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1 Introduction

In these notes, I gather derivations of DFT[1, 2, 3, 4, 5], DMFT[3, 5, 6] and DFT+DMFT [3, 5, 7]
using a Legendre transformation. The aim is to highlight the physical or formal connections between
the different theories and approximations.
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2 Density Functional Theory

In this section, we rederive some basic equations of Density Functional Theory, as presented in the
lecture of Julien Toulouse, using a Legendre transformation. We use mainly the notations of [3] with
some minor reformulations.

2.1 A functional of the density

The electronic Hamiltonian H is composed of a non interacting part H0 and an interaction part Hint :

H = H0 +Hint =
∑
i

(
∇2
i

2
+ Vext(ri)

)
+

1

2

∑
ij

1

|ri − rj |
(1)

In second quantization

H =

∫
drΨ†(r)

(
∇2

2
+ Vext(r)

)
Ψ(r) +

1

2

∫
Ψ†(r)Ψ†(r′)

1

|r− r′|
Ψ(r′)Ψ(r)drdr′ (2)

For later use, we define an Hamiltonian with a rescaled interaction such that Hα = H0 + αHint.
In this paragraph, however, we use α = 1, so α does not play a role yet.

Moreover, we couple the system to a supplementary one body potential λ, the total Hamiltonian
is thus Hα +

∫
drλ(r)Ψ†(r)Ψ(r).

We thus define the partition function Zα and the free energy Ωα for this Hamiltonian as a function
of λ:

Ω̂α[λ(r)] = − 1

β
ln Ẑα[λ(r)] = − 1

β
ln Tr[exp−β(Hα+

∫
drλ(r)Ψ†(r)Ψ(r)))] (3)

The trace is a sum over all many-body eigenstates. We note that this expression gives the exact free
energy F of the system if α = 1 and λ = 0: F = Ω̂α=1[λ(r) = 0].

We can compute the exact density nα(r) for the Hamiltonian Hα + λ with:

δΩ̂α[λ(r)]

δλ(r)
= n̂α(r)[λ(r)] (4)

We now use the concavity of the functional Ω̂α[λ(r)] as a function of λ(r)1.
From the concavity of the functional, we have the monotonous behavior of its first derivative,

namely n̂α(r)[λ(r)]. We can thus inverse this relation so that λ is now a functional of n(r): λ̂α(r)[n(r)].
The physical meaning of this functional is the following: For a given density n(r), it gives the value
of λ which is necessary to add to Hα in order that the density of Hamiltonian Hα + λ is n(r).

We can thus define the following functional of the density (which is the Legendre transform of
Ω̂α[λ̂(r)]):

Γ̂α[n(r)] = Ω̂α[λ̂α[n(r)]]− Tr[n(r)λα[n(r)]] (7)

1For simplicity we show it at T=0K: Let us suppose that the system has a Hamiltonian H + βλ1n(r) + (1− β)λ2n(r)
and the we call the ground state Ψβ , thus, using the Ritz principle, we have:

〈Ψ|H + βλ1n(r) + (1− β)λ2n(r)|Ψ〉 = β〈Ψ|H + λ1n(r)|Ψ〉(1− β)〈Ψ|H + λ2n(r)|Ψ〉 (5)

≥ βEGS(Hα + λ1) + (1− β)EGS(Hα + λ2) (6)

where EGS(H) is the ground state energy for Hamiltonian H. The last line is the definition of concavity. (See Ref. [6]
for a generalization to finite temperature)
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2.2 The non interacting system: α = 0.

Let’s use this functional for α = 0. We have thus:

Γ̂0[n(r)] = Ω̂0[λ̂0[n(r)]]− Tr[n(r)λ̂0[n(r)]] (8)

We thus use Eq. 4, to obtain:

n(r) =
δΩ̂0

δλ0(r)
[λ̂0[n(r)]] (9)

In other word, the density is the density of a non interacting system (α = 0) in an effective potential
λ0. So the density can be computed simply with the sum of individual wavefunctions which are the

eigenvectors of the Hamiltonian H + λ0. In other words, we know the functional δΩ̂0
δλ0(r) [λ0]. 2

At this stage, λ0 is a parameter.

