energies. While the two-site “impurity+bath” cluster
problem is trivially solved, the ground-state energy of the
cluster’s environment must be evaluated for each trial vec-
tor v. Even though such a strategy is uselessly complicated
in practice, because the noninteracting full-size problem can
be solved directly, it is enlightening in many ways. First, it
clearly shows that the optimal cluster cannot be determined
without learning from its environment (and therefore from the
full lattice). The two subsystems “communicate” through the
Householder vector. Second, the resulting variational charac-
ter of the bath might be exploited when electron correlation
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σ=↑,↓

L−1

∑
i=0

̂c†
iσ ̂ciσ

Fixed chemical potential n = n(μ) = ?

“Low-level” non-interacting full-size 
Hamiltonian that generates the bath

through its ground-state idempotent  

density matrix 
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Ĥ𝒞 = ĥ𝒞 + U ̂c†
p↑ ̂c†

p↓ ̂cp↓ ̂cp↑ −μ̃imp ∑
σ=↑,↓

̂c†
pσ ̂cpσ

Impurity-interacting 

Hamiltonian  

of the two-electron  
embedding cluster

True interacting Hamiltonian (U ≠ 0)Ĥ(U) −μ ∑
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vHxc(n) ≈ μ̃imp(n)

Local potential-functional embedding theory (LPFET) 
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and compute approximate per-site energies as follows,

E(µ)
L

+ µn(µ) ⇡
LPFET

⌦
t̂01 + Û0

↵
YC (µ�ṽHxc,ṽHxc)

, (88)

since the approximation in Equation (75) is also used in LPFET, as discussed above.

Figure 1. Graphical representation of the LPFET procedure. Note that the same Hxc potential ṽHxc is
used in the KS lattice and the embedding Householder cluster. It is optimized self-consistently in
order to fulfill the density constraint of Equation (85). See text for further details.

Note that Ht-DMFET (which is equivalent to DMET in the present context) and LPFET
use the same per-site energy expression (see Equation (47)), which is a functional of the
interacting cluster’s wave function. In both approaches, the latter and the non-interacting
lattice share the same density. Therefore, if the per-site energy or the double occupation⌦

n̂0"n̂0#
↵

were plotted as functions of the (converged) lattice filling n, as it is usually done
in the literature [15], both methods would give exactly the same results. The reason
is that, at convergence of the LPFET algorithm, the density constraint of Equation (85)
should be fulfilled, exactly like in Ht-DMFET (see Equations (45) and (46)). However, if
properties were plotted as functions of the chemical potential value µ in the true interacting
lattice, LPFET and Ht-DMFET would give different results, simply because the densities
obtained (for a given µ value) with the two methods would be different. Indeed, as
shown in Section 2.3.2, Ht-DMFET can be viewed as an approximation to KS-DFT where
the Hxc density-functional potential of Equation (78) is employed. As readily seen from
Equation (86), the LPFET and Ht-DMFET Hxc potentials differ by the Householder kinetic
correlation potential (which is neglected in LPFET). If the corresponding KS densities
were the same then the Hxc potential, the Householder transformation, and, therefore,
the chemical potential on the interacting embedded impurity would be the same, which
is impossible according to Equations (78) and (86). In summary, differences in properties
between LPFET and Ht-DMFET are directly related to differences in density. This is
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The converged LPFET densities are plotted in Figure 5 as functions of the chemical
potential µ in various correlation regimes. The non-interacting U = 0 curve describes
the KS lattice at the zeroth iteration of the LPFET calculation. Thus, we can visualize, as
U deviates from zero, how much the KS lattice learns from the interacting two-electron
Householder cluster. LPFET is actually quite accurate (even more than Ht-DMFET, probably
because of error cancellations) in the low filling regime. Even though LPFET deviates
from Ht-DMFET when electron correlation is strong, as expected, their chemical-potential-
density maps are quite similar. This is an indication that neglecting the Householder
kinetic correlation potential contribution to the Hxc potential, as done in LPFET, is not a
crude approximation, even in the strongly correlated regime. As expected [15,31], LPFET
and Ht-DMFET poorly perform when approaching half filling. Like the well-established
single-site DMFT (see Figure 7 of Ref. [5]), they are unable to describe the density-driven
Mott–Hubbard transition (i.e., the opening of the gap). As discussed in Ref. [31], this might
be related to the fact that, in the exact theory, the Householder cluster is not disconnected
from its environment and it contains a fractional number of electrons, away from half
filling, unlike in the (approximate) Ht-DMFET and LPFET schemes. In the language of
KS-DFT, modeling the gap opening is equivalent to modeling the derivative discontinuity
in the density-functional correlation potential vc(n) = µ(n)� µs(n)� U

2 n at half filling.
As clearly shown in Figure 6, Ht-DMFET and LPFET do not reproduce this feature. In the
language of the exact density-functional embedding theory derived in Section 2.3, both
Ht-DMFET and LPFET approximations neglect the complementary density-functional
correlation energy ec(n) that is induced by the interacting bath and the environment of
the (closed) density-functional Householder cluster. As readily seen from Equation (74), it
should be possible to describe the density-driven Mott–Hubbard transition with a single
statically embedded impurity, provided that we can model the derivative discontinuity in
∂ec(n)/∂n at half filling. This is obviously a challenging task that is usually bypassed by
embedding more impurities [15,31]. The implementation of a multiple-impurity LPFET as
well as its generalization to higher-dimension lattice or quantum chemical Hamiltonians is
left for future work.
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Figure 5. Converged LPFET densities (red solid lines) plotted as functions of the chemical potential
µ in various correlation regimes. Comparison is made with the exact BA (black solid lines) and Ht-
DMFET (blue dotted lines) results. In the latter case, the chemical potential is evaluated via the numer-
ical differentiation of the density-functional Ht-DMFET per-site energy (see Equations (62) and (76)).
The non-interacting (U = 0) chemical-potential-density map (see Equation (60)) is shown for
analysis purposes.
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Mott-Hubbard density-driven transition and multiple impurities

S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).
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Abstract: Quantum embedding is a divide and conquer strategy that aims at solving the electronic
Schrödinger equation of sizeable molecules or extended systems. We establish in the present work
a clearer and in-principle-exact connection between density matrix embedding theory (DMET)
and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard
model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder
transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified
density-functional approximations, a self-consistent local potential functional embedding theory
(LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with
our formally exact density-functional embedding theory reveals that a single statically embedded
impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a
complementary density-functional correlation potential (which is neglected in both DMET and
LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple
impurities (which would enable to circumvent the modeling of DDs) and its generalization to
quantum chemical Hamiltonians are left for future work.
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1. Introduction

