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Applying quantum mechanics to electrons

2
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Electronic Schrödinger equation 

Ĥ |Ψ⟩ = E |Ψ⟩



“Lattice” representation of a molecular or extended system 
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Schematic representation of a molecule or a solid



Electronic structure perspective of a molecule or a solid 
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p

q

r

s

χp(r)
“atomic orbital”

For example:  χp(r) ∼ e−α|r−Rp|2

Position that a single 

electron could have

Position of the nucleus p

Schematic representation of a molecule or a solid



“Lattice” representation of a molecular or extended system 
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p

q

r

s

χp(r)
“atomic orbital”

For example:  χp(r) ∼ e−α|r−Rp|2 The density of probability 

(to find the electron) at position  is    
r | χp(r) |2
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Dirac notation of many-electron quantum states 

|χp⟩ ≡ |01…0p−11p0p+1…0L⟩

One-electron localised state:
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Dirac notation of many-electron quantum states 

|χp⟩ ≡ |01…0p−11p0p+1…0L⟩

One-electron localised state:

Two-electron localised state:

|χp χq⟩ ≡ |01…0p−11p0p+1…0q−11q0q+1…0L⟩
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Dirac notation of many-electron quantum states 

|χp⟩ ≡ |01…0p−11p0p+1…0L⟩

One-electron localised state:

Two-electron localised state:

|χp χq⟩ ≡ |01…0p−11p0p+1…0q−11q0q+1…0L⟩

Many-electron localised state:

|χn1
1 χn2

2 …χnL−1
L−1 χnL

L ⟩ ≡ |n1n2…nL−1nL⟩, ni ∈ {0,1}, 1 ≤ i ≤ L
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Dirac notation of many-electron quantum states 

“Slater determinant”

|χp⟩ ≡ |01…0p−11p0p+1…0L⟩

One-electron localised state:

Two-electron localised state:

|χp χq⟩ ≡ |01…0p−11p0p+1…0q−11q0q+1…0L⟩

Many-electron localised state:

|χn1
1 χn2

2 …χnL−1
L−1 χnL

L ⟩ ≡ |n1n2…nL−1nL⟩, ni ∈ {0,1}, 1 ≤ i ≤ L
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Dirac notation of many-electron quantum states 

“Slater determinant”

Pauli 
exclusion principle

|χp⟩ ≡ |01…0p−11p0p+1…0L⟩

One-electron localised state:

Two-electron localised state:

|χp χq⟩ ≡ |01…0p−11p0p+1…0q−11q0q+1…0L⟩

Many-electron localised state:

|χn1
1 χn2

2 …χnL−1
L−1 χnL

L ⟩ ≡ |n1n2…nL−1nL⟩, ni ∈ {0,1}, 1 ≤ i ≤ L
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Dirac notation of many-electron quantum states 

“Slater determinant”
Disentangled 


one-electron states

|χp⟩ ≡ |01…0p−11p0p+1…0L⟩

One-electron localised state:

Two-electron localised state:

|χp χq⟩ ≡ |01…0p−11p0p+1…0q−11q0q+1…0L⟩

Many-electron localised state:

|χn1
1 χn2

2 …χnL−1
L−1 χnL

L ⟩ ≡ |n1n2…nL−1nL⟩, ni ∈ {0,1}, 1 ≤ i ≤ L
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Dirac notation of many-electron quantum states 

The true quantum state  of (interacting) 
electrons cannot be described

 by a single Slater determinant 

|Ψ⟩
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Dirac notation of many-electron quantum states 

The true quantum state  of (interacting) 
electrons cannot be described

 by a single Slater determinant 

|Ψ⟩

It is what we call in quantum chemistry a correlated state 
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Dirac notation of many-electron quantum states 

The true quantum state  of (interacting) 
electrons cannot be described

 by a single Slater determinant 

|Ψ⟩

It is what we call in quantum chemistry a correlated state 

Mathematical description of electronic correlations: 
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Dirac notation of many-electron quantum states 

Mathematical description of electronic correlations: 

|Ψ⟩ =
1

∑
n1=0

1

∑
n2=0

…
1

∑
nL=0

Cn1n2…nL−1nL
|n1n2…nL−1nL⟩

⃗Ψ = ∑
i

Ci ⃗ei

The true quantum state  of (interacting) 
electrons cannot be described

 by a single Slater determinant 

|Ψ⟩

It is what we call in quantum chemistry a correlated state 
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Dirac notation of many-electron quantum states 

|Ψ⟩ =
1

∑
n1=0

1

∑
n2=0

…
1

∑
nL=0

Cn1n2…nL−1nL
|n1n2…nL−1nL⟩

⃗Ψ = ∑
i

Ci ⃗ei

Probability of having  electrons occupying the orbital  for : ni χi 1 ≤ i ≤ L

𝒫(n1n2…nL−1nL) = Cn1n2…nL−1nL

2
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Dirac notation of many-electron quantum states 

