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Question 1: linear systems Ax = b (A € R™*% b € R? given; x =unknown)

A computational code for solving Ax = b gives the following results.

107 8 7 39 1
756 5 23 . 1
A = 2 610 9 b = 29 Solution: x = |
75 9 10 31 1
107 8 7 39.001 1.082
756 5 29.099 . 0.862
A=135610 9 b=1 3300 Solution: x = {15
75 9 10 30.999 0.979
10 7.021 8 7 39 977,
7 5 6 5 23 . 7.19...
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Question 1: linear systems Ax = b (A € R™*% b € R? given; x =unknown)

A computational code for solving Ax = b gives the following results.

107 8 7 39 1
756 5 23 . 1
A = 2 610 9 b = 29 Solution: x = |
75 9 10 31 1
107 8 7 39.001 1.082
756 5 29.999 . 0.862
A=135610 9 b=1 3300 Solution: x =1, .
75 9 10 30.999 0.979
10 7.021 8 7 39 277
7 5 6 5 23 . 7.19...
A=l 35 ¢ 109 b=1 33 Solution: x =,
75 9 10 31 1.90...

Should you trust this code?
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Question 2: Lagrangian method for constrained optimization

Constrained optimization is ubiquitous in quantum physics and chemistry
(e.g. Hartree-Fock, DFT, etc.). In Physics textbooks, such problems are
solved using the Lagrangian method.

Example: solve g(ixn)f: 0 E(x) where £ : RY — Rand g : R? — R™ are regular.
Introduce the Lagrangian L : R? x R™ — R defined as
L(z,\) = E(x) + M g(x).
Then, the minimizers are obtained by solving the system of equations
V.L(x,\) =0

V/\L<£IZ, )\) = O,

Application: d = 1, m =1, E(x) = =, g(z) = 2°

1+2Xx =0 N No solution, though = = 0 is obviously a minimizer!
z? =0 What’s the catch?
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Question 3: spectral theory of self-adjoint operators

Let H be a Hilbert space and H a self-adjoint operator on 7{. In Physics
textbooks, it is claimed that there exists an orthonormal basis (|¢,)) of H
such that

Is this statement correct in general?

Is is correct for a two-level quantum system?

Is it correct for the harmonic oscillator?

Is it correct for the Schrodinger Hamiltonian of the hydrogen atom?

Is it correct for the free-particle Hamiltonian?



Outline of the course

1. A bit of numerical analysis

2. Constrained optimization and Lagrange multipliers

3. Spectral theory of self-adjoint operators



1 - A bit of numerical analysis

The deterministic models used in quantum physics and chemistry give rise to
e linear eigenvalue problems (NV-body Schrodinger eq., LR-TDDFT, BSE, ...)
e constrained optimization problems (HF, DFT, MCSCE, ...)

e algebraic equations (CC, ...)

¢ time-dependent linear or nonlinear Schrodinger equations (RT-TDDFT, ...)



1 - A bit of numerical analysis

The deterministic models used in quantum physics and chemistry give rise to
e linear eigenvalue problems (NV-body Schrodinger eq., LR-TDDFT, BSE, ...)
e constrained optimization problems (HF, DFT, MCSCE, ...)

e algebraic equations (CC, ...)

¢ time-dependent linear or nonlinear Schrodinger equations (RT-TDDFT, ...)

Solving numerically all these problems eventually boils down to (cleverly!)
performing numerical quadratures and matrix-vector products.



1 - A bit of numerical analysis

The deterministic models used in quantum physics and chemistry give rise to
e linear eigenvalue problems (NV-body Schrodinger eq., LR-TDDFT, BSE, ...)
e constrained optimization problems (HF, DFT, MCSCE, ...)

e algebraic equations (CC, ...)

¢ time-dependent linear or nonlinear Schrodinger equations (RT-TDDFT, ...)

Solving numerically all these problems eventually boils down to (cleverly!)
performing numerical quadratures and matrix-vector products.

Example: let /' : R? — R A standard iterative algorithm to solve the
equation F'(x) = 0 is the Newton algorithm:

x;. begin given, solve the linear system I’ (x;)y, = —F(x;), then set x; | = X, +y}.
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The deterministic models used in quantum physics and chemistry give rise to
e linear eigenvalue problems (NV-body Schrodinger eq., LR-TDDFT, BSE, ...)
e constrained optimization problems (HF, DFT, MCSCE, ...)

e algebraic equations (CC, ...)

¢ time-dependent linear or nonlinear Schrodinger equations (RT-TDDFT, ...)

Solving numerically all these problems eventually boils down to (cleverly!)
performing numerical quadratures and matrix-vector products.

Example: let /' : R? — R A standard iterative algorithm to solve the
equation F'(x) = 0 is the Newton algorithm:

x;. begin given, solve the linear system I’ (x;)y, = —F(x;), then set x; | = X, +y}.

Linear systems can themselves be solved by iterative algorithms based on
matrix-vector products.
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1.1 - Conditioning 7

A key concept: conditioning

Consider a problem consisting of computing an output s from an input y
(the data). The problem is called

e well-conditioned if a small variation of the input leads to a small varia-
tion of the output

e ill-conditioned otherwise.

Toy example of a very ill-conditioned problem:

2 107 ,
Y=\0 05 — s = eigenvalues of y = (0.5; 2)

17
y+0y = ( 10217 1005 ) — s+ds = eigenvalues of y+J0y = (0;2.5) .



1.1 - Conditioning

An apparently nicer problem: solve the linear system Ax = b with

107 8 7 39
756 5 23
A=135610 9 and b= .
75 9 10 31

The matrix A is symmetric, det(A) = 1, and

25 —41 10 —6
—41 68 —17 10
10 =17 5 =3
-6 10 =3 2

Al =



1.1 - Conditioning

Reference linear system

107 8 7 32
756 5 | 23
8 610 9 | 33
759 10 31

Slight perturbation of the right-hand side

107 8 7 32.001
756 5 | 22.999
8 610 9 ~ | 33.001
759 10 30.999

Slight modification of the matrix A

10 7.021 8 7 32
7 5 65 | 23
8 6 10 9 — | 33
75 910 31

Solution =

Solution =

Solution =

This apparently nice problem is not so well-conditioned ...