2.3 The real system: α = 1.

The functional of the density is:

Γ̂1[n(r)] = Ω̂1[λ̂1[n(r)]]− Tr[n(r)λ1[n(r)]] (10)

We can compute the functional derivative with respect to n(r) with:

δΓ̂1

δn(r)
=

δΓ̂1

δλ1(r)

δλ1(r)

δn(r)
+

δΓ̂1

δn(r)

∣∣∣∣∣
λ1

= 0 + λ1[n(r)] (11)

(The first derivative disappears because of Eq. 4)
Now, we choose λ1 = 0. We make this choice, because, using Eq. 10, if λ1 = 0, then Γ̂1[n(r)] =

Ω̂1[λ1 = 0] is the exact free energy F of the real system by definition of Ω̂1[λ1 = 0]. Thus, using
Eq. 11, the functional Γ̂1[n(r)] is stationary for the exact density nGS(r).

δΓ̂1

δn(r)
[nGS(r)] = 0 (12)

and for this density, the functional is the exact free energy F .
So we have a functional of the density which is stationary for the exact density, and for the exact

density, the functional is the exact free energy.

2.4 The adiabatic connection

Let us now compute the derivative of Γ̂ as a function of α:

∂Γ̂α[n(r)]

∂α
=
δΓ̂α[n(r)]

δλα(r)

∂λα
∂α

+
δΓ̂α
δα

∣∣∣∣∣
λα

=
δΓ̂α
δα

∣∣∣∣∣
λα

= 〈Hint〉λα[n(r)] (13)

By integration, we have:

⇒ Γ̂1[n(r)] = Γ̂0[n(r)] +

∫ 1

0
〈Hint〉λα[n(r)]dα (14)

= Ω̂0[λ̂0[n(r)]]− Tr[n(r)λ̂0[n(r)]] +

∫ 1

0
〈Hint〉λα[n(r)]dα (15)

2Indeed, the functional Ω̂0[λ̂0] can be practically evaluated. First one needs to solve the Schrödinger equation
for the potential vext + λ0, then, using the eigenvalues εi[λ0], one can compute the partition function functional as

Ẑ =
∏
i[1 + exp (−β(εi − µ))], and the free energy functional is thus Ω̂ = − 1

β

∑
i ln[1 + exp (−β(εi − µ))]
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To derive 15 from 14, we used Eq. 8.
Using Hint =

∫
Ψ†(r)Ψ†(r′) 1

|r−r′|Ψ(r′)Ψ(r)drdr′, we can write the last term as[3]:∫ 1

0
〈Hint〉λα[n(r)]dα = ÊHa[n(r)] + Êxc[n(r)] (16)

It can be viewed as an alternative definition of Exc with a coupling constant integration (see Refs
[8, 3]). Then, we use eq. 12 with the expression of eq. 15 (in which all terms are known), to show
that λ0 is such that:

λ̂0[n(r)] = v̂Ha[n(r)] + v̂xc[n(r)] (17)

We can now identify λ0 with the effective Kohn Sham potential.
Finally, in order to compare to the more familiarly T = 0 K case, we can write Eq. 15 as:

Ê[n(r)] = Ê0[v̂Ha+xc[n(r)]]−
∫
drn(r)v̂Ha+xc[n(r)] + ÊHa+xc[n(r)] (18)

It is the usual expression for the total energy of the system as a function of the density. Where
E0[v̂Ha+xc[n(r)]] is the energy of a non interacting system with the potential veff = vext + vHa+xc,
namely the sum over the Kohn Sham eigenvalues.

To sum up, Eq. 9 shows that the density can be computed from a non interacting system. Eq. 17
shows that this effective potential is the Kohn Sham potential and Eq. 18 is the DFT total energy.

3 Functional of the Green’s function

In this section, we will follow exactly the same lines to derive the Green’s function functional theory
(the Luttinger Ward or Baym Kadanoff Functional)[9, 10, 3, 5], which is the analogue of DFT, but
for a functional of the Green’s function. We will then show that DMFT is an approximation to this
theory, as LDA is an approximation for DFT.