⃗Ψ = ∑
i

Ci ⃗ei , if the basis is orthonormal ( ) Ci = ⃗ei . ⃗Ψ ⃗ei . ⃗ej = δij

|Ψ⟩ =
1

∑
n1=0

1

∑
n2=0

…
1

∑
nL=0

Cn1n2…nL−1nL
|n1n2…nL−1nL⟩
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Dirac notation of many-electron quantum states 

|Ψ⟩ =
1

∑
n1=0

1

∑
n2=0

…
1

∑
nL=0

Cn1n2…nL−1nL
|n1n2…nL−1nL⟩

⃗Ψ = ∑
i

Ci ⃗ei , if the basis is orthonormal ( ) Ci = ⃗ei . ⃗Ψ ⃗ei . ⃗ej = δij

⟨n1n2…nL−1nL |Ψ⟩
“Bra-ket” notation
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Dirac notation of many-electron quantum states 

|Ψ⟩ =
1

∑
n1=0

1

∑
n2=0

…
1

∑
nL=0

Cn1n2…nL−1nL
|n1n2…nL−1nL⟩

⃗Ψ = ∑
i

Ci ⃗ei , if the basis is orthonormal ( ) Ci = ⃗ei . ⃗Ψ ⃗ei . ⃗ej = δij

⟨n1n2…nL−1nL |Ψ⟩
“Bra-ket” notation

The space of electronic quantum states is a Hilbert space
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How do we determine the coefficients ?Cn1n2…nL−1nL
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We solve the Schrödinger equation!
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Electronic Schrödinger equation 

Ĥ |Ψ⟩ = E |Ψ⟩
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Linear quantum operators

|Ψ⟩ =
1

∑
n1=0

1

∑
n2=0

…
1

∑
nL=0

Cn1n2…nL−1nL
|n1n2…nL−1nL⟩

⃗Ψ = ∑
i

Ci ⃗ei Ĥ( ⃗Ψ) = ∑
i

Ci Ĥ( ⃗ei)

= ∑
i

Ci (∑
j

[Ĥ]ji
⃗ej)

Matrix representation of Ĥ

Ĥ |Ψ⟩ = E |Ψ⟩
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Linear quantum operators

Ĥ |Ψ⟩ =
1

∑
n1=0

1

∑
n2=0

…
1

∑
nL=0

Cn1n2…nL−1nL
Ĥ |n1n2…nL−1nL⟩

⃗Ψ = ∑
i

Ci ⃗ei Ĥ( ⃗Ψ) = ∑
i

Ci Ĥ( ⃗ei)

= ∑
i

Ci (∑
j

[Ĥ]ji
⃗ej)

Ĥ |Ψ⟩ = E |Ψ⟩
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Linear quantum operators

Ĥ |Ψ⟩ =
1

∑
n1=0

1

∑
n2=0

…
1

∑
nL=0

Cn1n2…nL−1nL
Ĥ |n1n2…nL−1nL⟩

⃗Ψ = ∑
i

Ci ⃗ei Ĥ( ⃗Ψ) = ∑
i

Ci Ĥ( ⃗ei)

= ∑
i

Ci (∑
j

[Ĥ]ji
⃗ej)

Ĥ |Ψ⟩ = E |Ψ⟩

?????
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“Second-quantized” expression of the electronic Hamiltonian operator

Ĥ =
lattice

∑
pq

⟨χp | ĥ |χq⟩ ̂a†
p ̂aq +

1
2

lattice

∑
pqrs

⟨χp χq | ŵee |χr χs⟩ ̂a†
p ̂a†

q ̂as ̂ar
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“Second-quantized” expression of the electronic Hamiltonian operator

Ĥ = ∑
pq

⟨χp | ĥ |χq⟩ ̂a†
p ̂aq +

1
2 ∑

pqrs

⟨χp χq | ŵee |χr χs⟩ ̂a†
p ̂a†

q ̂as ̂ar

∫ dx χ*p (x)(−
1
2

∇2
r + vne(r)) χq(x)

=

vne(r) = −
nuclei

∑
A

ZA

|r − RA | “Nuclear potential”
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“Second-quantized” expression of the electronic Hamiltonian operator