—_ = =

1.082
0.862
1.035
0.979

—2.77...
7.19...
—0.01...
1.90...
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[%[|oc = max |z
1<i<n
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n 1/p
x|, == <Z W) for 1 < p < 400, %[00 = max |z;]
1=1

1<i<n
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1.1 - Conditioning

10

[’-norm of a vector x € R"

n 1/p
x|, == <Z W) for 1 < p < +oo,
1=1

[P-norm of a matrix A € R"*™

|Ax|
HAHp =~ Sup :
xeR™\ {0} HXHP

[x[|oc = max |z;
1<i<n

Conditioning number: the conditioning number of the abstract problem
s = f(y) aty =y, for the [”-norm is (s € R",y € R™)is

1S Cyo)llp

/i'p(}’o) _ Hf/(YO>||p HYOHP.

Rule of thumb: if the conditioning number is ~ 10” and if you compute in
double precision (c,,chine = 1071%), you can only trust the first 16 — p digits

of your result.
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Conditioning number of an invertible square matrix A € R"*"
(for the [’-norm)

rp(A) = [[All, [A7],

kp(A) is the max. w.r.t. x of the conditioning numbers of the problems:

e matrix-vector product: y = (A, x) — s = Ax

e linear system solver: y = (A, x) — s = A"x (solve As = x)
Example:
078 7
A = ro b — (A) =2984 and (A) = 4488
“1 86109 e fool ) = 2R
7 5 9 10
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Theorem. Let A € R"*" be an invertible matrix, and b € R", b # (.

e Perturbation of the right-hand side

19,

ob
S /ip(A) H Hp
x|l bl

and the inequality is optimal: A being given, there exists b and db such
that the inequality is an equality.

Ax = b, A (x+dx) =b+db =

e Perturbation of the matrix

/ H(SXHP
Ax = A A = = < A
X = b, (A +0A)(x+x')=Db 1 o], = kp(A)

10A]],
1Al

and the inequality is optimal: A being given, there exists b and 0 A such
that the inequality is an equality.




1.1 - Conditioning 13

Properties of the conditioning number r,(A)

e 1,(A) > 1,VA € GL,(R) (the set of invertible matrices)
e k5(U) = 1iff U is orthogonal (UU! = U'U = 1)

e 1/r,(A) is a measure of the relative distance of the matrix A to the set
of singular matrices:

1 E
o El

ky(A)  E|(A+E)ZCL,®) ||A],

o If A is symmetric
max |Ai(A)]

min [A;(A)|
M(A) < X(A) < --- < A\ (A) denoting the eigenvalues of A.

/QQ(A) =
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An iterative algorithm for solving a problem P is a method for construct-
ing, from an initial guess x, a sequence x;, X», X3, ... such that (hopefully)

X — X, (1)
k—+o00

where x is a solution to the problem P (the solution if P is well-posed) .
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An iterative algorithm for solving a problem P is a method for construct-
ing, from an initial guess x, a sequence x;, X», X3, ... such that (hopefully)

X — X, (1)
k—+o00

where x is a solution to the problem P (the solution if P is well-posed) .

The algorithm is called convergent if (1) holds. In practice, the algorithm
is stopped when some stopping criteria are met. The efficiency of the algo-
rithm heavily relies on the choice of the stopping criteria.

Examples of stopping test for linear systems Ax = b:
e a terrible one: maximum number of iterations (k > k,,.,) = STOP
e a good one: residual based error vector (||r;||s < ;) = STOP, where
r, = b—Ax; = A(x—x;), & = gal||All1]|xk]|ot]|Pll2) (Oetli-Prager, 1963)

If A is symmetric, positive definite, then ||r;||» = ||x — x;|| where || - || is
the norm defined by ||y|| = [[Ay]|2.




1.3 - Gradient-type methods for solving linear systems

15




1.3 - Gradient-type methods for solving linear systems 15

Reminder: gradient of a differentiable function .J : R — R

We have for all x € R?

vh e RY, J(x+h)= J(X)-l—z g;:]z(x) hi+o(h) = J<X>—|—VJ<X>~Th—|—O<h>

Euclidean scalar product

/5;’1\

Euclidean gradient: VJ(x) =

\ axd )



1.3 - Gradient-type methods for solving linear systems 15

Reminder: gradient of a differentiable function .J : R — R

We have for all x € R?

VheRY,  J(x+h)=J(x)+) ~—(x)hi+o(h) = J(x)+VJ(x)-h+o(h)

Euclidean scalar product

/5;’1\

Euclidean gradient: VJ(x) =

\ 8xd )

If R? is endowed with the scalar product (x,y)s := x’ Sy, where S ¢ R?*¢
is a positive definite symmetric matrix, then the gradient of J, which we
will denote by V¢.J(x), is related to the Euclidean gradient V.J(x) by

Vsl (x) =S 'VJ(x).
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Geometrical interpretation of the gradient
Let J : R? — R of class O, xg € R? and o = J(xq). If V.J(xg) # 0, then
e in the vicinity of x(, the level set
={xeR"| J(x)=a}
is a C'! hypersurface (a codimension 1 C L manifold);

e the vector V.J(x) is orthogonal to the affine hyperplane tangent to C,
at x; and points toward the steepest ascent direction.

"!// n‘

N
M' '

\\ -
I

“
t‘ \”“-\0 f# il
"

\ ‘ \0’/

‘-00
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Key remark: if the matrix A is symmetric, positive definite, then

1
solve Ax =Db & solve mirb J(y) where J(y):= §yTAy—bTy.
yeR

Gradient methods consist in choosing an initial guess x; € R" and in build-
ing a sequence of iterates (x;).cn of R” such that

J(xx) | minJ  Notethat VJ(y)=Ay—b

k—+oo R"

Gradient methods only involve matrix-vector and scalar products. There
are particularly efficient when

e the matrix A cannot be stored (e.g. grid methods for Kohn-Sham)

e and/or matrix-vector products can be efficiently computed (sparse ma-
trices, fast transforms such as FFT, ...)

