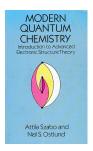
Coupled Cluster TheorIES

ISTPC Summer School June 18th - 30th 2017 Aussois

Vincent Robert, vrobert@unistra.fr



UdS - UMR 7177 Laboratoire de Chimie Quantique

- 1. Correlation Energy
 - ► Hamiltonian Partitioning
 - Correlation Energy Partitionning
- 2. Independent Electron Pair Approximation (IEPA)
- 3. Coupled Cluster from Perturbation Theory
- 4. Conclusions and References

Correlation Energy

Hamiltonian partitioning

One wants to solve :

$$\hat{\mathcal{H}}|\Psi^{\alpha}\rangle = \mathcal{E}^{\alpha}|\Psi^{\alpha}\rangle$$

writing

$$\hat{\mathcal{H}}=\hat{\mathcal{H}}_0+\hat{\mathcal{V}}$$
 $\hat{\mathcal{H}}_0|lpha
angle=\mathcal{E}_0^lpha|lpha
angle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \langlelpha|eta
angle=\delta_{lphaeta}$ $\hat{\mathcal{V}}$ as a perturbation

In practice, the starting point is Hartree-Fock:

$$\hat{\mathcal{H}}_0 = \sum_{i=1}^N \hat{\mathcal{F}}(i) = \sum_{i=1}^N \left(\hat{h}(i) + \hat{v}_{HF}(i)\right)$$

Correlation Energy Partitioning

Using the intermediate normalization:

$$|\Psi\rangle = |\Psi_0\rangle + \sum_{a,r} c_a^r |\Psi_a^r\rangle + \sum_{a < b,r < s} c_{ab}^{rs} |\Psi_{ab}^{rs}\rangle + \cdots$$

The Schrödinger equation $\hat{\mathcal{H}}|\Psi\rangle=E\Psi\rangle$ can be projected on the successive class of excitations reference, singles, doubles...:

$$\langle \Psi_0 | \hat{\mathcal{H}} | \Psi \rangle = E \langle \Psi_0 | \Psi \rangle$$

Using Brillouin's theorem $\langle \Psi_0|\hat{\mathcal{H}}|\Psi_a^r\rangle=0$ and Slater's rule $\langle \Psi_0|\hat{\mathcal{H}}|\Psi_{abc}^{rst}\rangle=0$

$$E_0 + rac{1}{4} \sum_{ab} c^{rs}_{ab} \langle \Psi_0 | \hat{\mathcal{H}} | \Psi^{rs}_{ab}
angle = E$$

leading to the correlation energy (see previous lectures)

$$E_{corr} = \frac{1}{4} \sum_{ab.rs} c_{ab}^{rs} \langle \Psi_0 | \hat{\mathcal{H}} | \Psi_{ab}^{rs} \rangle = \sum_{a < b.r < s} c_{ab}^{rs} \langle \Psi_0 | \hat{\mathcal{H}} | \Psi_{ab}^{rs} \rangle$$

Independent Electron Pair Approximation

$$\begin{split} E_{corr} &= \sum_{a < b, r < s} c_{ab}^{rs} \langle \Psi_0 | \hat{\mathcal{H}} | \Psi_{ab}^{rs} \rangle \\ E_{corr} &= \sum_{a < b} e_{ab} \quad \text{ with } \quad e_{ab} = \sum_{r < s} c_{ab}^{rs} \langle \Psi_0 | \hat{\mathcal{H}} | \Psi_{ab}^{rs} \rangle \end{split}$$

Important : c_{ab}^{rs} are functions of all CI coefficients !

<u>Definition</u>: e_{ab} is the *correlation energy* of the pair ab.

This is the Independent Electron Pair Approximation

 \rightarrow how do we calculate the $\frac{N(N-1)}{2}$ e_{ab} correlation energies ?