Ĥ = ∑
pq

⟨χp | ĥ |χq⟩ ̂a†
p ̂aq +

1
2 ∑

pqrs

⟨χp χq | ŵee |χr χs⟩ ̂a†
p ̂a†

q ̂as ̂ar

=

∫ dx∫ dx′￼χ*p (x)χ*q (x′￼)
1

|r − r′￼|
χr(x)χs(x′￼)

Two-electron repulsion integral
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“Second-quantized” expression of the electronic Hamiltonian operator

Ĥ = ∑
pq

⟨χp | ĥ |χq⟩ ̂a†
p ̂aq +

1
2 ∑

pqrs

⟨χp χq | ŵee |χr χs⟩ ̂a†
p ̂a†

q ̂as ̂ar

Ĥ |n1n2…nL−1nL⟩ ≡ Ĥ |n1…np…nq…nr…ns…nL⟩ = ?

̂a†
p

̂ap “Annihilation operator” 

“Creation operator” 
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“Second-quantized” expression of the electronic Hamiltonian operator

Ĥ = ∑
pq

⟨χp | ĥ |χq⟩ ̂a†
p ̂aq +

1
2 ∑

pqrs

⟨χp χq | ŵee |χr χs⟩ ̂a†
p ̂a†

q ̂as ̂ar

Ĥ |n1n2…nL−1nL⟩ ≡ Ĥ |n1…np…nq…nr…ns…nL⟩ = ?

̂a†
p

̂ap “Annihilation operator” 

“Creation operator” 
∀Ψ, Φ, ⟨Φ | 𝒪̂ |Ψ⟩ = ⟨𝒪̂†Φ |Ψ⟩

 is the adjoint of : 𝒪̂† 𝒪̂
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Electronic Schrödinger equation  eigenvalue problem for  ⇔ Ĥ

Ĥ |Ψ⟩ = E |Ψ⟩

The eigenvalues  of  are interpreted as the possible 

energy levels of the electronic system under study.   

E Ĥ
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Electronic Schrödinger equation 

Ĥ |ΨI⟩ = EI |ΨI⟩
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Electronic Schrödinger equation 

Ground  and excited  
electronic energies 
(I = 0) (I > 0)

Ĥ |ΨI⟩ = EI |ΨI⟩



35

Electronic Schrödinger equation 

Ground  and excited  
electronic energies 
(I = 0) (I > 0)

Ĥ |ΨI⟩ = EI |ΨI⟩

..
.

..
.

Ψ0

Ψ1

Ψ2

Ψ3

Ψν

E0

E1

E2

E3

Eν
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Electronic Schrödinger equation 

Ground  and excited  
electronic energies 
(I = 0) (I > 0)

To be determined!

Ĥ |ΨI⟩ = EI |ΨI⟩

..
.

..
.

Ψ0

Ψ1

Ψ2

Ψ3

Ψν

E0

E1

E2

E3

Eν
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Computation of reaction paths in the ground electronic state 

A GRqo-F-BE8
VCR)

V÷R=RtTRANSITION

STATE

ᵈ¥¥p◦
i1,2=120
I

EG••IqE§zg I

i. !
-

Ro Rt Reaction
coordinate

EQUILIBRIUM R
STRUCTURE

Potential energy  
surface (PES)

V(R) = E0(R) +
nuclei

∑
A<B

ZAZB

|RA − RB |

Electronic  
ground-state energy
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Vibrational molecular spectroscopy 

A GRqo-F-BE8
VCR)

V÷R=RtTRANSITION

STATE

ᵈ¥¥p◦
i1,2=120
I

EG••IqE§zg I

i. !
-

Ro Rt Reaction
coordinate

EQUILIBRIUM R
STRUCTURE

Potential energy  
surface (PES)

Harmonic approximation

V(R) ≈ V(R0) +
1
2

k(R−R0)2

k =
d2V(R)

dR2
R=R0

ω =
k
M

Spring constant:

Vibrational frequency: Can be 

measured!


(infrared spectroscopy)



39

UV-visible electronic spectroscopy 

First excited
VIR) electronic state

X-

WGround
electronic

State

· S

R

“Vertical”  
electronic  
excitation

V0(R) = E0(R) +
nuclei

∑
A<B

ZAZB

|RA − RB |

V1(R) = E1(R) +
nuclei

∑
A<B

ZAZB

|RA − RB |



Configuration interaction method
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Full Configuration Interaction (FCI) method

Ĥ |Ψ⟩ = E |Ψ⟩

|Ψ⟩ ≡ |Ψ(C)⟩ =
all conf.