Remark: Extensions of gradient algorithms to general linear systems are
available (MINRES - GMRES, 1986 - BiCGstab, 1992 - ...).
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Fixed-step and optimal step gradient algorithms

The function J is decreasing in the direction

d, = —VJ(x;) =b — Ax; (residual)

One then may choose
Xp1 = X, + tpdy
for some ¢, > 0.
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19

Fixed step: the step ¢ is chosen once and for all

Iy — b — AXk
X1 = X+ try,

Optimal step: one chooses the “best” x;.; on the half-line x;, — tV.J(xy)
( I, = b — AXk

T
§ k=

rZArk
| Xk1 = Xg + 1Ty
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Conjugate gradient algorithm (1952)

The descent direction d;, = —V J(x;) is optimal for infinitesimal steps, but
not in general for finite step.

The conjugate gradient algorithm provides better descent directions d;.
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Conjugate gradient algorithm:

e Initialization. Choose x; € R"” and ¢,,, compute ry = b — Ax; and set
d() = TIQ. Set £ = 0.

e Iterations.

1. Stopping test: if ||r;|]> < co1(||All1||xx || + || P]|2), StOp.

2. Update x; and the residual r;, :
T

r, rs;
Zj. — Adk tk = i
Y dTZ Y
L4k
Xp1 = X + tdy, )1 = Ty — b2y,
3. Update the descent direction d;. :
T
r, I
k+1+k+1
O = —5—, diy1 = Trpq1 + Bedy.

I, Tk

4.Set £ = k + 1 and go to step 1.
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Krylov subspaces

The Krylov subspaces (/Ci.(y)) associated with a matrix A € R"*" and a
vector y are defined by

ICk(Y) — Span(Y7 AYa o 7AkY)

Application to linear systems

x = A”'b
= A Y(Axy+ b — Ax)
= x0+ A 'rg
= x9+ Q(A)r with () polynomial of degree m < n — 1 (Hamilton-Cayley)
€ Xo+ Km(r()).
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Theorem. Let (x;) the sequence generated by the conjugate gradient algo-
rithm (with £, = 0).

1. For all £ > 0,

x, = arginf J(y), J(y) =5y Ay —b'y
yexo+K(ro)
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the conjugate gradient algorithm converges in at most n iterations
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Theorem. Let (x;) the sequence generated by the conjugate gradient algo-
rithm (with £, = 0).

1. For all £ > 0,

, 1
x, = arginf J(y), J(y)=zy'Ay —b'y

yexo+Ky(ro) 2

2. The sequence of Krylov subspace (1) is strictly increasing until the
algorithm has converged: if x; # x, dim /C;(ry) = k + 1. Consequently,
the conjugate gradient algorithm converges in at most n iterations

3. If the conjugate gradient algorithm converges in m iterations, then V0 <
E<m-—1,

e (rg,ry, -+ ,r;) is an orthogonal basis of Ky (r): r/r; = J;;
e (dy,dy, - ,dy) is an A-orthogonal basis of Ky (r): d! Ad; = §;;

——  The descent directions d; are A-conjugate
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Theorem. Let A a symmetric positive definite matrix, b € R"” and x € R"
the solution of Ax = b. Let (x;) the sequence generated by the conjugate
gradient algorithm with (avec ¢ = 0) from the initial guess x.

The conjugate gradient algorithm converges at least linearly

1% — x||a < pllxo — x| with 0<p= RalA) — 1 <1
kE— A = 0— A = VM = ’
\/ %Q(A) + 1
An(A
) E A; > 1 is the conditioning number of A for the [*>-norm,
1
and where || - || is the energy norm on R" defined by ||y|[a = (Ay,y)

where 15(A) =

1/2.
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Remarks

e This estimate is not optimal (convergence in at most n iterations)
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Theorem. Let A a symmetric positive definite matrix, b € R"” and x € R"
the solution of Ax = b. Let (x;) the sequence generated by the conjugate
gradient algorithm with (avec ¢ = 0) from the initial guess x.

The conjugate gradient algorithm converges at least linearly

1% — x||a < pllxo — x| with 0<p= RalA) — 1 <1
k — A > 0 — A = — )
\/ IQQ(A) + 1
A (A . e e
X EA; > 1is the conditioning number of A for the [>-norm,
1
and where || - || is the energy norm on R" defined by ||y|[a = (Ay,y)

where 15(A) =

1/2.

Remarks
e This estimate is not optimal (convergence in at most n iterations)

e The actual performance of the CG algorithm depends on the distribu-
tion of the eigenvalues of A
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Theorem. Let A a symmetric positive definite matrix, b € R"” and x € R"
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Theorem. Let A a symmetric positive definite matrix, b € R"” and x € R"
the solution of Ax = b. Let (x;) the sequence generated by the conjugate
gradient algorithm with (avec ¢ = 0) from the initial guess x.

The conjugate gradient algorithm converges at least linearly

1% — x||a < pllxo — x| with 0<p= RalA) — 1 <1
k — A > 0 — A = — )
\/ /ig(A) + 1
A (A . e e
X EAi > 1is the conditioning number of A for the [>-norm,
1
and where || - || is the energy norm on R" defined by ||y|[a = (Ay,y)

where 15(A) =

1/2.

Remarks
e This estimate is not optimal (convergence in at most n iterations)

e The actual performance of the CG algorithm depends on the distribu-
tion of the eigenvalues of A

e The smaller the conditioning number, the faster the algorithm

—  Preconditioning can (often must) be used to reduced the cond. numb.
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Iterative algorithms are usually totally inefficient without preconditioning.

Preconditioning of linear systems:

Basic idea: instead of solving

Ax=Db

solve

P—1/2AP—1/2Z _ I)—l/Qb7
Pl/?x = 7.

for some symmetric matrix P such that

Ro(PTYV2APY2) « ky(A)

This replacement can be done implicitely: no need to compute P—1/2,
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Preconditioned conjugate gradient algorithm

e Initialisation. Choose x; € R" and a threshold <;,;, compute ry = b —
Axy, and the solution y, to Py, =ry. Setdy = ygand k£ = 0. ;

e Iterations.

1. Stopping test: if ||r;|2 < cio1(||All1]|2k||00 + [|D]|2), StOp.
2. Update x; and r;.

T
Y. Tk
Zj. — Adk tk = k
Y, dTZ Y,
L4k
Xp1 = X + tdy, )1 = Ty — b2y,

Solve Py, =rp
3. Updated the descent direction d;
. yz;-lrkntl
Bk‘ _ T
Y. Tk
4. Set £ = k + 1 and go to step 1.