Pair Functions Construction

Let us write for simplicity the pair functions as :

$$|\Psi_{ab}
angle = |\Psi_0
angle + \sum_{r < s} c_{ab}^{rs} |\Psi_{ab}^{rs}
angle$$

The energy of this wavefunction simply read as :

$$E_{ab}=E_0+e_{ab}$$

The simultaneous projections onto $\langle \Psi_0 |$ and $\langle \Psi_{ab}^{rs} |$ lead to :

$$\sum_{ab} c^{tu}_{ab} \langle \Psi_0 | \hat{\mathcal{H}} | \Psi^{tu}_{ab}
angle = e_{ab}$$

$$\langle \Psi_{ab}^{rs}|\hat{\mathcal{H}}|\Psi_0\rangle + \sum_{t\leq u} c_{ab}^{tu} \langle \Psi_{ab}^{rs}|\hat{\mathcal{H}} - E_0|\Psi_{ab}^{tu}\rangle = e_{ab}c_{ab}^{rs}$$

$$ightarrow e_{ab}$$
 can be calculated and $E_{corr}(\textit{IEPA}) = \sum e_{ab}$

Pair Functions Energy

Similarities/differences with DCI (Doubles CI):

- similar equations, much smaller
- ▶ IEPA is variational for e_{ab} but not for E_{corr} !
- ► no coupling between pairs ab and cd "pair at a time"
- ▶ IEPA is not invariant under MOs rotation

The leading contributions correspond to r = s and t = u

$$e_{ab} = -\sum_{r < s} \frac{\left| \langle \Psi_0 | \hat{\mathcal{H}} | \Psi_{ab}^{rs} \rangle \right|^2}{\langle \Psi_{ab}^{rs} | \hat{\mathcal{H}} - E_0 | \Psi_{ab}^{rs} \rangle - e_{ab}} \approx -\sum_{r < s} \frac{\left| \langle \Psi_0 | \hat{\mathcal{H}} | \Psi_{ab}^{rs} \rangle \right|^2}{\langle \Psi_{ab}^{rs} | \hat{\mathcal{H}} - E_0 | \Psi_{ab}^{rs} \rangle}$$

Finally if the excitation energies are approximated by $\Delta\epsilon$:

$$E_{corr}(IEPA) = \sum_{a < b, r < s} \frac{\left| \langle \Psi_0 | \hat{\mathcal{H}} | \Psi_{ab}^{rs} \rangle \right|^2}{\epsilon_a + \epsilon_b - \epsilon_r - \epsilon_s} \leftarrow \text{MP2 !}$$

Coupled Cluster Theory back to Cl and perturbation

What do we have in the CISD ?

$$|\Psi\rangle = |\Psi_0\rangle + \sum_{\textit{a,r}} c^{\textit{r}}_{\textit{a}} |\Psi^{\textit{r}}_{\textit{a}}\rangle + \sum_{\textit{a} < \textit{b,r} < \textit{s}} c^{\textit{rs}}_{\textit{ab}} |\Psi^{\textit{rs}}_{\textit{ab}}\rangle + \cdots$$

Using perturbation theory:

couplings with the di-excitations :

$$\begin{array}{l} c_{ab}^{\textit{rs}} \leftarrow \langle \Psi_{ab}^{\textit{rs}} | \hat{\mathcal{H}} | \Psi_0 \rangle = \langle ab | | \textit{rs} \rangle \\ = (\textit{ar}, \textit{bs}) - (\textit{as}, \textit{br}) \, \delta_{\mathcal{S}} \\ \rightarrow \text{ order 2 to the energy : } c_{ab}^{\textit{rs}} \langle ab | | \textit{rs} \rangle \end{array}$$

couplings between the di-excitations :

$$\begin{split} \langle \Psi^{rs}_{ab} | \hat{\mathcal{H}} | \Psi^{tu}_{ab} \rangle &= \langle rs || tu \rangle \\ \rightarrow \textit{part} \text{ of order } 3 \text{ to the energy :} \\ c^{rs}_{ab} \langle rs || tu \rangle c^{tu}_{ab} \end{split}$$