∑
ξ≥0

Cξ |detξ⟩

|n1n2…nL−1nL⟩

“Configuration”
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Full Configuration Interaction (FCI) method

Hamiltonian matrix  
diagonalization problem

C0

C1
⋮
Cξ

⋮

= E

C0

C1
⋮
Cξ

⋮

H00 H01
… H0ξ′￼

…

⋮
H10

Hξ0⋮
Hξξ′￼

⋮ ⋮

⋮

Ĥ |Ψ⟩ = E |Ψ⟩⇒

|Ψ⟩ ≡ |Ψ(C)⟩ = ∑
ξ≥0

Cξ |detξ⟩

Hξξ′￼ = ⟨detξ | Ĥ |detξ′￼⟩
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How many Slater determinants in total 
for a full CI (FCI) calculation?

We have  (spin-) orbitals  
available for  electrons 

 

ℳ
N

χ2
χ1

χN

χN+1

χN+2

χN+3

χN+4

χℳ−1

χℳ

Reference configuration



Example of reference Slater determinant for 10 electrons 

44Schematic representation of a molecule or a solid

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9

χ10 χ11 χ12 …
Occupied

Unoccupied



Example of (double) excitation to (previously) unoccupied orbitals

45Schematic representation of a molecule or a solid

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8 χ9

χ10 χ11 χ12 … χ17

χ19
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Ndet. = (ℳ
N ) =

ℳ!
N!(ℳ−N)!

We have  (spin-) orbitals  
available for  electrons 

 

ℳ
N

How many Slater determinants in total 
for a full CI (FCI) calculation?

χ2
χ1

χN

χN+1

χN+2

χN+3

χN+4

χℳ−1

χℳ

Reference configuration
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H

HH

H
H

H

H

H
HH

H

H

H

H
H

H

How many Slater determinants in total?

ℳ = 2 × N

Spin

Ring of hydrogen atoms
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Ndet. =
ℳ!

N!(ℳ−N)!
=

(2N)!
(N!)2

ℳ = 2 × N

How many Slater determinants in total?
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Ndet. =
ℳ!

N!(ℳ−N)!
=

(2N)!
(N!)2

ℳ = 2 × N

≈
22N

πN
=

e2N ln 2

πN

N! ≈ 2πN ( N
e )

N
Stirling formula for large  valuesN

How many Slater determinants in total?



50

Ndet. ≈
e2N ln 2

πN
“Exponential wall”

How many Slater determinants in total?
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Ndet. ≈
e2N ln 2

πN

N=50≈ 1029

How many Slater determinants in total?
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Ndet. ≈
e2N ln 2

πN

N=400≈ 1.88 × 10239

How many Slater determinants in total?
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A naive (important though) understanding of the “quantum advantage” 

Classical encoding of all Slater determinants: Ndet. ≈
e2N ln 2

πN
N=50≈ 1029

The FCI wavefunction can in principle be encoded (in this example) with  qubits. ℳ = 2N

Exponential quantum advantage! 

|ΨFCI⟩ = ∑
ξ

Cξ |detξ⟩



Quantum embedding approach to electron correlation
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The non-interacting electronic problem is much easier to solve…

55

… and it can be used as a starting point for treating electron 
correlation locally!
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From the interacting to the noninteracting electronic problem 

ĤKS = ∑
p≠q

⟨χp | ĥ |χq⟩ ̂a†
p ̂aq + ∑

p

vKS
p ̂a†

p ̂ap

W. Makhlouf, B. Senjean, and E. Fromager, J. Chem. Theory Comput. 2025, 21, 20, 10293–10314, Preprint: arXiv:2507.19591

“Kohn-Sham (KS) 

Hamiltonian”

Ĥ = ∑
pq

⟨χp | ĥ |χq⟩ ̂a†
p ̂aq +

1
2 ∑

pqrs

⟨χp χq | ŵee |χr χs⟩ ̂a†
p ̂a†

q ̂as ̂ar
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Noninteracting electronic problem 

ĤKS ≡ ∑
pq

hKS
pq ̂a†

p ̂aq

W. Makhlouf, B. Senjean, and E. Fromager, J. Chem. Theory Comput. 2025, 21, 20, 10293–10314, Preprint: arXiv:2507.19591
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Noninteracting electronic problem 