Kohn–Sham density-functional theory (KS-DFT) [1] has become over the last two
decades the method of choice for computational chemistry and physics studies, essentially
because it often provides a relatively accurate description of the electronic structure of large
molecular or extended systems at a low computational cost. The major simplification of
the electronic structure problem in KS-DFT lies in the fact that the ground-state energy is
evaluated, in principle exactly, from a non-interacting single-configuration wave function,
which is simply referred to as the KS determinant. The latter is obviously not the exact
solution to the Schrödinger equation. However, its density matches the exact interacting
ground-state density, so that the Hartree-exchange-correlation (Hxc) energy of the physical
system, which is induced by the electronic repulsion, can be recovered from an appropriate
(in principle exact and universal) Hxc density functional. Despite the success of KS-DFT,
standard density-functional approximations still fail in describing strongly correlated
electrons. To overcome this issue, various strategies have been explored and improved over
the years, both in condensed matter physics [2–7] and quantum chemistry [8]. Note that,
in the latter case, in-principle-exact multi-determinantal extensions of DFT based on the
adiabatic connection formalism have been developed [9–12]. In these approaches, the KS
system is only referred to in the design of density-functional approximations. In practice,
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the electronic structure problem in KS-DFT lies in the fact that the ground-state energy is
evaluated, in principle exactly, from a non-interacting single-configuration wave function,
which is simply referred to as the KS determinant. The latter is obviously not the exact
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ground-state density, so that the Hartree-exchange-correlation (Hxc) energy of the physical
system, which is induced by the electronic repulsion, can be recovered from an appropriate
(in principle exact and universal) Hxc density functional. Despite the success of KS-DFT,
standard density-functional approximations still fail in describing strongly correlated
electrons. To overcome this issue, various strategies have been explored and improved over
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Density-functional exactification of D(M)ET

W. Bulik, G. E. Scuseria, and J. Dukelsky, Phys. Rev. B 89, 035140 (2014). 
U. Mordovina, T. E. Reinhard, I. Theophilou, H. Appel, and A. Rubio, J. Chem. Theory Comput. 15, 5209 (2019).

n ≡ {⟨ ̂c†
f ̂cf⟩}
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A few words about what “Kohn-Sham DFT” refers to in this context
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A few words about what “Kohn-Sham DFT” refers to in this context

Strictly speaking, we are dealing with a 


site occupation functional theory (for lattice models)

or 


a localized orbital occupation functional theory (for ab initio Hamiltonians)

K. Capelle and V. L. Campo Jr., Phys. Rep. 528, 91 (2013). 
E. Fromager, Mol. Phys. 113, 419 (2015).
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A few words about what “Kohn-Sham DFT” refers to in this context

K. Capelle and V. L. Campo Jr., Phys. Rep. 528, 91 (2013). 
E. Fromager, Mol. Phys. 113, 419 (2015).

Strictly speaking, we are dealing with a 


site occupation functional theory (for lattice models)

or 


a localized orbital occupation functional theory (for ab initio Hamiltonians)

ni = ∑
σ=↑,↓

⟨ ̂c†
iσ ̂ciσ⟩ = ⟨ ̂ni⟩Density ≡

“Density operator”
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A few words about what “Kohn-Sham DFT” refers to in this context

K. Capelle and V. L. Campo Jr., Phys. Rep. 528, 91 (2013). 
E. Fromager, Mol. Phys. 113, 419 (2015).

Kohn-Sham Hamiltonian in this context:

ĤKS = ∑
p≠q

hpq ∑
σ

̂c†
pσ ̂cqσ + ∑

p

hpp ̂np+…

Regular one-electron part 

of the true Hamiltonian Ĥ
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A few words about what “Kohn-Sham DFT” refers to in this context

K. Capelle and V. L. Campo Jr., Phys. Rep. 528, 91 (2013). 
E. Fromager, Mol. Phys. 113, 419 (2015).

ĤKS = ∑
p≠q

hpq ∑
σ

̂c†
pσ ̂cqσ + ∑

p

hpp ̂np+…

Regular one-electron part 

of the true Hamiltonian Ĥ

≡

𝒯̂

≡

𝒱̂ext
Analogs of the kinetic energy 


and external potential operators

Kohn-Sham Hamiltonian in this context:
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A few words about what “Kohn-Sham DFT” refers to in this context

K. Capelle and V. L. Campo Jr., Phys. Rep. 528, 91 (2013). 
E. Fromager, Mol. Phys. 113, 419 (2015).

ĤKS = ∑
p≠q

hpq ∑
σ

̂c†
pσ ̂cqσ + ∑

p

hpp ̂np+∑
p

vHxc
p ̂np

Regular one-electron part 

of the true Hamiltonian Ĥ

≡

𝒯̂

≡

𝒱̂ext

Analog of the 

Hxc potential of DFT

Kohn-Sham Hamiltonian in this context:

⟨ ̂np⟩ĤKS

!= ⟨ ̂np⟩Ĥ ∀p
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LPFET of finite and non-uniform (model or ab-initio) systems

E. Fromager, Mol. Phys. 113, 419 (2015). 
W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).*

What will be discussed in the following can be recovered (more rigorously) 

from


 an exact DFT-like theory  

where


 local densities (localised orbital occupations) 

are mapped 

 onto interacting embedding clusters 

*
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LPFET of finite and non-uniform (model or ab-initio) systems

E. Fromager, Mol. Phys. 113, 419 (2015). 
W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).*

What will be discussed in the following can be recovered (more rigorously) 

from


 an exact DFT-like theory  

where


 local densities (localised orbital occupations) 

are mapped 

 onto interacting embedding clusters 

*

Note: Exact means FCI in this context! 
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LPFET of finite and non-uniform (model or ab-initio) systems

What will be discussed in the following can be recovered (more rigorously) 

from


 an exact DFT-like theory  

where


 local densities (localised orbital occupations) 

are mapped 

 onto interacting embedding clusters 

*

ℱ(n) = min
Ψ→n ⟨Ψ 𝒯̂+Ŵee Ψ⟩ 𝒯s(n) = min

Ψ→n ⟨Ψ 𝒯̂ Ψ⟩

E. Fromager, Mol. Phys. 113, 419 (2015). 
W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).*

ℱ(n) = 𝒯s(n) + EHxc(n)
Kohn-Sham decomposition

Analog of the Hohenberg-Kohn functional
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LPFET of finite and non-uniform (model or ab-initio) systems

What will be discussed in the following can be recovered (more rigorously) 

from


 an exact DFT-like theory  

where


 local densities (localised orbital occupations) 

are mapped 

 onto interacting embedding clusters 

*

ℱ(n) = 𝒯s(n) + EHxc(n)

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).*

= ∑
i ⟨Ψ𝒞i(n) ∑

j>i

hij ∑
σ

( ̂c†
iσ ̂cjσ + ̂c†

jσ ̂ciσ)+Ûi Ψ𝒞i(n)⟩+EHxc(n)