Factorization hierarchy

$$|\Psi\rangle = |\Psi_0\rangle + \sum_{\textit{a,rb}} c^{\textit{r}}_{\textit{a}} |\Psi^{\textit{r}}_{\textit{a}}\rangle + \sum_{\textit{a} < \textit{b,r} < \textit{s}} c^{\textit{rs}}_{\textit{ab}} |\Psi^{\textit{rs}}_{\textit{ab}}\rangle + + \cdots$$

As usual, the Schrödinger equation is projected :

$$\blacktriangleright \langle \Psi_0 |$$

$$H_{00} - E + \sum_{a < b, r < s} c_{ab}^{rs} \langle ab || rs \rangle = 0$$

$$\blacktriangleright \ \langle \Psi_{\textit{I}} | = \langle \Psi^{\textit{rs}}_{\textit{ab}} |$$

$$H_{I0} + (H_{II} - E)c_I + \sum_{I \neq I} H_{IJ}c_J + \sum_{\alpha} H_{I\alpha}c_{\alpha} = 0$$

where $\{|\alpha\rangle\}$ belongs to singles $\{|S\rangle\}$, triples $\{|T\rangle\}$, quadruples $\{|Q\rangle\}$ excitations spaces

and so on !

 \rightarrow decoupling of this *generation* scheme ?

Factorization: Generation Scheme

Let us focus on the $\{|Q\rangle\}$ space participation :

$$c_{lpha} = \sum_{T_J^\dagger T_I^\dagger |0
angle = |lpha
angle} c_I c_J$$
 ?

How do we "reach" $|\alpha\rangle = \Psi_{abcd}^{rstu}$ from $|\Psi_0\rangle$?

$$|\Psi_0\rangle \rightarrow |\Psi_{ab}^{rs}\rangle \rightarrow |\Psi_{abcd}^{rstu}\rangle$$

$$|\Psi_0\rangle \rightarrow |\Psi_{cd}^{tu}\rangle \rightarrow |\Psi_{abcd}^{rstu}\rangle$$
 and other routes !

Let us write $\Delta E_{\alpha} = E_0 - E_{\alpha}$. From perturbation theory :

$$\begin{array}{lcl} c_{\alpha} & = & \frac{\langle ab||rs\rangle}{\Delta E_{1}} \times \frac{\langle cd||tu\rangle}{\Delta E_{\alpha}} + \frac{\langle cd||tu\rangle}{\Delta E_{2}} \times \frac{\langle ab||rs\rangle}{\Delta E_{\alpha}} \\ & = & \frac{\langle ab||rs\rangle\langle cd||tu\rangle}{\Delta E_{\alpha}} \left[\frac{1}{\Delta E_{1}} + \frac{1}{\Delta E_{2}}\right] \end{array}$$

If
$$\Delta E_{lpha} = \Delta E_1 + \Delta E_2$$
 then $c_{lpha} = c_1 \times c_2$

 \rightarrow factorization and separability : $\Psi = \Psi_A \Psi_B$ for $A \cdot \cdot \cdot \cdot \cdot B$

Analysis of the EigenEquations

Let us reconsider the projection onto $|\Psi_I
angle=|\Psi_{ab}^{rs}
angle$:

$$\cdots + (H_{II} - E) c_I + \cdots + \sum_{\alpha} H_{I\alpha} c_{\alpha} = 0$$
$$E = E_0 + \sum_{K} c_K H_{0K}$$

Using $c_{\alpha} = c_I c_J$ and $H_{I\alpha} = H_{0J}$, the contribution $(H_{0J}c_J) c_I$ is cancelled

Conclusion: there is a systematic suppression of some of the di-excitations contributions

→ unlinked diagrams are suppressed

Note: an efficient/compact formulation lies in the diagrams tool

Not a variational method!

Conclusion and References

- benchmak calculations for methods
- size consistence and size extensivity
- ▶ though demanding calculations

see Emmanuel Fromager's lecture