ĤKS ≡ ∑
pq

hKS
pq ̂a†

p ̂aq

Diagonalization of :hKS

hKS
pq = ∑

k

upku*qk εKS
k

ĤKS = ∑
k

εKS
k ∑

p

upk ̂a†
p ∑

q

u*qk ̂aq

≡ ̂a†
k

≡ ̂ak

W. Makhlouf, B. Senjean, and E. Fromager, J. Chem. Theory Comput. 2025, 21, 20, 10293–10314, Preprint: arXiv:2507.19591

hKS = u diag {εKS
k } u†



59

Noninteracting electronic problem 

ĤKS = ∑
k

εKS
k ̂a†

k ̂ak

εKS
1

εKS
N+1

εKS
N+2

εKS
N+3

εKS
N+4

εKS
ℳ−1

εKS
ℳ

εKS
2

εKS
N

“Molecular orbital 

energy diagram”

Unlike in the original lattice representation, 

in this “molecular” representation, 


an electron occupying the orbital  remains on that orbital k

Ground-state  
molecular configuration
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Noninteracting electronic problem 

ĤKS = ∑
k

εKS
k ̂a†

k ̂ak

εKS
1

εKS
N+1

εKS
N+2

εKS
N+3

εKS
N+4

εKS
ℳ−1

εKS
ℳ

εKS
2

εKS
N

“Molecular orbital 

energy diagram”

Unlike in the original lattice representation, 

in this “molecular” representation, 


an electron occupying the orbital  remains on that orbital k

̂a†
k ≡

lattice

∑
p

upk ̂a†
p

Molecular orbitals are 

delocalized over the entire molecule
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“Fragment”
p

Calculation of local properties 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Original “lattice” representation

q
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Fragment’s environment Entanglement

p

Calculation of local properties 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

“Fragment”

Original “lattice” representation

q

Ĥ =
lattice

∑
pq

⟨χp | ĥ | χq⟩ ̂a†
p ̂aq +

1
2

lattice

∑
pqrs

⟨χp χq | ŵee | χr χs⟩ ̂a†
p ̂a†

q ̂as ̂ar
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“Fragment”
p

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

q

Quantum embedding of the (single-orbital here) fragment 

Original “lattice” representation
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“Fragment”
p

Quantum embedding of the (single-orbital here) fragment 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

“Quantum bath”
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“Fragment”
p

Quantum embedding of the (single-orbital here) fragment 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

χq(r) → φbath(r) =
lattice

∑
q≠p

occupied

∑
k=1,…,N

⟨φKS
k |χq⟩⟨χp |φKS

k ⟩ χq(r)

“Quantum bath”
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“Fragment”
p

Quantum embedding of the (single-orbital here) fragment 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Two-electron  
embedding “cluster”… 

“Quantum bath”
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“Fragment”
p

Quantum embedding of the (single-orbital here) fragment 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Wouters, C. A. Jiménez-Hoyos, Q. Sun, and G. K.-L. Chan, J. Chem. Theory Comput. 12, 2706 (2016).

Two-electron 

embedding “cluster”… 

… for which the Schrödinger equation 

can be solved exactly!

“Quantum bath”



Rings of hydrogen atoms (Hubbard model)
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Two-electron system

-electron systemN

H φbath

H

H

HH

H

H

H

H

H

HH

H

H

H

H
H

Effective  
neighbouring atom 

G. Knizia and G. K.-L. Chan, Phys. Rev. Lett. 109, 186404 (2012). 
S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021). 
S. Sekaran, M. Saubanère, and E. Fromager, Computation 2022, 10, 45.

Ĥ = ∑
σ=↑,↓

L−1

∑
i=0

−t ( ̂a†
iσ ̂a(i+1)σ + ̂a†

(i+1)σ ̂aiσ)+U
L−1

∑
i=0

̂a†
i↑ ̂a†

i↓ ̂ai↓ ̂ai↑



69S. Sekaran, M. Tsuchiizu, M. Saubanère, and E. Fromager, Phys. Rev. B 104, 035121 (2021).

0.0 0.2 0.4 0.6 0.8
-1.5

-1.2

-0.9

-0.6

-0.3

0.0

U/(U+4t)

pe
r-s

ite
 e

ne
rg

y

Ht-DMFET  

Ht-DMFET (NIB) 

exact (BA)     
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FIG. 9. Ht-DMFET per-site energies plotted as a function of the
lattice filling n for various correlation regimes. Results obtained with
a single impurity are shown as (colored) solid lines. The blue color
corresponds to the noninteracting bath (NIB) case. In the strongly
correlated U/t = 8 regime (bottom panel), NIB results obtained with
two (Nimp = 2) and three (Nimp = 3) impurities are also shown (as
points), for analysis purposes (see Sec. III C for further details).
Comparison is made with the exact Bethe ansatz (BA) results (black
solid lines). In the weakly U/t = 1 correlated case (top panel), exact
and approximate results are almost indistinguishable.

are not allowed in our approximate embedding. As discussed
in Sec. II B, away from half-filling, the cluster becomes an
open subsystem as soon as U/t deviates from zero. Surpris-
ingly, in this density regime, per-site energies are in better
agreement with the BA values when the interaction in the bath
is neglected. Again, in the latter case, we recover the single-
impurity DMET results of Ref. [30]. As expected [30,35] and
shown in the bottom panel of Fig. 9, the results dramatically
improve when a larger fragment (consisting of two or three
impurities) is embedded, even at the simplest NIB level of
approximation.