Single-orbital fragments here

Fragmentation of the Hohenberg-Kohn functional
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LPFET of finite and non-uniform (model or ab-initio) systems

What will be discussed in the following can be recovered (more rigorously) 

from


 an exact DFT-like theory  

where


 local densities (localised orbital occupations) 

are mapped 

 onto interacting embedding clusters 

*

ℱ(n) = 𝒯s(n) + EHxc(n)

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).*

= ∑
i ⟨Ψ𝒞i(n) ∑

j>i

hij ∑
σ

( ̂c†
iσ ̂cjσ + ̂c†

jσ ̂ciσ)+Ûi Ψ𝒞i(n)⟩+EHxc(n)

Single-orbital fragments here

Fragmentation of the Hohenberg-Kohn functional

n ≡ {ni} where ∑
i

ni = N
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LPFET of finite and non-uniform (model or ab-initio) systems

𝒯s(n) + EHxc(n)

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).*

= ∑
i ⟨Ψ𝒞i(n) ∑

j>i

hij ∑
σ

( ̂c†
iσ ̂cjσ + ̂c†

jσ ̂ciσ)+Ûi Ψ𝒞i(n)⟩+EHxc(n)

n ≡ {ni} where ∑
i

ni = N

Exact relation between 

and


 the chemical potential value  on the embedded impurity 

{vHxc
i }

μimp
i

∂
∂ni
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LPFET of finite and non-uniform (model or ab-initio) systems

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

Let’s have a simpler (approximate but practical) 

individual-cluster-based approach to the problem: 
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

Local density functional evaluation 

of the 


Hxc energy
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

Local evaluation 

of the 


Hxc energy

Exact “projection 

onto the cluster” 


operator
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

Local evaluation 

of the 


Hxc energy

Exact “projection 

onto the cluster” 

operator (fixed)

I can infinitesimally vary the local density  within the embedding cluster

(while freezing the density in the other clusters) 

ni
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

Local evaluation 

of the 


Hxc energy

“Projection 

onto the cluster” 


operator True (physical) 

Hamiltonian
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

The embedding is exact  
for the KS HamiltonianLocal evaluation 


of the 

Hxc energy True (physical) 


Hamiltonian

“Projection 

onto the cluster” 


operator 
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

The embedding 

is exact 


for the KS Hamiltonian
Local evaluation 


of the 

Hxc energy True (physical) 


Hamiltonian

“Projection 

onto the cluster” 


operator 

No double counting!
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

∂E𝒞i

Hxc(ni)
∂ni

= μimp
i +vHxc

i − ∑
k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k

Projection of the Hxc potential 

onto the bath (denoted  here) ϕ𝒞i

b

Ensures that the KS cluster reproduces  ni
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

∂E𝒞i

Hxc(ni)
∂ni

= μimp
i +vHxc

i − ∑
k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k

∂E𝒞i

Hxc(ni)
∂ni

≈ vHxc
i

−μimp
i ≈ −∑

k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

∂E𝒞i

Hxc(ni)
∂ni

= μimp
i +vHxc

i − ∑
k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k

∂E𝒞i

Hxc(ni)
∂ni

≈ vHxc
i

−μimp
i ≈ −∑

k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k μimp

i ≈ vHxc
Uniform case

😅
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

∂E𝒞i

Hxc(ni)
∂ni

= μimp
i +vHxc

i − ∑
k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k

∂E𝒞i

Hxc(ni)
∂ni

≈ vHxc
i

−μimp
i ≈ −∑

k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k −μimp

i ≈ −μglob−∑
k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k

vHxc
k → vHxc

k +μglob
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LPFET of finite and non-uniform (model or ab-initio) systems

E𝒞i

Hxc(ni) = ⟨Ψ𝒞i(ni) ̂P𝒞iĤ ̂P𝒞i Ψ𝒞i(ni)⟩ − ⟨Φ𝒞i

KS(ni) ̂P𝒞i (ĤKS− ̂VHxc) ̂P𝒞i Φ𝒞i

KS(ni)⟩

W. Makhlouf, B. Senjean, and E. Fromager, to be submitted (2025).

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).*

∂E𝒞i

Hxc(ni)
∂ni

= μimp
i +vHxc

i − ∑
k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k

∂E𝒞i

Hxc(ni)
∂ni

≈ vHxc
i

−μimp
i ≈ −∑

k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k −μimp

i ≈ −μglob−∑
k

⟨χk |ϕ𝒞i

b ⟩2vHxc
k

vHxc
k → vHxc

k +μglob Ignored in D(M)ET*

LPFET



131

LPFET of finite and non-uniform systems 
6-site Hubbard ring

t = 1

Local Potential Functional Embedding Theory
*Wafa Makhlouf, Bruno Senjean and  *Emmanuel Fromager†

*Strasbourg Institute of Chemistry, Strasbourg University 
CNRS, Montpellier University  

Laboratoire de Chimie Quantique de Strasbourg  (LCQS)

†

Theoretical Foundations

Introduction

Results and Discussion

Conclusion and Future work 

References  

Contact Information:  makhlouf.wafa@etu.unistra.fr

Understanding and predicting material behaviors at the atomic and molecular level is crucial in 
fields like condensed matter physics and materials science. However, solving the many-body 
Schrödinger equation becomes computationally difficult, if not impossible, as system size 
increases. Kohn-Sham Density Functional Theory (KS-DFT) [9] addresses this by using a 
simpler, non-interacting picture. The main challenge in KS-DFT is approximating the 
Hartree-exchange-correlation (Hxc) potential and the energy, which is essential for 
accurately capturing electron-electron interactions and reproducing the many-body effects of 
the original system. In this work, we present and extend the Local Potential Embedding 
Theory (LPFET) initially formulated for the uniform Hubbard model [2]. This novel 
approach aims to construct an approximation of the Hxc potential self-consistently, without 
relying on any functional approximations. Instead, it optimizes effective potential within a 
localized orbital basis.

The LPFET self-consistently approximate the Hxc potential from high-level many-body 
calculations on reduced-size interacting many-body embedding clusters, inspired by the 
principles of DMET[9]. This method enables the development of a  DFT  where the 
functional evolves dynamically rather than being predetermined. The process begins with 
a Householder transformation [1] of the one-electron reduced density matrix (1-RDM) of 
the Kohn-Sham (KS) system, which facilitates the embedding of system fragments. For 
each fragment, cluster orbitals are generated to form an interacting Hamiltonian. High-
level wavefunction methods are then applied to capture local electronic correlations 
within the clusters. The Hxc potential is iteratively adjusted to align the KS system’s 
density with the high-level method’s density in the cluster.