, dii1 = Yit1 + Brdi.
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For the preconditioning technique to be efficient, the preconditioner P
must fulfill two conditions

1. ko (PY2APY2) « ky(A)

2. linear systems of the form Py = r are easy to solve.

—— A trade-off has to be made.

e ‘“Algebraic preconditioners”

— diagonal preconditioner
— SSOR preconditioner
— incomplete LU or Cholesky decomposition

e ‘“Physical preconditioners”

— Multigrid methods
— Simplified model
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Example: planewave discretization of periodic Schrodinger operators

1 d? |
H = _5@—”/’ V(z) = |cos(mz)|, ep(z)=e*" Xy =Span(e;, |k| < N)

1
Hy = (ep|Hle) = 2m2|k|*0u+Vie, Vig = / Vig)e2™=hr gy N <kI<N
0
Solve Hx =b, with b= (1,--- 1)’
o Possible preconditioner: P s.t. Py = (1 + 2m%|k|?)6

Stopping criterion: ||r;|; < 107" where r.=b — Hx,

N | Size of the matrix H | # CG iter. | # PCG iter.
50 101 71 5
100 201 98 5
200 401 304 5
400 801 613 5
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Let £ : RY - Rand g : R? — R™ be two differentiable functions and
consider the optimization problem

in}"( E(x) where K ={xeR’|g(x)=0}.
XE<

Definition (qualification of the constraints). The equality constraints g = 0
are called qualified at x, ¢ K if ¢'(x)) € R™*?is surjective (i.e. Ran(¢'(xy)) = R™).

Theorem (Euler-Lagrange theorem). Let xy € K be a local minimum of £ on K.
Assume that

1. x — ¢'(x) is continuous in the vicinity of x;

2. the equality constraints g = 0 is qualified at x,.

Then, there exists a unique A € R™ such that
VE(xo) + ¢'(x0)" X = 0,

where ¢'(x()! is the transpose of ¢’(x(). The vector ) is called the Lagrange
multiplier of the constraint g = 0.
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Euler-Lagrange equations

Assume that the constraints are qualified at any point of /A. Then solving

seek (x, \) € R? x R™ such that
VE(x)+¢'(x)'A =0 (2)
g(x) =0

allows one to find all the critical points (among which the local minimizers
and the local maximizers) of £ on K.

Remark : the above problem consists of (d + m) scalar equations with
(d + m) scalar unknowns.
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Euler-Lagrange equations

Assume that the constraints are qualified at any point of /A. Then solving

seek (x, \) € R? x R™ such that
VE(x)+¢'(x)'A=0 4)
g9(x) =0
allows one to find all the critical points (among which the local minimizers
and the local maximizers) of £ on K.

Remark : the above problem consists of (d + m) scalar equations with
(d + m) scalar unknowns.

The solutions of the Euler-Lagrange equations (4) are called the critical
points of I on K.

Remark. Equations (4) are equivalent to seeking (x, \) € R? x R" s.t.
ViL(x,A) =0, V)\L(x,\) =0, where L(x,\) :=F(x)+\g(x) (Lagrangian).
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Very important take-home messages

A mathematical theorem consists of
e a list of assumptions;

¢ one of more results following from these assumptions.

Do not forget to check the assumptions before using the results!
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Very important take-home messages

A mathematical theorem consists of
e a list of assumptions;

¢ one of more results following from these assumptions.

Do not forget to check the assumptions before using the results!

Back to the example d = 1, m = 1, E(z) = z, g(x) = 2°. Then
K={xeR|g(x)=0}={0} and q'(0) =0.

The constraint ¢ = 0 is therefore not qualified, and this is the reason why
the Lagragian method fails!

Be all the more careful that
not every ''reasonable'’ mathematical statement is true!

Example: let 7{ be a Hilbert space. A continuous function £ : H — R
going to +oo at infinity does not necessarily have a minimizer.
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A simple 2D example (d = 2, m = 1)

On K = ¢ '(0) = {x € R?*| g(x) = 0}, the function E possesses
¢ two local minimizers, all global
e two local maximizers, among which the global maximizer

e one critical point which is neither a local minimizer not a local maxi-
mizer.
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Sketch of the proof

e Let x( be a local minimizer of £ on K = ¢ '(0) = {x € R?| g(x) =0}
and o = F(xg).

o If the constraint ¢ = 0 is qualified at x, (i.e. if ¢'(xg) : H — K is
surjective), then, in the vicinity of x;, K is a C' manifold with tangent
space

T K = {h e R"| ¢'(xo)h = 0} = Ker(¢'(x0)).

e Since x is a minimizer of £ on K, the vector V F/(x;) must be orthogonal
to 7y, K. Indeed, for any h € T, K, there exists a C"* curve ¢ : [—1,1] —
R? drawn on K such that ¢(0) = x; et ¢'(0) = h, and we have

0 < E(d(t)) — E(xo) = E(xg + th + o(t)) — E(x9) = tVE(xo) - h + o(t).

e We have
VE(x) € (T, K)* = (Ker(g'(xo)))" = Ran(g'(x0)" ).

o Therefore, there exists A € R such that VE(x) + ¢'(x¢)! A = 0.
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Remarks

e The above results can be extended to the case when £ : ‘4 — R and
g : ' H — K where H and I are Hilbert spaces.

e Most often, Lagrange multipliers have a ""physical' interpretation

— statistical mechanics, the equilibrium state of a chemical system in-
teracting with its environment is obtained by maximizing the entropy
under the constraints that the energy, the volume and the concentra-
tion of chemical species are given on average:

— the Lagrange multipliers are respectively 1/7, P/T and p;/T
(T': temperature, P: pressure, 1; chemical potential of species 7)

— fluid mechanics, the admissible dynamics of an incompressible fluid
are the critical points of the action under the constraint that the den-
sity of the fluid remains constant (div (u) = 0)

— the Lagrange multiplier of the incompressibility constraint is the
pressure field.



2 - Constrained optimization and Lagrange multipliers 36

Analytical derivatives
VR e R", W(R)=inf{ER,x), xR’ g(R,x) =0} (5)
with £ :RF x R 5 R, ¢: R x R = R™.