Finally, we investigate in Fig. 10 the density-driven Mott-
Hubbard transition via the evaluation of the density-functional
µ(n) = ∂e(n)/∂n chemical potential from the Ht-DMFET en-
ergy expression of Eq. (69). As expected from Ref. [30], at
the single-impurity level, there is no gap opening when the
interaction in the bath is neglected. Restoring the interaction
in the bath has actually no impact on the transition. In the
light of Sec. II B, we can reasonably assume that Ht-DMFET
fails in this case because it relies on a closed two-electron
“single impurity+single bath” cluster. Already at the NIB
level of approximation, the embedding of a larger fragment
(consisting of two or three impurities) substantially improves
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FIG. 10. Lattice filling plotted, via the relation µ ≡ µ(n) =
∂e(n)/∂n, as a function of the (lattice) chemical potential µ at
the Ht-DMFET level of calculation for various correlation regimes.
(Single-impurity) noninteracting bath (NIB) results are shown as
solid blue lines. In the strongly correlated U/t = 8 case, NIB results
obtained with Nimp = 2 and Nimp = 3 impurities are also shown (as
points), for analysis purposes. Comparison is made with the exact
Bethe ansatz (BA) results.

the results. Nevertheless, even in this case, the gap remains
closed, which is in perfect agreement with the DET results of
Ref. [35]. As we perform single-shot embeddings (where we
only require the embedded impurity to reproduce the correct
filling n), we expect from Ref. [35] the transition to be better
described at the multiple-impurity level when the interactions
in the bath are taken into account. It would also be interesting
to see how Ht-DMFET performs when a correlated (through
the density matrix) bath is employed. This is left for future
work.

V. CONCLUSIONS AND PERSPECTIVES

Similar in spirit to DMET, a (static and zero-temperature)
single-impurity Householder-transformed density matrix
functional embedding theory (Ht-DMFET) has been derived.
The theory has been applied to the 1D Hubbard model. In the
noninteracting case, the formal reduction of the full lattice
to a two-electron dimer is exact. Thanks to the Householder
transformation, the bath site can be determined (analytically)
from the density matrix of the (full) lattice. Alternatively,
one may determine, in principle exactly, the Householder
vector v (which defines the transformation) by minimizing
the sum of the v-dependent Householder cluster and envi-
ronment energies. While the two-site “impurity+bath” cluster
problem is trivially solved, the ground-state energy of the
cluster’s environment must be evaluated for each trial vec-
tor v. Even though such a strategy is uselessly complicated
in practice, because the noninteracting full-size problem can
be solved directly, it is enlightening in many ways. First, it
clearly shows that the optimal cluster cannot be determined
without learning from its environment (and therefore from the
full lattice). The two subsystems “communicate” through the
Householder vector. Second, the resulting variational charac-
ter of the bath might be exploited when electron correlation
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FIG. 9. Ht-DMFET per-site energies plotted as a function of the
lattice filling n for various correlation regimes. Results obtained with
a single impurity are shown as (colored) solid lines. The blue color
corresponds to the noninteracting bath (NIB) case. In the strongly
correlated U/t = 8 regime (bottom panel), NIB results obtained with
two (Nimp = 2) and three (Nimp = 3) impurities are also shown (as
points), for analysis purposes (see Sec. III C for further details).
Comparison is made with the exact Bethe ansatz (BA) results (black
solid lines). In the weakly U/t = 1 correlated case (top panel), exact
and approximate results are almost indistinguishable.

are not allowed in our approximate embedding. As discussed
in Sec. II B, away from half-filling, the cluster becomes an
open subsystem as soon as U/t deviates from zero. Surpris-
ingly, in this density regime, per-site energies are in better
agreement with the BA values when the interaction in the bath
is neglected. Again, in the latter case, we recover the single-
impurity DMET results of Ref. [30]. As expected [30,35] and
shown in the bottom panel of Fig. 9, the results dramatically
improve when a larger fragment (consisting of two or three
impurities) is embedded, even at the simplest NIB level of
approximation.

