Numéro d'étudiant à inscrire sur CE document :

Examen de Mécanique Quantique pour la Chimie (cours de L3) – session 1 janvier 2025 – Durée de l'épreuve : 60 minutes – Enseignant : Emmanuel Fromager

À LIRE AVANT DE COMMENCER : Vous devez répondre directement sur l'énoncé (et non sur une copie séparée). Les documents et les calculatrices ne sont pas autorisés.

1. [5 pts] Écrire l'équation de Schrödinger que vérifie la fonction d'onde $\Psi(\vec{r})$ décrivant une particule de masse m dont l'énergie potentielle d'interaction vaut $V(\vec{r})$ à la position \vec{r} . Quelles sont les inconnues dans cette équation? Existe-t-il une solution unique à cette équation? Que vaut $V(\vec{r})$ si la particule étudiée est un électron (de charge -e) mis en présence d'un noyau de numéro atomique \mathcal{Z} placé au centre du repère cartésien?

- 2. [3 pts] Que devient l'équation de Schrödinger si la particule étudiée (de masse m) se déplace librement sur l'axe des x? Vérifier que la fonction d'onde $\Psi(x) = e^{\frac{ipx}{\hbar}}$, où p est une constante réelle et $i^2 = -1$, en est solution dans ce cas. Quel nom donne-t-on à ce type de solution? Quel est le sens physique de p? Quelle est l'énergie associée à la fonction d'onde $\Psi(x)$? Commenter le résultat obtenu.
- 3. [3 pts] On s'intéresse à la molécule à un électron H_2^+ . Dans le modèle dit de Hückel, l'espace des états de l'électron se réduit aux deux états $|1s_A\rangle$ et $|1s_B\rangle$ dans lesquels l'électron occupe l'orbitale 1s du premier hydrogène (H_A) ou du second (H_B) , respectivement. La représentation matricielle de l'hamiltonien dans la base $\{|1s_A\rangle, |1s_B\rangle\}$ prend la forme $[\hat{H}] = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$. Vérifier que, dans ce modèle, les solutions de l'équation de Schrödinger s'écrivent $|1\sigma_g\rangle = |1s_A\rangle + |1s_B\rangle$ et $|1\sigma_u\rangle = |1s_A\rangle |1s_B\rangle$. Indiquer leurs énergies respectives.

4. [3 pts] L'opérateur quantique associé à la projection L_z du moment cinétique orbitalaire d'une particule sur l'axe des z s'écrit $\hat{L}_z \equiv -i\hbar \frac{\partial}{\partial \varphi}$, où $i^2 = -1$ et φ est l'angle de rotation autour de l'axe des z. Montrer que les fonctions d'onde normées $\Phi_m(\varphi) = \frac{e^{im\varphi}}{\sqrt{2\pi}}$, où $m = 0, \pm 1, \pm 2, \ldots$ désigne ici le nombre quantique magnétique

orbitalaire, sont fonctions propres de \hat{L}_z . On suppose que, juste avant de procéder à la mesure de L_z , la fonction d'onde normée décrivant la particule en rotation est $\Psi(\varphi) = \frac{1}{\sqrt{\pi}} \sin(\varphi)$. Montrer, en utilisant la formule d'Euler, $\sin(\varphi) = \frac{e^{\mathrm{i}\varphi} - e^{-\mathrm{i}\varphi}}{2\mathrm{i}}$, que l'état quantique correspondant s'écrit $|\Psi\rangle = \frac{1}{\mathrm{i}\sqrt{2}} \Big(|\Phi_{+1}\rangle - |\Phi_{-1}\rangle \Big)$. Quel(s) résultat(s) peut-on attendre de la mesure de L_z ? Justifiez votre réponse.

5. [1 pt] La vibration moléculaire peut être décrite par l'hamiltonien $\hat{H} = \hbar\omega \left(\hat{a}^{\dagger}\hat{a} + \frac{\hat{1}}{2}\right)$, où $\hat{1}$ est l'opérateur identité. L'opérateur annihilation $\hat{a} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega}{\hbar}} \hat{x} + \frac{\mathrm{i}}{\sqrt{m\hbar\omega}} \hat{p}_x \right)$, où $\mathrm{i}^2 = -1$, et son adjoint $\hat{a}^{\dagger} = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega}{\hbar}} \hat{x} - \frac{\mathrm{i}}{\sqrt{m\hbar\omega}} \hat{p}_x \right)$, appelé opérateur création, vérifient la relation $[\hat{a}, \hat{a}^{\dagger}] = \hat{1}$, \hat{x} et \hat{p}_x étant les opérateurs position et quantité de mouvement, respectivement, et m désignant ici la masse (réduite) en mouvement. On note $|\Psi_n\rangle$ un vecteur propre de $\hat{a}^{\dagger}\hat{a}$ associé à la valeur propre n où $n = 0, 1, 2, 3, \ldots$ Montrer que $|\Psi_n\rangle$ est solution de l'équation de Schrödinger associée au niveau d'énergie $E_n = \hbar\omega \left(n + \frac{1}{2}\right)$. Que vaut l'énergie de l'état fondamental vibrationnel?

[1 pt] On rappelle que $\hat{x} \equiv x \times$ et $\hat{p}_x \equiv -\mathrm{i}\hbar \frac{\partial}{\partial x}$. Soit la fonction d'onde gaussienne normée $\Psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} e^{-\frac{m\omega x^2}{2\hbar}}$. Montrer que $\hat{a}\Psi_0(x) = 0$. On rappelle que $\frac{\partial e^{-\alpha x^2}}{\partial x} = -2\alpha x \, e^{-\alpha x^2}$. En déduire que $|\Psi_0\rangle$ décrit l'état fondamental.

[1 pt] Les incertitudes sur la mesure de x et p_x dans l'état fondamental sont évaluées comme suit en mécanique quantique : $\Delta x = \sqrt{\langle \Psi_0 | \hat{x}^2 | \Psi_0 \rangle - \langle \Psi_0 | \hat{x} | \Psi_0 \rangle^2}$ et $\Delta p_x = \sqrt{\langle \Psi_0 | \hat{p}_x^2 | \Psi_0 \rangle - \langle \Psi_0 | \hat{p}_x | \Psi_0 \rangle^2}$. Vérifier que $\sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a}^\dagger + \hat{a} \right) = \hat{x}$ et $i\sqrt{\frac{m\hbar\omega}{2}} \left(\hat{a}^\dagger - \hat{a} \right) = \hat{p}_x$.

[2 pts] Expliquer pourquoi $\langle \Psi_0 | \hat{a}^{\dagger} | \Psi_0 \rangle = \langle \Psi_0 | \hat{a} | \Psi_0 \rangle^* = 0.$

[3 pts] Montrer que $\langle \Psi_0 | (\hat{a}^{\dagger} + \hat{a})^2 | \Psi_0 \rangle = i^2 \langle \Psi_0 | (\hat{a}^{\dagger} - \hat{a})^2 | \Psi_0 \rangle = \langle \Psi_0 | \hat{a} \hat{a}^{\dagger} | \Psi_0 \rangle = \langle \Psi_0 | \hat{1} + \hat{a}^{\dagger} \hat{a} | \Psi_0 \rangle = 1$. En déduire la valeur du produit $\Delta x \Delta p_x$. En quoi cette valeur est remarquable?