Assume (5) has a unique minimizer x(R) and R — x(R) is regular. Then,

WR) = BRXR) = oo (R) = S (Rx(R) + VE(RX(R) £ (R),
g , Ox
JRXR) =0 = (R X(R)) + g4 R x(R)) 52 (R) =0

Euler-Lagrange equation: V,E(R,x(R))+ ¢.(R,x(R))"A(R) = 0.

oW oL

Therefore a—Rk(R) 8Rk(R ,x(R)) + <—(R,X(R)), A(R)) .



3 - Spectral theory of self-adjoint operators

References:

e E.B. Davies, Linear operators and their spectra, Cambridge University
Press 2007.

e B. Helffer, Spectral theory and its applications, Cambridge University
Press 2013.

e M. Reed and B. Simon, Modern methods in mathematical physics, in 4
volumes, 2nd edition, Academic Press 1972-1980.

Notation: in this section, 7{ denotes a separable complex Hilbert space, (-|-)
its scalar product, and || - || the associated norm.
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Some of the fundamental principles of quantum mechanics

1. Each closed quantum system is associated with a separable complex
Hilbert space 7.

2. If the state of the system at time ¢ is completely known, it can be de-
scribed by a normalized vector v)(¢) of 7. It is said to be in a pure state.
The set of pure states is diffeomorphic to the projective space P(H).

3. Physical observables are represented by self-adjoint operators on 7.

4. Let a be a physical observable represented by the self-adjoint operator A.
The outcome of a measurement of « is always in o(A), the spectrum of A.

5. If, just before the measurement, the system is in the pure state (%),
then the probability that the outcome lays in the interval B C R is
|1 5(A)Y(to)]|*, where 15 is the characteristic function of B and 15(A)
is defined by functional calculus.

6. If the system is isolated, its dynamics between two successive measures
is given by (t) = U(t — ty)v(ty) where U(7) = e /" H being the
Hamiltonian, i.e. the self-adjoint operator associated with the energy.
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Definition (Hilbert space). A Hilbert space is a real or complex vector space
endowed with a scalar product (-|-) and complete for the associated norm || - ||.

Definition (completeness). A sequence (1, ),cn of elements of a normed vector space (74, || - ||) is Cauchy if

Ve >0, INeN st Yg>p>N, |-t <e.

The normed vector space (7, || - ||) is complete if any Cauchy sequence of elements of 7 converges in .

Example: all finite dimensional normed R- or C-vector spaces are complete.

e Endowed with the Euclidean scalar product, C? is a Hilbert space:

1/2
_ 1/2
X ye= Y Ty xl=xx) = Y |nf

1<i<d 1<i<d

o Let S € C% be a positive definite hermitian matrix
(S;i=S;;forall 1 <i j <dandx*Sx > 0 for all x € C?\ {0}).
Then (x,y)s = x*Sy defines a scalar product on C? and

vx € C o M(S9)Ixll2 < flxlls < Xa(S)lIx[l2:
where \{(S) < \(S) < -+ < \y(9) are the eigenvalues of S.
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Fundamental examples: the Hilbert space L*(R?, C).
e The sequilinear form
(u,v) — (u,v)2 := / uv = / u(r) v(r) dr
R4 RY
defines a scalar product on
CERY,C) = {v e C*(R? C) | v =0 outside some bounded set} ,
but C>*(R?, C), endowed with the scalar product (-, -),, is not a Hilbert space.

¢ To obtain a Hilbert space, we have to '"complete' it with ''all the limits
of the Cauchy sequences of elements of C>°(R%)". We thus obtain the set

L*(R?%,C) = {u R = C | / ul? < oo} :
Rd
which, endowed with the scalar product (u, v);2, is a Hilbert space.

® Technical details:

— one must use the Lebesgue integral (doesn’t work with Riemann integral);

— the elements of L>(R? C) are in fact equivalence classes of measurable functions (for the Lebesgue
measure) for the equivalence relation u ~ v iff u = v everywhere except possibly on a set of Lebesgue
measure equal to zero.
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Fundamental examples: the Sobolev spaces H'(R? C) and H?*(R?, C).
e The sets
H'R%C) = {ue L*R%,C) | Vu € (LR’ C))"},
H*R%,C) = {ue L*R",C) | Vue <L2(1R<d, C))* and D*u € (L*(RY,C
are vector spaces. Respectively endowed with the scalar products
(u, v) ::/ w+ | Vu- Vo,
Rd Rd
(u, v) g2 ::/ w+ [ Vu-Vo+ | D2u: D%,
Rd Rd

R4
they are Hilbert spaces.

® Technical detail: the gradient and the second derivatives are defined by means of distribution theory.

dxd}

Remark. Let u € H!(R?). A function 7 € H'(R?) can be a very accurate
approximation of v in L?>(R?) and a terrible approximation of v in H'(R%).

For instance, let u(z) = —— and u,(z) = (1 + Sln("2x2)> u(x). The sequence

(4 )nen+ converges to v in L?(R) and goes to infinity in ' (R).



3 - Spectral theory of self-adjoint operators 42

Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on H
is a linear map A : H — H such that

Au
Al = sup 124
weH\{0} [Jull

< OQ.
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The set 3(H ) of the bounded operators on 7{ is a non-commutative algebra
and || - || is a norm on B(H).
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Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on H
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Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on H
is a linear map A : H — H such that

< OQ.

Au
Al = sup 124
weH\{0} [wl]

The set 3(H ) of the bounded operators on 7{ is a non-commutative algebra
and || - || is a norm on B(H).

Remark. A bounded linear operator is uniquely defined by the values of
the sesquilinear form H x H 3 (u,v) — (u|Av) € C.

Definition-Theorem (adjoint of a bounded linear operator). Let A € B(H).
The operator A* € B(H) defined by

V(u,v) e H X H, (u|A™v) = (Au|v),
is called the adjoint of A. The operator A is called self-adjoint if A* = A.

Endowed with its norm || - || and the x operation, 5(7#) is a C*-algebra.
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(Non necessarily bounded) linear operators on Hilbert spaces

Definition (linear operator). A linear operator on 7 is a linear map
A : D(A) — H, where D(A) is a subspace of # called the domain of A.
Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A; and A, be operators on . A is
called an extension of A, if D(A;) C D(A,) and if Vu € D(A;), Asu = Aju.