HKS = − t ∑
<i,j>

∑
σ

( ̂c†
i,σ ̂cj,σ + h . c) + ∑

i,σ
(vext

i + vHxc
i ) ̂ni,σ

HC = − ∑
qr∈Cluster

∑
σ

(t̄qr
̂d†
q,σ ̂dr,σ) + U ̂n0,↑ ̂n0,↓ − μimp ̂n0

γij = ⟨ΦKS | ̂c†
i,σ ̂cj,σ |ΦKS⟩

γ00

γeeγ0e

γ0e

γ̄ = PγP

̂d†
q,σ = ∑

i
Pip ̂c†

i,σ

Householder Transformation 

γ̄pq = ⟨ΨC | ̂d†
p,σ ̂dq,σ |ΨC⟩

0

0
γ00 γ̄0B

γ̄0B γ̄BB

γ̄env

Self-Consistently  loop of LPFET
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Site occupation (density) is shown for two values of U/t. On the right, for U/t = 9, reference FCI 
results are represented by the black line, and LPFET density is shown in red. On the left, for U/t 
= 2, the same color scheme applies, with the black line representing FCI results and red showing 
the LPFET density.

The Energy as a function of U is shown 
for two methods: full configuration 
interaction (FCI) and the embedding 
energy (LPFET). Both methods exhibit 
similar trends, with the embedding 
energy closely following the FCI results 
as U  increases. We used the open-source 
Python package QuantNBody [3].

LPFET introduces a self-consistency loop, which is absent in single-impurity 
Density Matrix Embedding Theory (DMET) and Density Embedding Theory (DET). 
The self-consistency loop in LPFET ensures that the Kohn-Sham (KS) lattice and 
embedded impurity densities match by iterating the Hxc potential in the full-size.
Future work :
1. Exact implementation, to enhance accuracy in analysis and the development of 

more precise approximations.
2. Extension to excited states [6].
3.The transition from classical algorithms to quantum algorithms.
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An open access python package for quantum 
chemistry/physics to manipulate many-body 
operators and wave functions

Available on : https://github.com/SYalouz/QuantNBody
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Understanding and predicting material behaviors at the atomic and molecular level is crucial in 
fields like condensed matter physics and materials science. However, solving the many-body 
Schrödinger equation becomes computationally difficult, if not impossible, as system size 
increases. Kohn-Sham Density Functional Theory (KS-DFT) [9] addresses this by using a 
simpler, non-interacting picture. The main challenge in KS-DFT is approximating the 
Hartree-exchange-correlation (Hxc) potential and the energy, which is essential for 
accurately capturing electron-electron interactions and reproducing the many-body effects of 
the original system. In this work, we present and extend the Local Potential Embedding 
Theory (LPFET) initially formulated for the uniform Hubbard model [2]. This novel 
approach aims to construct an approximation of the Hxc potential self-consistently, without 
relying on any functional approximations. Instead, it optimizes effective potential within a 
localized orbital basis.

The LPFET self-consistently approximate the Hxc potential from high-level many-body 
calculations on reduced-size interacting many-body embedding clusters, inspired by the 
principles of DMET[9]. This method enables the development of a  DFT  where the 
functional evolves dynamically rather than being predetermined. The process begins with 
a Householder transformation [1] of the one-electron reduced density matrix (1-RDM) of 
the Kohn-Sham (KS) system, which facilitates the embedding of system fragments. For 
each fragment, cluster orbitals are generated to form an interacting Hamiltonian. High-
level wavefunction methods are then applied to capture local electronic correlations 
within the clusters. The Hxc potential is iteratively adjusted to align the KS system’s 
density with the high-level method’s density in the cluster.
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Site occupation (density) is shown for two values of U/t. On the right, for U/t = 9, reference FCI 
results are represented by the black line, and LPFET density is shown in red. On the left, for U/t 
= 2, the same color scheme applies, with the black line representing FCI results and red showing 
the LPFET density.

The Energy as a function of U is shown 
for two methods: full configuration 
interaction (FCI) and the embedding 
energy (LPFET). Both methods exhibit 
similar trends, with the embedding 
energy closely following the FCI results 
as U  increases. We used the open-source 
Python package QuantNBody [3].

LPFET introduces a self-consistency loop, which is absent in single-impurity 
Density Matrix Embedding Theory (DMET) and Density Embedding Theory (DET). 
The self-consistency loop in LPFET ensures that the Kohn-Sham (KS) lattice and 
embedded impurity densities match by iterating the Hxc potential in the full-size.
Future work :
1. Exact implementation, to enhance accuracy in analysis and the development of 

more precise approximations.
2. Extension to excited states [6].
3.The transition from classical algorithms to quantum algorithms.
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Understanding and predicting material behaviors at the atomic and molecular level is crucial in 
fields like condensed matter physics and materials science. However, solving the many-body 
Schrödinger equation becomes computationally difficult, if not impossible, as system size 
increases. Kohn-Sham Density Functional Theory (KS-DFT) [9] addresses this by using a 
simpler, non-interacting picture. The main challenge in KS-DFT is approximating the 
Hartree-exchange-correlation (Hxc) potential and the energy, which is essential for 
accurately capturing electron-electron interactions and reproducing the many-body effects of 
the original system. In this work, we present and extend the Local Potential Embedding 
Theory (LPFET) initially formulated for the uniform Hubbard model [2]. This novel 
approach aims to construct an approximation of the Hxc potential self-consistently, without 
relying on any functional approximations. Instead, it optimizes effective potential within a 
localized orbital basis.

The LPFET self-consistently approximate the Hxc potential from high-level many-body 
calculations on reduced-size interacting many-body embedding clusters, inspired by the 
principles of DMET[9]. This method enables the development of a  DFT  where the 
functional evolves dynamically rather than being predetermined. The process begins with 
a Householder transformation [1] of the one-electron reduced density matrix (1-RDM) of 
the Kohn-Sham (KS) system, which facilitates the embedding of system fragments. For 
each fragment, cluster orbitals are generated to form an interacting Hamiltonian. High-
level wavefunction methods are then applied to capture local electronic correlations 
within the clusters. The Hxc potential is iteratively adjusted to align the KS system’s 
density with the high-level method’s density in the cluster.

HKS = − t ∑
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Site occupation (density) is shown for two values of U/t. On the right, for U/t = 9, reference FCI 
results are represented by the black line, and LPFET density is shown in red. On the left, for U/t 
= 2, the same color scheme applies, with the black line representing FCI results and red showing 
the LPFET density.

The Energy as a function of U is shown 
for two methods: full configuration 
interaction (FCI) and the embedding 
energy (LPFET). Both methods exhibit 
similar trends, with the embedding 
energy closely following the FCI results 
as U  increases. We used the open-source 
Python package QuantNBody [3].