3.1 A functional of the Green’s function

We will follow a similar path to the derivation made in the first section. This derivation follows closely
Ref. [5], see also [3] or [11]. For simplicity, we will use the Hubbard model:

Hα =
∑
ijσ

tc†iσcjσ + αU
∑
i

ni↑nj↓ (19)

At finite temperature, the Green’s function is conveniently defined as:

Gij(τ) =
Tr[e−βHTτ ci(τ)c†j(0)]

Tr[e−βH ]
(20)

where τ is an imaginary time. In the following, we will forget the atom index i, j and time for simplicity
in the following. For simplicity in the following, we will use the real time and frequency, even if the
quantities that are extracted here have to be computed in imaginary time and frequency[12].

First, we have to build a way to extract the Green’s function from a free energy as the density was
extracted in Eq. 4. Whatever the formulation (finite temperature or zero temperature), the Green’s
function is non local both in time and in space. In particular, the Green’s function contains memory
effect from previous time. As a consequence, the source term J , from which it can be extracted (in
a similar way to λ in Eq. 4) has to be non local in time and in space. It cannot be formulated in an
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Hamiltonian formulation, and a functional path integral has to be used[12] to define the free energy
Ω̂α[J ]. Using such a formulation[12, 6, 5], one can show that:

δΩ̂α

δJ
[J ] = Ĝ[J ] (21)

There is no proof of the global concavity of this functional (see discussion in Ref. [11]). Let us however
suppose that we can invert Ĵ [G] to define the following functional: Ĵ [G]. As a consequence, we can
write the Legendre transformation which is a functional of G

Γ̂α[G] = Ω̂α[Ĵα[G]]− Tr[GĴα[G]] (22)

3.2 The non interacting system α = 0

We have thus
Γ̂0[G] = Ω̂0[Ĵ0[G]]− Tr[GĴ0[G]] (23)

We have (in a similar way to Eq. 9):

G =
δΩ̂0

δĴ0

[Ĵ0[G]] (24)

In other word, the Green’s function is the local Green’s function of a non interacting system (α = 0)
but with a non local frequency dependent effective potential J0.

We emphasize that this last equation is obtained from the functional Γ0. It thus expresses the
Green’s function of a non interacting system α = 0 as the derivative of the free energy for the non
interacting system Γ0. We could compute the derivative, but in fact the solution is known, the Green’s
function of a non interacting system in a non local, frequency dependant potential is :

Gk(ω) =
1

ω + µ− εk − J0 k(ω)
(25)

3.3 The real system: α = 1

For α = 1, we have:
Γ̂1[G] = Ω̂0[Ĵ1[G]]− Tr[GĴ1[G]] (26)

We can choose that J1 = 0. The same derivations as above lead to the stationarity of the functional
Γ̂[G] as a function of the local Green’s function G, for the physical local Green’s function GGS(τ)],
and for this Green’s function, the functional is the exact free energy F .

δΓ̂α=1

δG
[G = GGS] = 0 (27)

We will use this result below.

3.4 The adiabatic connection

In a similar way, one can show, similarly to Eq. 15 that

Γ̂1[G] = Γ̂0[G] +

∫ 1

0
〈Hint〉Ĵα[G]

dα (28)

= Ω̂0[Ĵ0[G]]− Tr[GĴ0[G]] +

∫ 1

0
〈Hint〉Ĵα[G]

dα (29)
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Hubbard model

t

U

Periodic replication of Anderson model

t’
U

Figure 1: Two different models with the same interaction part in the Hamiltonian, and thus the same
functional Φ̂U [G]

Using, Eq. 27, we thus show that J0 is the functional derivative of Φ̂[G] =
∫ 1

0 〈Hint〉Ĵα[G]
dα

Ĵ0[G] =
δΦ̂[G]

δG
(30)

This is the equation similar to Eq. 17.
To sum up, Eq. 25 shows that the Green’s function can be computed from a non interacting system

with a non local, frequency dependent potential J0. We can use the notation J0 = Σ and call it the
self energy. Eq. 30 shows that this non local, energy dependent potential is the functional derivative
of the Luttinger Ward functional and finally Eq. 29 is the famous Luttinger Ward functional for the
free energy.