Definition (unbounded linear operator). An operator A on  which does
not possess a bounded extension is called an unbounded operator on 7.

Definition (symmetric operator). A linear operator A on 7{ with dense
domain D(A) is called symmetric if

V(u,v) € D(A) x D(A), (Au|v) = (u]Av).

Symmetric operators are not very interesting. Only self-adjoint operators
represent physical observables and have nice mathematical properties:

e real spectrum;

e spectral decomposition and functional calculus.
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Definition (adjoint of a linear operator with dense domain). Let A be a
linear operator on 7 with dense domain D(A), and D(A*) the vector space
defined as

D(A") ={veH|Tw, € Hst.Vu € D(A), (Au|v) = (u|w,)} .
The linear operator A* on , with domain D(A*), defined by
Vv e D(A"), A*v=w,,

(if w, exists, it is unique since D(A) is dense) is called the adjoint of A.
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Definition (adjoint of a linear operator with dense domain). Let A be a
linear operator on 7 with dense domain D(A), and D(A*) the vector space
defined as

D(A") ={veH|Tw, € Hst.Vu € D(A), (Au|v) = (u|w,)} .
The linear operator A* on , with domain D(A*), defined by
Vv e D(A"), A*v=w,,

(if w, exists, it is unique since D(A) is dense) is called the adjoint of A.
(This definition agrees with the one on Slide 6 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain
is called self-adjoint if A* = A (that is if A symmetric and D(A*) = D(A)).
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linear operator on 7 with dense domain D(A), and D(A*) the vector space
defined as
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The linear operator A* on , with domain D(A*), defined by
Vv e D(A"), A*v=w,,

(if w, exists, it is unique since D(A) is dense) is called the adjoint of A.
(This definition agrees with the one on Slide 6 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain
is called self-adjoint if A* = A (that is if A symmetric and D(A*) = D(A)).

Case of bounded operators:

symmetric < self-adjoint.
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Definition (adjoint of a linear operator with dense domain). Let A be a
linear operator on 7 with dense domain D(A), and D(A*) the vector space
defined as

D(A") ={veH|Tw, € Hst.Vu € D(A), (Au|v) = (u|w,)} .
The linear operator A* on , with domain D(A*), defined by
Vv e D(A"), A*v=w,,

(if w, exists, it is unique since D(A) is dense) is called the adjoint of A.
(This definition agrees with the one on Slide 6 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain
is called self-adjoint if A* = A (that is if A symmetric and D(A*) = D(A)).

Case of bounded operators:

symmetric < self-adjoint.

Case of unbounded operators:

symmetric (easy to check) z self-adjoint (sometimes difficult to check)
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Some unbounded self-adjoint operators arising in quantum mechanics

e position operator along the ; axis:
- H = L*(RY),
- D(7)) = {u € L*(RY) | rju € L*(RY)}, (7;0)(r) = r;0(r);
e momentum operator along the ; axis:
- H = L*(RY),
- D(p;) {u c L*(RY) | O, U € Lz(Rd)}, (Djd)(r) = —i&nj¢(r);

¢ Kinetic energy operator:
-H = LQ(Rd)a

1

- D(T) = H*(R?) := {u € L*(RY) | Au € L*RN}, T = —545

e Schridinger operators in 3D: let V € L2 (R* R) (V(r) = —% OK)
-H = L*(R?),

1
- D(H) = HXR%), H = —SA + V.

I
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Definition-Theorem (spectrum of a linear operator). Let A be a closed’
linear operator on 7.

e The openset p(A) = {z € C| (2 — A) : D(A) — H invertible} is called
the resolvent set of A.

! The operator A is called closed if its graph I'(A) := {(u, Au), u € D(A)} is a closed subspace of H x H.
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Definition-Theorem (spectrum of a linear operator). Let A be a closed’
linear operator on 7.

e The openset p(A) = {z € C| (2 — A) : D(A) — H invertible} is called
the resolvent set of A. The analytic function

p(A) 2z R.(A) = (2 — A~ € B(H)
is called the resolvent of A. Itholds R.(A)—R.(A) = (2'—2)R.(A)R..(A).

e The closed set o(A) = C \ p(A) is called the spectrum of A.

o If A is self-adjoint, then o(A) C R

! The operator A is called closed if its graph I'(A) := {(u, Au), u € D(A)} is a closed subspace of H x H.
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Definition-Theorem (spectrum of a linear operator). Let A be a closed’
linear operator on 7.

e The openset p(A) = {z € C| (2 — A) : D(A) — H invertible} is called
the resolvent set of A. The analytic function

p(A) 2z R.(A) = (2 — A~ € B(H)
is called the resolvent of A. Itholds R.(A)—R.(A) = (2'—2)R.(A)R..(A).
e The closed set o(A) = C \ p(A) is called the spectrum of A.
o If A is self-adjoint, then 0(A) C R and it holds 0(A) = 0,(A) Uo.(A),

where 0,(A) and o.(A) are respectively the point spectrum and the con-
tinuous spectrum of A defined as

op(A) = {z€C|(2—A) : D(A) — H non-injective} = {eigenvalues of A}

0.(A) = {2z€C|(z—A) : D(A) — H injective but non surjective}.

! The operator A is called closed if its graph I'(A) := {(u, Au), u € D(A)} is a closed subspace of H x H.
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On the physical meaning of point and continuous spectra
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On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle 69, Amrein and Georgescu ’73, Enss ’78).

Let H be a locally compact self-adjoint operator on L*(R?).
[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]
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On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle 69, Amrein and Georgescu ’73, Enss ’78).

Let H be a locally compact self-adjoint operator on L*(R?).
[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let 7, = Span {eigenvectors of H } and . = 7—[;.
[Ex.: for the Hamiltonian of the hydrogen atom, dim(7#,) = dim(#,.) = oc.]

Let 5, be the characteristic function of the ball By = {r € R? | |r| < R}.
Then
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T
(o€ Ho) & VR >0, I /O Ixspe o[, dt = 0.
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On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle 69, Amrein and Georgescu ’73, Enss ’78).

Let H be a locally compact self-adjoint operator on L*(R?).
[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let 7, = Span {eigenvectors of H } and . = 7—[;.
[Ex.: for the Hamiltonian of the hydrogen atom, dim(7#,) = dim(#,.) = oc.]