LPFET introduces a self-consistency loop, which is absent in single-impurity 
Density Matrix Embedding Theory (DMET) and Density Embedding Theory (DET). 
The self-consistency loop in LPFET ensures that the Kohn-Sham (KS) lattice and 
embedded impurity densities match by iterating the Hxc potential in the full-size.
Future work :
1. Exact implementation, to enhance accuracy in analysis and the development of 

more precise approximations.
2. Extension to excited states [6].
3.The transition from classical algorithms to quantum algorithms.
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Understanding and predicting material behaviors at the atomic and molecular level is crucial in 
fields like condensed matter physics and materials science. However, solving the many-body 
Schrödinger equation becomes computationally difficult, if not impossible, as system size 
increases. Kohn-Sham Density Functional Theory (KS-DFT) [9] addresses this by using a 
simpler, non-interacting picture. The main challenge in KS-DFT is approximating the 
Hartree-exchange-correlation (Hxc) potential and the energy, which is essential for 
accurately capturing electron-electron interactions and reproducing the many-body effects of 
the original system. In this work, we present and extend the Local Potential Embedding 
Theory (LPFET) initially formulated for the uniform Hubbard model [2]. This novel 
approach aims to construct an approximation of the Hxc potential self-consistently, without 
relying on any functional approximations. Instead, it optimizes effective potential within a 
localized orbital basis.

The LPFET self-consistently approximate the Hxc potential from high-level many-body 
calculations on reduced-size interacting many-body embedding clusters, inspired by the 
principles of DMET[9]. This method enables the development of a  DFT  where the 
functional evolves dynamically rather than being predetermined. The process begins with 
a Householder transformation [1] of the one-electron reduced density matrix (1-RDM) of 
the Kohn-Sham (KS) system, which facilitates the embedding of system fragments. For 
each fragment, cluster orbitals are generated to form an interacting Hamiltonian. High-
level wavefunction methods are then applied to capture local electronic correlations 
within the clusters. The Hxc potential is iteratively adjusted to align the KS system’s 
density with the high-level method’s density in the cluster.
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LPFET is applied to a non-uniform and finite Hubbard ring with  sites and 
a hopping parameter of 

L = 6
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The LPFET algorithm can be summarized as follows:
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Site occupation (density) is shown for two values of U/t. On the right, for U/t = 9, reference FCI 
results are represented by the black line, and LPFET density is shown in red. On the left, for U/t 
= 2, the same color scheme applies, with the black line representing FCI results and red showing 
the LPFET density.

The Energy as a function of U is shown 
for two methods: full configuration 
interaction (FCI) and the embedding 
energy (LPFET). Both methods exhibit 
similar trends, with the embedding 
energy closely following the FCI results 
as U  increases. We used the open-source 
Python package QuantNBody [3].

LPFET introduces a self-consistency loop, which is absent in single-impurity 
Density Matrix Embedding Theory (DMET) and Density Embedding Theory (DET). 
The self-consistency loop in LPFET ensures that the Kohn-Sham (KS) lattice and 
embedded impurity densities match by iterating the Hxc potential in the full-size.
Future work :
1. Exact implementation, to enhance accuracy in analysis and the development of 

more precise approximations.
2. Extension to excited states [6].
3.The transition from classical algorithms to quantum algorithms.
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Abstract: Quantum embedding is a divide and conquer strategy that aims at solving the electronic
Schrödinger equation of sizeable molecules or extended systems. We establish in the present work
a clearer and in-principle-exact connection between density matrix embedding theory (DMET)
and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard
model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder
transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified
density-functional approximations, a self-consistent local potential functional embedding theory
(LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with
our formally exact density-functional embedding theory reveals that a single statically embedded
impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a
complementary density-functional correlation potential (which is neglected in both DMET and
LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple
impurities (which would enable to circumvent the modeling of DDs) and its generalization to
quantum chemical Hamiltonians are left for future work.
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1. Introduction

Kohn–Sham density-functional theory (KS-DFT) [1] has become over the last two
decades the method of choice for computational chemistry and physics studies, essentially
because it often provides a relatively accurate description of the electronic structure of large
molecular or extended systems at a low computational cost. The major simplification of
the electronic structure problem in KS-DFT lies in the fact that the ground-state energy is
evaluated, in principle exactly, from a non-interacting single-configuration wave function,
which is simply referred to as the KS determinant. The latter is obviously not the exact
solution to the Schrödinger equation. However, its density matches the exact interacting
ground-state density, so that the Hartree-exchange-correlation (Hxc) energy of the physical
system, which is induced by the electronic repulsion, can be recovered from an appropriate
(in principle exact and universal) Hxc density functional. Despite the success of KS-DFT,
standard density-functional approximations still fail in describing strongly correlated
electrons. To overcome this issue, various strategies have been explored and improved over
the years, both in condensed matter physics [2–7] and quantum chemistry [8]. Note that,
in the latter case, in-principle-exact multi-determinantal extensions of DFT based on the
adiabatic connection formalism have been developed [9–12]. In these approaches, the KS
system is only referred to in the design of density-functional approximations. In practice,
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Abstract: Quantum embedding is a divide and conquer strategy that aims at solving the electronic
Schrödinger equation of sizeable molecules or extended systems. We establish in the present work
a clearer and in-principle-exact connection between density matrix embedding theory (DMET)
and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard
model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder
transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified
density-functional approximations, a self-consistent local potential functional embedding theory
(LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with
our formally exact density-functional embedding theory reveals that a single statically embedded
impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a
complementary density-functional correlation potential (which is neglected in both DMET and
LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple
impurities (which would enable to circumvent the modeling of DDs) and its generalization to
quantum chemical Hamiltonians are left for future work.
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1. Introduction

Kohn–Sham density-functional theory (KS-DFT) [1] has become over the last two
decades the method of choice for computational chemistry and physics studies, essentially
because it often provides a relatively accurate description of the electronic structure of large
molecular or extended systems at a low computational cost. The major simplification of
the electronic structure problem in KS-DFT lies in the fact that the ground-state energy is
evaluated, in principle exactly, from a non-interacting single-configuration wave function,
which is simply referred to as the KS determinant. The latter is obviously not the exact
solution to the Schrödinger equation. However, its density matches the exact interacting
ground-state density, so that the Hartree-exchange-correlation (Hxc) energy of the physical
system, which is induced by the electronic repulsion, can be recovered from an appropriate
(in principle exact and universal) Hxc density functional. Despite the success of KS-DFT,
standard density-functional approximations still fail in describing strongly correlated
electrons. To overcome this issue, various strategies have been explored and improved over
the years, both in condensed matter physics [2–7] and quantum chemistry [8]. Note that,
in the latter case, in-principle-exact multi-determinantal extensions of DFT based on the
adiabatic connection formalism have been developed [9–12]. In these approaches, the KS
system is only referred to in the design of density-functional approximations. In practice,
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ABSTRACT: Density matrix embedding theory (DMET) for-
mally requires the matching of density matrix blocks obtained from
high-level and low-level theories, but this is sometimes not
achievable in practical calculations. In such a case, the global band
gap of the low-level theory vanishes, and this can require additional
numerical considerations. We find that both the violation of the
exact matching condition and the vanishing low-level gap are
related to the assumption that the high-level density matrix blocks
are noninteracting pure-state v-representable (NI-PS-V), which
assumes that the low-level density matrix is constructed following
the Aufbau principle. To relax the NI-PS-V condition, we develop
an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for
the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle
directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