3.5 The Dynamical Mean Field Theory (or Approximation)

The derivation presented here was proposed by M Potthoff[13, 6]. We first write the Luttinger Ward
functional in the particular case of the Hubbard model. The Hubbard model is

H =
∑
i,j

tijc
†
icj +

∑
i

Uni,↑ni,↓

The LW functional can thus be written

Γt,U [G] = Ω0 t[Σ̂U [G]]− Tr[GΣ̂U [G]] + Φ̂U [G] (31)

Indeed, it can be shown (see e.g. [6] or [5]) that the functional Φ̂U [G] does only depend on the
interaction part and not on t. Thus as the functional Σ̂[G] = Ĵ0[G] is the functional derivative of
Φ̂U [G], it depends only of U and not t. Thus the only t dependence is in the non interacting part Ω0 t.

This functional can be written for the Hubbard model. We also build another model which is a
periodization of the Anderson model (see Fig. 3.5): it is just a collection of disconnected Anderson
model (this is not the so called periodic Anderson model). The functional for this replication of
Anderson models is:

Γ̂t′,U [G] = Ω̂0 t′ [Σ̂U [G]]− Tr[GΣ̂U [G]] + Φ̂U [G] (32)

Here t′ is a symbol to express the non interacting part of the periodic model. By definition, all the
non interacting part is contained in Ω0 t′ .
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Interestingly the two functionals (Eqs. 31 and 32) contains the same interacting part Φ̂U [G],
because the interacting part of the two models are the same (

∑
i Uni,↑ni,↓). As a consequence, the

functionals Σ̂U [G] are also the same, as well as the inverse functional ĜU [Σ].
Now, we express Eq. 24 with the current notation, it writes

G =
δΩ̂0,t[Σ̂U [G]]

δΣ
(33)

which can be written as a function of Σ:

ĜU [Σ] =
δΩ̂0,t[Σ]

δΣ
(34)

The left part of this equation is a complex functional of Σ which comes from the derivative of the
interaction functional, whereas the right part is a very simple function of the self energy (Eq. 25)

The DMFT approximation consists to use in this equation the self energy of the Anderson model
for the same U

Σ = ΣU,t′ (35)

Putting this in Eq. 49 gives for the left part:

ĜU [ΣU,t′ ] = Gt′,U (ω) (36)

thus the equation gives:

ĜU [ΣU,t′ ] = Gt′,U (ω) =
1

ω + µ− εk − Σt′,U (ω)
(37)

This equation can only be fulfilled locally thus

Gt′,U (ω) =
1

Nk

∑
k

1

ω + µ− εk − Σt′,U (ω)
(38)

We thus recover the DMFT Self consistency equation: The impurity Anderson Green’s function Gt′,U
is equal to the local Green’s function of the lattice

∑
k

1
ω+µ−εk−Σt′,U (ω) .

4 Comparison of density and Green’s function functional theories

Finally we sum up in the table below the comparison between the density and Green’s function
approaches

Exact Theory DFT Green’s fct Functional Theory

Equivalent exact system non interacting system with a potential non interacting with a self energy

Interaction functional EHa+xc[n(r)] Φ̂U [G]
Interaction potential vHa+xc Self energy Σ

Reference system Homogeneous electron gas Anderson Impurity model
Approximation LDA DMFT
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5 Functional of n(r) and Gloc and the DFT+DMFT method

We can now combine the DFT and DMFT derivation with the following Hamiltonian3:

H = Hexact +Hcorrelated electrons. (39)

Hexact =
∑
i

(
∇2
i

2
+ Vext(ri)

)
+
α

2

∑
ij

1

|ri − rj |
(40)

Hcorrelated electrons = θ(
∑

m1,m2,m3,m4,R

(UR
m1,m2,m3,m4

cR†m1
cR†m2

cRm3
cRm4
−HDC[NR])) (41)

Let’s now make a double Legendre transformation to have a functional of both the density and
the local Green’s function.

Γ̂[n,Gloc] = Ω̂[λ̂[n,Gloc], Ĵ [n,Gloc]]− Tr[nλ̂[n,Gloc]]− Tr[GlocĴ [n,Gloc]] (42)

5.1 The non interacting system

In this case

Γ̂00[n,Gloc] = Ω̂00[λ̂0[n,Gloc], Ĵ0[n,Gloc]]− Tr[nλ̂0[n,Gloc]]− Tr[GlocĴ0[n,Gloc]] (43)

We can write, as above, the density and the Green’s function as a function of the non interacting
free energy:

n̂[λ0, J0] =
δΩ̂00

δλ0
[λ0, J0] (44)

Ĝloc[λ0, J0] =
δΩ̂00

δJ0
[λ0, J0] (45)

As a consequence we have to write the density and the local Green’s function for a system of non
interacting electrons with an external potential λ0 and a local frequency dependent self energy J0. By
definition, this Green’s function is the lattice Green’s function that we have written above in the first
lecture.