Finally, we investigate in Fig. 10 the density-driven Mott-
Hubbard transition via the evaluation of the density-functional
µ(n) = ∂e(n)/∂n chemical potential from the Ht-DMFET en-
ergy expression of Eq. (69). As expected from Ref. [30], at
the single-impurity level, there is no gap opening when the
interaction in the bath is neglected. Restoring the interaction
in the bath has actually no impact on the transition. In the
light of Sec. II B, we can reasonably assume that Ht-DMFET
fails in this case because it relies on a closed two-electron
“single impurity+single bath” cluster. Already at the NIB
level of approximation, the embedding of a larger fragment
(consisting of two or three impurities) substantially improves
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FIG. 10. Lattice filling plotted, via the relation µ ≡ µ(n) =
∂e(n)/∂n, as a function of the (lattice) chemical potential µ at
the Ht-DMFET level of calculation for various correlation regimes.
(Single-impurity) noninteracting bath (NIB) results are shown as
solid blue lines. In the strongly correlated U/t = 8 case, NIB results
obtained with Nimp = 2 and Nimp = 3 impurities are also shown (as
points), for analysis purposes. Comparison is made with the exact
Bethe ansatz (BA) results.

the results. Nevertheless, even in this case, the gap remains
closed, which is in perfect agreement with the DET results of
Ref. [35]. As we perform single-shot embeddings (where we
only require the embedded impurity to reproduce the correct
filling n), we expect from Ref. [35] the transition to be better
described at the multiple-impurity level when the interactions
in the bath are taken into account. It would also be interesting
to see how Ht-DMFET performs when a correlated (through
the density matrix) bath is employed. This is left for future
work.

V. CONCLUSIONS AND PERSPECTIVES

Similar in spirit to DMET, a (static and zero-temperature)
single-impurity Householder-transformed density matrix
functional embedding theory (Ht-DMFET) has been derived.
The theory has been applied to the 1D Hubbard model. In the
noninteracting case, the formal reduction of the full lattice
to a two-electron dimer is exact. Thanks to the Householder
transformation, the bath site can be determined (analytically)
from the density matrix of the (full) lattice. Alternatively,
one may determine, in principle exactly, the Householder
vector v (which defines the transformation) by minimizing
the sum of the v-dependent Householder cluster and envi-
ronment energies. While the two-site “impurity+bath” cluster
problem is trivially solved, the ground-state energy of the
cluster’s environment must be evaluated for each trial vec-
tor v. Even though such a strategy is uselessly complicated
in practice, because the noninteracting full-size problem can
be solved directly, it is enlightening in many ways. First, it
clearly shows that the optimal cluster cannot be determined
without learning from its environment (and therefore from the
full lattice). The two subsystems “communicate” through the
Householder vector. Second, the resulting variational charac-
ter of the bath might be exploited when electron correlation
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ABSTRACT: Localized orbital-based quantum embedding, as originally
formulated in the context of density matrix embedding theory (DMET), is
revisited from the perspective of lattice density functional theory (DFT). An in-
principle exact (in the sense of full configuration interaction) formulation of the
theory, where the occupations of the localized orbitals play the role of the
density, is derived for any (model or ab initio) electronic Hamiltonian. From this
general formalism we deduce an exact relation between the local Hartree-
exchange-correlation (Hxc) potential of the full-size Kohn−Sham (KS) lattice-
like system and the embedding chemical potential that is adjusted on each
embedded fragment, individually, such that both KS and embedding cluster
systems reproduce the exact same local density. When well-identified density-
functional approximations (that find their justification in the strongly correlated
regime) are applied, a practical self-consistent local potential functional
embedding theory (LPFET), where the local Hxc potential becomes the basic variable, naturally emerges from the theory.
LPFET di!ers from previous density embedding approaches by its fragment-dependent embedding chemical potential expression,
which is a simple functional of the Hxc potential. Numerical calculations on prototypical systems show the ability of such an ansatz
to improve substantially the description of density profiles (localized orbitals occupation numbers in this context) in strongly
correlated systems.