1. INTRODUCTION
Density matrix embedding theory (DMET)1−8 is a quantum
embedding theory designed to treat strong correlation effects
in large quantum systems. DMET and its related variants have
been successfully applied to a wide range of systems such as
Hubbard models,1,4,9−15 quantum spin models,16−18 and a
number of strongly correlated molecular and periodic
systems.2,5,8,19−29 The main idea of DMET is to partition the
global quantum system into several “quantum impurities”.
Each impurity is treated accurately via a high-level theory
(such as full configuration interaction (FCI),30−32 coupled
cluster theory,33 density matrix renormalization group
(DMRG),34 etc.). Global information, in particular the one-
electron reduced density matrix (1-RDM), is made consistent
between all of the impurities with the help of a low-level
Hartree−Fock (HF) type of theory. In the self-consistent-field
DMET (SCF-DMET), this global information is then used to
update the impurity problems in the next self-consistent
iteration, until a certain consistency condition of the 1-RDM is
satisfied between the high-level and low-level theories.1−4,35,36

(Throughout this Article, DMET refers to SCF-DMET. This is
in contrast to one-shot DMET, in which the impurity problem
is only solved once without self-consistent updates.)
In DMET, the self-consistency condition can be achieved by

optimizing a correlation potential, which can be viewed as a
Lagrange multiplier associated with the matching condition of
the 1-RDMs. For instance, if the self-consistency condition
only requires electron densities from the high-level and low-
level theories to match (e.g., in ref 4), then the problem of
finding the correlation potential strongly resembles the v-

representability problem in density functional theory
(DFT).37−41 Omitting the spin degree of freedom, an electron
density ρ (often obtained from a many-body calculation) with
N electrons is called noninteracting pure-state v-representable
(NI-PS-V), if ρ can be reconstructed (1) from a single particle
Hamiltonian with potential v (2) using the energetically lowest
N orbitals. Condition (2) is also referred to as the Aufbau
principle. There are densities that are not NI-PS-V, but for
DFT such densities are rare exceptions rather than the norm.41

DMET requires the matching condition for certain 1-RDM
matrix blocks corresponding to the high-level 1-RDMs. The
correlation potential (denoted by u following the convention in
the literature) then consists of matrix blocks of matching
dimensions. While v-representability in DFT usually concerns
a diagonal potential in the real-space basis, the correlation
potential in DMET is expressed as a block diagonal matrix in
the fragment-orbital basis. In a typical DMET calculation, the
1-RDM is assumed to be NI-PS-V; in particular, the low-level
1-RDM is reconstructed following the Aufbau principle.
However, from the very beginning of the development of
DMET, it was noticed that the exact matching of the 1-RDMs
often cannot be achieved.1,2,4 Therefore, as a practical solution,
the matching condition is relaxed into a least-squares
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ABSTRACT: Density matrix embedding theory (DMET) for-
mally requires the matching of density matrix blocks obtained from
high-level and low-level theories, but this is sometimes not
achievable in practical calculations. In such a case, the global band
gap of the low-level theory vanishes, and this can require additional
numerical considerations. We find that both the violation of the
exact matching condition and the vanishing low-level gap are
related to the assumption that the high-level density matrix blocks
are noninteracting pure-state v-representable (NI-PS-V), which
assumes that the low-level density matrix is constructed following
the Aufbau principle. To relax the NI-PS-V condition, we develop
an augmented Lagrangian method to match the density matrix blocks without referring to the Aufbau principle. Numerical results for
the 2D Hubbard and hydrogen model systems indicate that, in some challenging scenarios, the relaxation of the Aufbau principle
directly leads to exact matching of the density matrix blocks, which also yields improved accuracy.

1. INTRODUCTION
Density matrix embedding theory (DMET)1−8 is a quantum
embedding theory designed to treat strong correlation effects
in large quantum systems. DMET and its related variants have
been successfully applied to a wide range of systems such as
Hubbard models,1,4,9−15 quantum spin models,16−18 and a
number of strongly correlated molecular and periodic
systems.2,5,8,19−29 The main idea of DMET is to partition the
global quantum system into several “quantum impurities”.
Each impurity is treated accurately via a high-level theory
(such as full configuration interaction (FCI),30−32 coupled
cluster theory,33 density matrix renormalization group
(DMRG),34 etc.). Global information, in particular the one-
electron reduced density matrix (1-RDM), is made consistent
between all of the impurities with the help of a low-level
Hartree−Fock (HF) type of theory. In the self-consistent-field
DMET (SCF-DMET), this global information is then used to
update the impurity problems in the next self-consistent
iteration, until a certain consistency condition of the 1-RDM is
satisfied between the high-level and low-level theories.1−4,35,36

(Throughout this Article, DMET refers to SCF-DMET. This is
in contrast to one-shot DMET, in which the impurity problem
is only solved once without self-consistent updates.)
In DMET, the self-consistency condition can be achieved by

optimizing a correlation potential, which can be viewed as a
Lagrange multiplier associated with the matching condition of
the 1-RDMs. For instance, if the self-consistency condition
only requires electron densities from the high-level and low-
level theories to match (e.g., in ref 4), then the problem of
finding the correlation potential strongly resembles the v-

representability problem in density functional theory
(DFT).37−41 Omitting the spin degree of freedom, an electron
density ρ (often obtained from a many-body calculation) with
N electrons is called noninteracting pure-state v-representable
(NI-PS-V), if ρ can be reconstructed (1) from a single particle
Hamiltonian with potential v (2) using the energetically lowest
N orbitals. Condition (2) is also referred to as the Aufbau
principle. There are densities that are not NI-PS-V, but for
DFT such densities are rare exceptions rather than the norm.41

DMET requires the matching condition for certain 1-RDM
matrix blocks corresponding to the high-level 1-RDMs. The
correlation potential (denoted by u following the convention in
the literature) then consists of matrix blocks of matching
dimensions. While v-representability in DFT usually concerns
a diagonal potential in the real-space basis, the correlation
potential in DMET is expressed as a block diagonal matrix in
the fragment-orbital basis. In a typical DMET calculation, the
1-RDM is assumed to be NI-PS-V; in particular, the low-level
1-RDM is reconstructed following the Aufbau principle.
However, from the very beginning of the development of
DMET, it was noticed that the exact matching of the 1-RDMs
often cannot be achieved.1,2,4 Therefore, as a practical solution,
the matching condition is relaxed into a least-squares
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ABSTRACT: Quantum embedding is an appealing route to fragment a
large interacting quantum system into several smaller auxiliary “cluster”
problems to exploit the locality of the correlated physics. In this work, we
critically review approaches to recombine these fragmented solutions in
order to compute nonlocal expectation values, including the total energy.
Starting from the democratic partitioning of expectation values used in
density matrix embedding theory, we motivate and develop a number of
alternative approaches, numerically demonstrating their e!ciency and
improved accuracy as a function of increasing cluster size for both
energetics and nonlocal two-body observables in molecular and solid state
systems. These approaches consider the N-representability of the resulting
expectation values via an implicit global wave function across the clusters, as
well as the importance of including contributions to expectation values
spanning multiple fragments simultaneously, thereby alleviating the fundamental locality approximation of the embedding. We
clearly demonstrate the value of these introduced functionals for reliable extraction of observables and robust and systematic
convergence as the cluster size increases, allowing for significantly smaller clusters to be used for a desired accuracy compared to
traditional approaches in ab initio wave function quantum embedding.