Let 5, be the characteristic function of the ball By = {r € R? | |r| < R}.
Then

(¢po € Hy) < Ve >0, dR >0, Vt >0, ‘(1 — XBR)G_“H%H; <e¢g;

T
(o€ Ho) & VR >0, I /0 Ixspe o[, dt = 0.

T—+o00

H, : set of bound states, H. : set of scattering states
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Diagonalizable self-adjoint operators and Dirac’s bra-ket notation

Let A be a self-adjoint operator that can be diagonalized in an orthonormal
basis (e,),cn (this is not the case for many useful self-adjoint operators!).

Dirac’s bra-ket notation: A = Z Anlen){en], A €R,  (em|en) = dpmn-

neN
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Let A be a self-adjoint operator that can be diagonalized in an orthonormal
basis (e,),cn (this is not the case for many useful self-adjoint operators!).

Dirac’s bra-ket notation: A = Z Anlen)(enl, A €R, (enlen) = dmn.

neN

Then,
e the operator A is bounded if and only if || A|| = sup,, |\,| < oo3

o D(A) = {Ju) = X entnlen) | 2onen(l + [l unl® < 00) §5
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Diagonalizable self-adjoint operators and Dirac’s bra-ket notation

Let A be a self-adjoint operator that can be diagonalized in an orthonormal
basis (e,),cn (this is not the case for many useful self-adjoint operators!).

Dirac’s bra-ket notation: A = Z Anlen)(enl, A €R, (enlen) = dmn.

neN

Then,
e the operator A is bounded if and only if | A|| = sup,, |\,| < oo3

o D(A) = {[u) = 3 enunlen) | 3pen( + Al [un* < 00) }3
e 5,(A) = {\},cyand o (A) = {accumulation points of {\,}, _}\op(A);
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Let A be a self-adjoint operator that can be diagonalized in an orthonormal
basis (e,),cn (this is not the case for many useful self-adjoint operators!).

Dirac’s bra-ket notation: A = Z Anlen)(enl, A €R, (enlen) = dmn.
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Then,
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e 5,(A) = {\},cyand o (A) = {accumulation points of {\,}, _}\op(A);
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Diagonalizable self-adjoint operators and Dirac’s bra-ket notation

Let A be a self-adjoint operator that can be diagonalized in an orthonormal
basis (e,),cn (this is not the case for many useful self-adjoint operators!).

Dirac’s bra-ket notation: A = Z Anlen)(enl, A €R, (enlen) = dmn.

neN

Then,
e the operator A is bounded if and only if | A|| = sup,, |\,| < oo3
= {lu) = Scntnlen) | Spen(+ ADluaf? < 00)}s
e 5,(A) = {\},cyand o (A) = {accumulation points of {\,}, _}\op(A);
e H, =H and H. = {0} (no scattering states);

¢ functional calculus for diagonalizable self-adjoint operators: for all
f : R — C, the operator f(A) defined by

D(f(A) { = ulen) | Y (1+[f(A un|2<00} =Y f)len)en

neN neN neN
is independent of the choice of the spectral decomposition of A.
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Electronic problem for a given nuclear configuration {R;}, _,._,,
Ex: water molecule H,O
MZS NZlO 2’1:8 2221,23:1
Uext Z |I' o Rk‘
| N
_§;A +ZzlveXt r;) + Z z—I‘j| U(ry,- - ,ry) = FE V(ry, -+ ,ry)

1<i<y<N

|\Ij<r1’ ce

Vp € Gy,

\Ij(rp(1)7 e

arp(N)> — g(p)\lf(rh e

arN)a

(Pauli principle)

,Ty)|* probability density of observing electron 1 at ry, electron 2 at ro, ...
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MZS NZlO 2’1:8 2221,2321
Uext Z |I' o Rk‘
| N
_§ZA +Zvext rz + Z @_r]| (I'l,"',I'N>:E\Ij(I'1,"',I'N)
1=1 1=1 1<i<y<N

|\Ij<r1’ ce

)

N
VeHy=N\H, Hi=LRC)

ry)|* probability density of observing electron 1 at ry, electron 2 at ro, ...




3 - Spectral theory of self-adjoint operators 49
Electronic problem for a given nuclear configuration {R;}, _,._,,
Ex: water molecule H,O
MZS NZlO 2’1:8 2221,2321
Uext Z |I' o Rk‘
| N
_§ZA +Zvext rz + Z @_r]| (I'l,"',I'N>:E\Ij(I'1,"',I'N)
1=1 1=1 1<i<y<N

|\Ij<r1’ ce

)

N
\PE'HN:/\'Hl,

H, = L*(R*,C?) with spin

ry)|* probability density of observing electron 1 at ry, electron 2 at ro, ...
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Electronic problem for a given nuclear configuration {Rk}1§ <M

Ex: water molecule H,O
M=3 NZlO 2’1:8 ZQZl,Zng

Uext Z |I' L Rk‘

N N
1
_§ZA —|—Z’UeXt I'Z -+ Z Z_r]| (rl,"',rN>:qu(r1,"',I'N)
1=1 1=1 1<i<y<N
|W(ry, -+, ry)|* probability density of observing electron 1 at r;, electron 2 at ro, ...

N
VeHy=A\H, Hi= L2<R3 @)

Theorem (Kato ’51). The operator Hy .= —— Z Arﬁrz Vext (1) + Z

— T
1<z<j<N L ‘7|

with domain D(Hy) := Hy N H*(R3Y) is self- ad301nt on 7—[ N
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Theorem (spectrum of ).

1. HVZ theorem (Hunziger ’66, van Winten ’60, Zhislin ’60)
o.(Hy) = XN, +00) with Xy = mino(Hy_1) < 0and Xy < 0iff N > 2.

2. Bound states of neutral molecules and positive ions (Zhislin ’61)
M

IfN < 7 := Z 21, then Hy has an infinite number of bound states.
k=1

Ground state Excited states

| /N

| | | LH ””%
I I [ TTIHI
0

EN

XN Continuous spectrum

3. Bound states of negative ions (Yafaev ’72)
If N > 7 + 1, then Hy has at most a finite number of bound states.
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Spectra of Schrodinger operators with confining potentials

H = L*(R%), V e CO(RY), lim V(r) = 400 (confining potential)

r|—+00

1 1
D(H) = {u c L*(RY | — SAu+Vu e LZ(Rd)} , Yu€ D(H), Hu= —5AutVu.