1. INTRODUCTION
Quantum embedding theory1−4 is a very active and promising
research line in the field of electronic structure theory, in
particular for treating strongly correlated molecular systems and
materials. Even though the strategy for solving the electronic
Schrödinger equation is always the same (it can be summarized
as “divide and conquer”5), there is no unique embedding theory,
simply because the choice of the basic (few-electron reduced)
quantity it can rely on is in fact arbitrary. A choice is ultimately
made, thus leading to one embedding theory among many
others, often motivated by either formal (mathematical) or
practical advantages, or both. In this work we focus on density
matrix embedding theory (DMET)6−17 and, more specifically,
on density embedding theory (DET).18−21 The two theories
di!er by the quantity that drives the self-consistent convergence
of the embedding: DET only uses the diagonal part of the one-
electron reduced density matrix (1RDM) for that purpose,
hence its name. Since the seminal paper of Knizia and Chan,6
DMET has been intensively studied,8,22,23 improved,18,22,24−33

and extended,11,29,34−42 not only for lattice models but also for
ab initio systems.43−58 It stimulated also new developments in
alternative but related approaches like, for example, bootstrap
embedding theory59−65 (together with extension to excited

states66 and Quantum computing67,68), incremental embedding
theory,69 the (Ghost) Gutzwiller method,4,70 the rotationally
invariant slave boson approach,71,72 or the exact factorization of
electronic wave functions.73,74 The original formulation of
DMET is in principle exact but not very useful as such, as it relies
on the Schmidt decomposition of the exact many-body wave
function,6 which is of course unknown, otherwise the
embedding would be pointless. On the other hand, its standard
implementation uses a single Slater determinant only, on which
locally correlated 1RDM elements are mapped, in a completely
frequency-independent setting.10 This strategy can be seen as a
drastic simplification of dynamical mean field theory
(DMFT),75−79 where the (frequency-dependent) local Green’s
function is the basic variable. Note that a di!erent (also
frequency-dependent) embedding theory can be formulated by
using the self-energy as basic ingredient instead.80 Being a static
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ABSTRACT: Quantum embedding is an appealing route to fragment a
large interacting quantum system into several smaller auxiliary “cluster”
problems to exploit the locality of the correlated physics. In this work, we
critically review approaches to recombine these fragmented solutions in
order to compute nonlocal expectation values, including the total energy.
Starting from the democratic partitioning of expectation values used in
density matrix embedding theory, we motivate and develop a number of
alternative approaches, numerically demonstrating their e!ciency and
improved accuracy as a function of increasing cluster size for both
energetics and nonlocal two-body observables in molecular and solid state
systems. These approaches consider the N-representability of the resulting
expectation values via an implicit global wave function across the clusters, as
well as the importance of including contributions to expectation values
spanning multiple fragments simultaneously, thereby alleviating the fundamental locality approximation of the embedding. We
clearly demonstrate the value of these introduced functionals for reliable extraction of observables and robust and systematic
convergence as the cluster size increases, allowing for significantly smaller clusters to be used for a desired accuracy compared to
traditional approaches in ab initio wave function quantum embedding.

1. INTRODUCTION
Quantum chemical methods to describe explicit correlations in
an ab initiomany-electron system can be highly accurate, though
their applicability is often stymied by a steep computational
scaling with respect to system size, which (despite significant
recent progress) limits their use for extended systems.1−6 To
combat this, the locality of this correlated physics is increasingly
exploited, enabling a reduction in scaling to be competitive
compared to mean-field or density functional approaches, while
remaining free from empiricism.7,8 The field of “local
correlation” methods in quantum chemistry generally build
these locality constraints in the particle-hole excitation picture of
the system, localizing each of these spaces separately.9−11 While
highly related, “quantum embedding” approaches from
condensed matter physics are also increasingly coming to the
fore as an alternative paradigm and being applied to quantum
chemical and ab initio systems.12
A loose (and necessarily imperfect) characterization of a key

di"erence in these approaches could be that quantum
embedding does not build this locality from a particle-hole
picturerather, a fully local set of “atomic-orbital-like” degrees
of freedom are chosen initially (which will in general have
neither fully occupied nor unoccupied mean-field character),
which we will call the “fragment” space, though it is also often
called the “impurity” space for historical reasons in traditional
quantum embedding literature. A larger space is then
constructed by augmenting these fragment orbitals with

additional orbitals (often called “bath” orbitals). These are
designed to reproduce the quantum fluctuations, entanglement,
and/or hybridization between the fragment and the rest of the
system, as characterized by some tractable (generally mean-
field) level of theory which can be performed on the full system.
These individual local quantum problems of the fragment and
bath orbitals define a “cluster”, which is then solved to provide
the correlated properties of the original fragment space,
potentially with a subsequent self-consistency then applied to
update the original mean-field/low-level theory on the full
system.
The general algorithm in most quantum embeddings is

therefore summarized as: a) fragment the system; b) for each
fragment, construct a bath space describing the coupling to the
wider system; c) solve an interacting problem in the cluster
space of each fragment via a “high-level” correlated method; d)
extract properties of the system; and e) optionally, perform a
self-consistency to embed the correlated e"ects from the cluster
model back into the low-level full system method to update the
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