1. INTRODUCTION
Quantum chemical methods to describe explicit correlations in
an ab initiomany-electron system can be highly accurate, though
their applicability is often stymied by a steep computational
scaling with respect to system size, which (despite significant
recent progress) limits their use for extended systems.1−6 To
combat this, the locality of this correlated physics is increasingly
exploited, enabling a reduction in scaling to be competitive
compared to mean-field or density functional approaches, while
remaining free from empiricism.7,8 The field of “local
correlation” methods in quantum chemistry generally build
these locality constraints in the particle-hole excitation picture of
the system, localizing each of these spaces separately.9−11 While
highly related, “quantum embedding” approaches from
condensed matter physics are also increasingly coming to the
fore as an alternative paradigm and being applied to quantum
chemical and ab initio systems.12
A loose (and necessarily imperfect) characterization of a key

di"erence in these approaches could be that quantum
embedding does not build this locality from a particle-hole
picturerather, a fully local set of “atomic-orbital-like” degrees
of freedom are chosen initially (which will in general have
neither fully occupied nor unoccupied mean-field character),
which we will call the “fragment” space, though it is also often
called the “impurity” space for historical reasons in traditional
quantum embedding literature. A larger space is then
constructed by augmenting these fragment orbitals with

additional orbitals (often called “bath” orbitals). These are
designed to reproduce the quantum fluctuations, entanglement,
and/or hybridization between the fragment and the rest of the
system, as characterized by some tractable (generally mean-
field) level of theory which can be performed on the full system.
These individual local quantum problems of the fragment and
bath orbitals define a “cluster”, which is then solved to provide
the correlated properties of the original fragment space,
potentially with a subsequent self-consistency then applied to
update the original mean-field/low-level theory on the full
system.
The general algorithm in most quantum embeddings is

therefore summarized as: a) fragment the system; b) for each
fragment, construct a bath space describing the coupling to the
wider system; c) solve an interacting problem in the cluster
space of each fragment via a “high-level” correlated method; d)
extract properties of the system; and e) optionally, perform a
self-consistency to embed the correlated e"ects from the cluster
model back into the low-level full system method to update the
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“Democratic” evaluation of RDMs from embedding clusters 

S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).
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Non-idempotent reference 1-RDMs

Correlated reference ground-state density matrix (for the full system) 
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Non-idempotent reference 1-RDMs

Multi-state LPFET (extension to excited states) 

Correlated reference ground-state density matrix (for the full system) 
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Non-idempotent reference 1-RDMs

Multi-state LPFET (extension to excited states) 

Correlated reference ground-state density matrix (for the full system) 

γ = ∑
ν

𝚠ν γν ≠ γ2

γ2
ν = γν

Ensemble density matrix
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It is possible to design successive (Householder) unitary transformations 


that disentangle exactly the embedding cluster from its environment! 

But …

… the bath is larger and the cluster contains more electrons.  
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ABSTRACT
In recent studies by Yalouz et al. [J. Chem. Phys. 157, 214112 (2022)] and Sekaran et al. [Phys. Rev. B 104, 035121 (2021) and Computation
10, 45 (2022)], density matrix embedding theory (DMET) has been reformulated through the use of the Householder transformation as a
novel tool to embed a fragment within extended systems. The transformation was applied to a reference non-interacting one-electron reduced
density matrix to construct fragments’ bath orbitals, which are crucial for subsequent ground state calculations. In the present work, we expand
upon these previous developments and extend the utilization of the Householder transformation to the description of multiple electronic
states, including ground and excited states. Based on an ensemble noninteracting density matrix, we demonstrate the feasibility of achieving
exact fragment embedding through successive Householder transformations, resulting in a larger set of bath orbitals. We analytically prove
that the number of additional bath orbitals scales directly with the number of fractionally occupied natural orbitals in the reference ensemble
density matrix. A connection with the regular DMET bath construction is also made. Then, we illustrate the use of this ensemble embedding
tool in single-shot DMET calculations to describe both ground and first excited states in a Hubbard lattice model and an ab initio hydrogen
system. Finally, we discuss avenues for enhancing ensemble embedding through self-consistency and explore potential future directions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0229787

I. INTRODUCTION

Density matrix embedding theory (DMET) is a computa-
tional method initially introduced to investigate the ground state of
strongly correlated many-electron systems within condensed mat-
ter physics and quantum chemistry.1–4 From a practical point of
view, the ambition with DMET is to simplify and replace large-scale
calculations with a series of more manageable smaller-sized prob-
lems. Starting with an extended system (e.g., a large molecule or
lattice), the procedure typically begins with a partitioning of the
target system into smaller local fragments. Once this partitioning
is completed, the objective is then to assess how each local frag-
ment interacts with its environment to recover part of the electronic
correlations. To proceed, one usually chooses to switch to a more
convenient representation of the system, the so-called “fragment+ bath” picture, which drastically simplifies our vision of the full
problem. The “bath” is an effective small-size system containing

a small number of orbitals (non-overlapping with the fragment)
whose goal is to mimic the fragment’s surrounding. The union of the
orbital spaces of the fragment and bath forms a so-called “cluster”
amenable to high-level theoretical methods (e.g., Configuration
Interaction) due to its reduced size compared to the whole system.
Resolving the reduced-in-size Schrödinger equations attached to
each cluster provides insights into the ground state properties of the
system at a lower numerical cost. Over the past decade, numerous
examples have demonstrated the efficiency of the DMET proce-
dure in yielding accurate ground state results for various types of
systems. Illustrative cases of applications encompass lattice models
and periodic systems,5–13 large-sized molecules and reactions,3,14,15

and even extensions to hybrid fermion-boson systems16,17 to cite
but a few (also see the reviews4,18 and the references within). At
the theory level, DMET has been recently reviewed from a mathe-
matical perspective,19 with a particular focus on the convergence of
its self-consistency loop. Connections with alternative embedding
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Quantum embedding from a wave function perspective
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Quantum embedding from a wave function perspective
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Quantum embedding from a wave function perspective
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Quantum embedding from a wave function perspective
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Quantum embedding from a wave function perspective
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Quantum embedding from a wave function perspective