GR
loc mm′(ω) =

∑
k

〈χR
km|Ψkn〉Gnn′(k, ω)〈Ψkn′ |χR

km′〉 (46)

with
Gnn′(k, ω) = [(ω + µ)I − εkn − J0nn′(k, ω)]−1 (47)

with εnk = 〈Ψkn| − ∇2/2 + vext + λ0|Ψkn〉. and

J0nn′(k, ω) =
∑

m,m′,R

〈Ψkn′ |χkm〉JR
0mm′(ω)〈χkm′ |Ψkn〉 (48)

From Eq. 44, The density can be obtained from the Green’s function of a non interacting system
with J0, so:

n(r) = −i
∑
n,k

Ψkn(r)Gνν′(k, t− t′ = 0−)Ψkn′(r) (49)

We emphasize that the four preceding equations are just the definition of the local Green’s function,
the full lattice Green’s function, the J0 = Σ in the Kohn Sham basis, and the local density as a
function of the full lattice Green’s function, for non interacting electrons in the potential λ0 + J0.

3For simplicity we write for the second part of the Hamiltonian the interaction of a simple one band Hubbard model,
but the results are general and are also valid for the multiorbital case with a completely general interaction.
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5.2 The interacting system

We show similarly to other cases, that the functional Γ11[n,G] is stationary with respect to n and G,
and is the exact free energy if we choose λ1 = 0 and Σ1 = 0.

5.3 The adiabatic connection

We have

Γ̂11[n,Gloc] = Ω̂00[λ̂0[n,Gloc], Ĵ0[n,Gloc]]− Tr[nλ̂0[n,Gloc]]− Tr[GlocĴ0[n,Gloc]] + Ψ̂[n,Gloc] (50)

Where Ω00 is the free energy of a non interacting electron system in the fields λ0 and J .

5.4 The LDA+DMFT approximation

The LDA+DMFT approximation consists of using for Ψ̂[n,Gloc], the sum of the LDA approximation
for the exchange and correlation functional, and the Luttinger Ward functional for a local interaction
U . Moreover, we have to restrict the domain of variation of Gloc to solution of an Anderson impurity
model Gt′,U in Eq. 50.

Ψ̂[n,Gt′U ] = Γ̂Ha+xc[n] + Φ̂U [Gt′U ]− Φ̂DC[Gt′U ] (51)

Φ̂DC is here to compensate for the double counting of the interaction between correlated electrons.
Using the stationary conditions with respect to n and Gloc, we have:

λ̂0[n(r)] = vHa+xc[n(r)] (52)

Σ̂U [Gt′U ] = Ĵ0[Gt′U ] =
δ(Φ̂U − Ψ̂DC)

δGloc
[Gt′U ] (53)

5.4.1 The DMFT self-consistency equation

We can rewrite Eq. 45 as

Gt′U =
δΩ̂00

δJ0
[λ̂0[n(r)],Σt′U ] (54)

because Gloc is imposed to be a Green’s function of an impurity Anderson model. As the right part
is the local Green’s function of the lattice (Eq. 46) with self energy Σt′U , this equation expresses the
self consistency equation in DFT+DMFT.

5.4.2 The DFT self-consistency equation

Finally, Eq. 44 expresses the DFT self consistent equation (Eq. 49) in the DFT+DMFT framework
as discussed in the first lecture on DMFT.

6 Conclusion

We have presented derivations of DFT, DMFT and DFT+DMFT from a free energy functional using
a Legendre transform. Extension of DMFT towards non local correlations (e.g. Cluster DMFT) can
be derived using the same ideas as presented above[6]. The so called GW+DMFT scheme, which
allows for the self-consistent calculation of the dynamical screened interaction, can also be derived
from a free energy functional formulation[5, 14].
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