H is bounded below and its spectrum is purely discrete (oq(H) = o(H), o.(H) = ().

As a consequence, [ is diagonalizable in a orthonormal basis: there exist
¢ a non-decreasing sequence (), of real numbers going to +oo;
e an orthonormal basis (¢, ),cn of 7 composed of vectors of D(H),
such that
VneN, Hy,=FE,,.

In addition, the ground state eigenvalue £/ is non-degenerate and the cor-
responding eigenvector can be chosen positive on R,
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Spectra of 3D Schrodinger operators with potentials decaying at infinity

V suchthat Ve >0, 3(Vh, Va) € LE(R®)X L®(R?) s.t. V = Vo+Vio and ||Vao|| 10 < €,

1
H = L*(RY), D(H) = H*(R?), VYu € D(H), Hu = —5Au+Vu.

The operator H is self-adjoint, bounded below, and o.(H) = |0, +00).

Depending on V/, the discrete spectrum of /7 may be
e the empty set;
e a finite number of negative eigenvalues;

¢ a countable infinite number of negative eigenvalues accumulating at 0
(ex: Ridberg states).

If H has a ground state, then its energy is a non-degenerate eigenvalue and
the corresponding eigenvector can be chosen positive on R".
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The special case of Kohn-Sham LDA Hamiltonians

M
1 KS . KS Z 2k p(r’) dei? A
Hp = —§A—|—va with va (I‘) = — |I‘ — Rk‘—l_ s ‘I‘ — I‘/| dr’+d—p(,0(r))
k=1

For any p € L'(R?)NL*(R?), the KS potential V> satisfies the assumptions
of the previous slide. In particular 5, is bounded below and o.(H,) = |0, +00).

M

Let Z = Z 21 be the total nuclear charge of the molecular system and NV = e

3
k=1 R

o If N < Z (positive ion), [, has a countable infinite number of negative
eigenvalues accumulating at 0.

o If N = Z (neutral molecular system) and if p is a ground state density
of the system, then /7, has at least /N non-positive eigenvalues.
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Spectra of Hartree-Fock Hamiltonians

Let = (¢, - ,¢y) € (H(R?))" be such that | ¢;¢; = d;,
= Z i(r)@i(r'), p(r) =y(r,r) = Z (1) .
H = L*(R%), D(H)=H*R>),

(H)(r) = __A¢ Z Ir—Rk\ ( [ p (1) dr’) s [ 2T )

r — 1’| r3 [T — 1|

Let Z = 224: , 2k The operator H is self-adjoint, bounded below, and we have:
® Opgs = [Oa +OO>;

o if N < Z (positive ion), /{ has a countable infinite number of negative
eigenvalues accumulating at 0;

o if N = Z (neutral molecular system) and if ¢ is a HF minimizer of the
system, then /1 has at least NV negative eigenvalues (counting multiplicities).
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Spectra of Dirac Hamiltonians

" =L} R%CY),  D(Dy)=H'(R%CY),  Dy=cp-d+mep
p; = —ihaj, Q= ( 0 Ok) c (C4X4, 5 = ({)2 O] ) S C4X4
— 42

O 0
01:<

1 0 —i 1 0 . .
O) : 09 = ( - ) : O3 = (O _1) (Pauli matrices)

The free Dirac operator D is self-adjoint and

—_ O

0(Dy) = 0ac(Dy) = (—00, —mc?] U [mc?, +00).
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Theorem. Let o .= 47;2 = ~ 1/137.036 be the fine structure constant. Let

Z
Dy =Dy— ﬂ, Z € R (physical cases: 7 =1,2,3,---).
r
oif |7| < 2—\/3 ~ 118.677, the Dirac operator D is essentially self-adjoint

(meaning that there exists a unique domain D (D) containing C>°(R3; C*)
for which D is self-adjoint);

oif | 7| > 2—@ ~ 118.677, Dz has many self-adjoint extensions;

oif |7| < é ~ 137.036, D~ has a special self-adjoint extension, considered
as the physical one. The essential spectrum of this self-adjoint exten-
sion is (—oo, —mc?] U [mc?, +oo) and its discrete spectrum consist of the
eigenvalues

_ o7 —1/2

2

1+ , neN, j=

E,; = mc

Y Y

DO | QO
DO | Ot

DO | —

Ae
n—j—%+\/(j+%)2—z2a2

Many-body Dirac-Coulomb Hamiltonian are not understood mathematically.



3 - Spectral theory of self-adjoint operators 57

Theorem (functional calculus for bounded functions). Let B(RR, C) be the
x-algebra of bounded C-valued Borel functions on R and let A be a self-
adjoint operator on 7{. Then there exists a unique map

Oy B(R,C) > f s f(A) € B(H)

satisfies the following properties:

1. &4 is a homomorphism of x-algebras:

(af+B89)(A) = af(A)+B9(A), (fg)(A) = f(A)g(4), [f(A)=f(A);

2 [IF(A)] < sup (@)l

3.if f,,(x) — x pointwise and | f,,(x)| < |z| for all n and all z € R, then
Vu e D(A), fu(Au— Auin H;

4.if f,(x) — f(x) pointwise and sup,, sup,.p | f»(z)| < 0o, then
VueH, fu(Adu— f(A)uin H;

In addition, if v € H is such that Au = \u, then f(A)u = f(\)u.
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Theorem (spectral projections and functional calculus - general case -).

Let A be a self-adjoint operator on 7.

e For all \ € R, the bounded operator P} := 1) . ,(A), where 1), y(-)
is the characteristic function of | — oo, \|, is an orthogonal projection.

e Spectral decomposition of A: for all w € D(A) and v € H, it holds

(v|Au) = / Agl<v|Pg4u>J, which we denote by A = / AdP;.
R ~ R

Bounded complex measure on R

¢ Functional calculus: let f be a (not necessarily bounded) C-valued Borel
function on R. The operator f(A) can be defined by

p(f(a) = {uen] [ IFNP dlulPu) < oo

Bounded positive measure on R

and

V(u,v) € D(f(A)) x H, /f (v| Pitu)