{ | φ̃i⟩}Lfrag<i≤N
= { | φ̃f⟩}

⊥
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“Core” spin-orbitals

Orthogonal complement within the occupied spin-orbital space:

“Fragment-occupied” 

spin-orbitals
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Lfrag<i≤N

= ⟨(
N

∑
i=1

|φi⟩⟨φi |) φ̃i χf⟩ = ⟨φ̃i |vf⟩
Lfrag<i≤N

= 0

The core spin-orbitals have no overlap with the fragment!
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Quantum embedding from a wave function perspective

{ | φ̃i⟩}Lfrag<i≤N
= { | φ̃f⟩}

⊥
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“Core” spin-orbitals

Orthogonal complement within the occupied spin-orbital space:

“Fragment-occupied” 

spin-orbitals

|Φ0⟩ ≡ | φ̃1…φ̃LFrag
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≡ | φ̃1…φ̃LFrag
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We can calculate the 1RDM with only  electrons!  LFrag
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Quantum embedding from a wave function perspective

The fragment-occupied spin-orbitals overlap both with the fragment and its environment:

{ | φ̃f⟩}1≤ f≤Lfrag

= {
N

∑
i=1

⟨φi |χf⟩ |φi⟩}
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Quantum embedding from a wave function perspective

The fragment-occupied spin-orbitals overlap both with the fragment and its environment:

{ | φ̃f⟩}1≤ f≤Lfrag

= {
N

∑
i=1

⟨φi |χf⟩ |φi⟩}
In order to recover them variationally, we can distribute the  electrons among 


the  spin-orbitals of the fragment 

+


the  fragment-occupied spin-orbitals projected onto the fragment’s environment: 
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Quantum embedding from a wave function perspective
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Quantum embedding from a wave function perspective
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choice for a complementary study to a model system. For an image
of the ab initio system, see the top panel of Fig. 5.

The starting mean-field description of the full system was
obtained from restricted Hartree–Fock (RHF) calculations, from
which we extracted the molecular orbitals for building the ensemble
1-RDM. The self-consistent iterations of the RHF scheme, together
with the calculation of one- and two-electron integrals, were carried
out with the Psi4 Python package,47 using the STO-3G orbital basis
set. Near the avoided crossing, roughly corresponding to the inter-
molecular distances between 0.69 and 0.72, the use of second-order
convergence method (SOSCF in Psi4) was employed for enforcing
the convergence of RHF iterations. Unlike in a previous example,
the construction of a local and orthonormal orbital basis had to
be carried out before one could delineate fragments for embedding
calculations. This additional preprocessing step of orbital localiza-
tion is necessary for all ab initio systems, with different procedures
employed in practice (for instance, see Ref. 48 and reference therein).
For this system, we employed Löwdin’s method to build the symmet-
rically orthogonalized atomic orbitals (OAOs).49–51 The OAOs are
simple to obtain and are designed to resemble as closely as possible
to the atomic orbitals of a chemical system, in our case, the 1s orbitals
around hydrogen atoms. After localization, the mean-field ensemble
1-RDM was constructed, where we again chose the equiensemble
weight values. Then, we ran embedding calculations for different
intermolecular distances (denoted by r), studying the dissocia-
tion of the hydrogen arrangement into three separate molecules.

FIG. 5. Top: a schematic picture of the system of hydrogen atoms by Tran et al.24

Bottom: dissociation curves of the FCI ground and first excited singlet states
(blue and red lines, respectively), and the embedding results for the ground and
first excited state (blue and red markers, respectively) for the system of hydro-
gen atoms. The embedding results are plotted with and without chemical potential
optimization [dot (●) and cross (×) markers, respectively].

Concerning the effect of the variation of ensemble weights, we report
the same observations as in the Hubbard ring. In contrast to the ring,
we observe that embedding calculations in the system of hydrogen
atoms are amenable to the change in chemical potential. However,
as shown in the bottom panel of Fig. 5, the embedding results are in
excellent agreement with the FCI values for both ground and excited
states, even in the region near avoided crossing (in between r ≈ 0.66
Å and r ≈ 0.72 Å; see the inset in Fig. 5), and the effect of chemical
potential optimization on the estimated energies is almost incon-
sequential. As a final point, in comparison with the state-specific
approach of Tran et al. (see Fig. 2 in Ref. 24), our strategy produced
just as good results for all values of r considered. While in their case,
bath orbitals for each individual state are computed from separate
SCF calculations, in our strategy, we rely on the bath orbitals from
a single SCF calculation for embedding all states simultaneously,
which seems to be less costly.

V. CONCLUSION AND PERSPECTIVES
In the present paper, we have tackled the challenge of describ-

ing electronic excited states using the methodology of quantum
embedding. While the majority of previous studies exploring the
feasibility of embedding excited states have focused on state-specific
strategies, we embarked in this work in the direction of an embed-
ding strategy for multiple (i.e. ground and excited) states, guided by
the recent developments in DMET.

In the first part of this paper, we touched upon the theoreti-
cal aspects of fragment embedding, beginning with a short review
of DMET and the use of Householder transformation as the key
ingredient in the clusterization of the ground-state 1-RDM, enabling
the optimal orbital-space partitioning at the mean-field level of elec-
tronic structure description. While the idempotency property of
1-RDMs, which is of key importance in ground-state DMET, is
lost when moving to ensembles of states, we have shown that an
exact clusterization for ensembles is still achievable through the
application of a finite number of successive Householder transfor-
mations on ensemble 1-RDMs. In the particular case of the two-state
ensemble consisting of the linear combination of ground and singly
excited mean-field states, we have shown that the application of three
Householder transformations strictly block-diagonalizes the ensem-
ble 1-RDM, giving rise to an enlarged, but still decoupled cluster,
containing a finite number of bath orbitals and an integer number of
electrons. We also inquired into the possibility of embedding larger-
sized ensembles, which we supported by numerical investigations.
The latter have shown that a decoupled cluster can also be obtained
in more involved scenarios. Precisely, we demonstrated that the
Householder cluster size scales linearly with the size of the fraction-
ally occupied natural orbital subspace in the ensemble 1-RDM, while
the number of electrons inside the cluster scales linearly with the
number of electrons, inhabiting these fractionally occupied natural
orbitals. These results were also corroborated by rigorous mathe-
matical proofs in the single-orbital fragment case. A rationalization
and a formal extension of the approach to the multi-orbital case have
finally been obtained by extending the conventional DMET bath
construction to GOK ensembles.

In the second part of this work, we presented an implemen-
tation of a single-shot embedding strategy for the description of
the energies of ground and first-excited states in finite systems. The
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