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Part I

Green’s functions for non-interacting electrons

By non-interacting electrons, we mean systems described by one-body
eigenstates {φ(r)} obeying a one-body Schrödinger equation. This
includes mean-field approaches such as density functional theory,
Hartree-Fock and hybrids !

I From the evolution operator to the retarded Green’s function

I Defining the Green’s functions we need: retarded, advanced,
time-ordered

I Basics of Green’s function perturbation theory



Green’s function and inhomogeneous differential equations

(Wikipedia) George Green (14 July 1793 - 31 May 1841) was a British
mathematical physicist who wrote An Essay on the Application of
Mathematical Analysis to the Theories of Electricity and Magnetism
(Green, 1828). In mathematics, a Green’s function is the impulse
response of an inhomogeneous differential equation, namely:

L(x , dx , ..)φ(x) = S(x) (1)

where S(x) is known and φ(x) to be found. We define the Green’s
function as the solution of:

L(x , dx , ..)G (x , x0) = δ(x − x0) (2)

The importance of the Green’s function is that it can yields the solution
of the inhomogeneous differential equation for any source S (Exercise):

φ(x) =

∫
dx0 G (x , x0)S(x0) (3)



Green’s function for the Laplacian

Consider Laplace’s (3D) equation with right-end side delta-function:

∇2G (r, r0) = ∆G (r, r0) = δ(r − r0).

It can be shown that:

G (r, r0) =
−1

4π|r − r0|
.

The solution of the Poisson equation in electrostatics:

∆V (r) = −ρ(r)/ε0

(ρ charge density) is thus as expected:

V (r) =
1

4πε0

∫
dr0

ρ(r0)

|r − r0|
.



Quantum mechanics reminder: the evolution operator U

The (linear) evolution operator relates a quantum state at time (t) with
the same quantum state at time (t0): |ψ(t)〉 = Û(t, t0)|ψ(t0)〉.

Plugging |ψ(t)〉 into Schrödinger equation:

i~
∂

∂t
Û(t, t0)|ψ(t0)〉 = Ĥ(t)Û(t, t0)|ψ(t0)〉 ⇒ i~

∂

∂t
Û(t, t0)| = Ĥ(t)Û(t, t0)

This implies using a Taylor expansion:

Û(t + dt, t) = Û(t, t)− i
~ Ĥ(t)Û(t, t)dt = 1− i

~ Ĥ(t)dt

One therefore have (Exercise): Û(t + dt, t)Û†(t + dt, t) = 1.

The operator Û(t + dt, t) is unitary so that Û(t ′, t) is unitary. In
particular, it conserves the scalar product.

If the Hamiltonian is time-independent: Û(t, t0) = e−i Ĥ(t−t0)/~.



Quantum mechanics reminder: the propagator K

We look for an operator K such that:

ψ(r2t2) =

∫
dr1K (r2t2, r1t1)ψ(r1t1)

We just need to introduce the closure
relation in position representation:

∫
dr1|r1〉〈r1| = 1

Figure. Huygens principle of the field in M as the
contribution from secondary sources on surface Σ.
From Quantum Mechanics, Chap. III, Complement
JIII , Cohen-Tannoudji, Diu, Laloé.

into the definition of Û to obtain (Exercise):

ψ(r2t2) =

∫
〈r2|Û(t2, t1)|r1〉ψ(r1t1)dr1 ⇒ K (r2t2, r1t1) = 〈r2|Û(t2, t1)|r1〉

The propagator K propagates the probability amplitude: if we know the
amplitude of probability for the system to be in state ψ(r1t1) (for all r1),
then we know the amplitude of probability for the system to be in ψ(r2t2).



The retarded propagator K r

We now define the retarded propagator, deciding that ψ(r2t2) can only
depend on the ψ(r1t1) for times (t1 ≤ t2). We introduce the step (or
Heaviside) function: θ(t2 − t1) which is equal to 1 for (t1 ≤ t2), and zero
elsewhere. We then write, with the subscript (r) for retarded:

K r (r2t2, r1t1) = θ(t2 − t1)〈r2|Û(t2, t1)|r1〉

To study the properties of K r , we consider the case of a time
independent Hamiltonian so that, introducing the closure relation over
the {εn, φn} Hamiltonian stationary eigenstates:

Û(t2, t1) = e−i Ĥ(t2−t1)/~ =
∑

n

|φn〉〈φn|e−iεn(t2−t1)/~

with the related expression for K r :

K r (r2t2, r1t1) = θ(t2 − t1)
∑

n

φn(r2)φ∗n(r1)e−iεn(t2−t1)/~



The retarded propagator K r as a Green’s function

An important property of K r that has been allowed by plugging the
θ(t2 − t1) factor is that K r verifies the following equation (Exercise):

(
i~

∂

∂t2
− Ĥ(r2,∇2)

)
K r (r2t2, r1t1) = i~δ(t2 − t1)δ(r2 − r1)

where we have used the property: ∂θ(t2 − t1)/∂t2 = δ(t2 − t1).

The retarded propagator is thus the solution of the Schrödinger equation
with ”delta” source terms in the right-hand-side: it is reminiscent of the
definition of Green’s functions in mathematics. To avoid the (i~) term in
the right-hand-side, it is customary to defines the quantum retarded
Green’s function as:

i~G r (r2t2, r1t1) = K r (r2t2, r1t1) = θ(t2 − t1)〈r2|Û(t2, t1)|r1〉



The advanced Green’s function

We can also define an advanced Green’s function such that:

i~G a(r2t2, r1t1) = −θ(t1 − t2)〈r2|Û(t2, t1)|r1〉

which is non-zero for t1 ≥ t2. Then:

i~G a(r2t2, r1t1) = −θ(t1 − t2)
∑

n

φn(r2)φ∗n(r1)e−iεn(t2−t1)/~

(
i~

∂

∂t2
− Ĥ(r2,∇2)

)
G a(r2t2, r1t1) = δ(t2 − t1)δ(r2 − r1)

G r and G a satisfy the very same equation, but with different ”boundary
conditions” on time.



The time-ordered Green’s function

Let’s play a bit to show that we have many choices to define Green’s
function that can be useful to extract quantities we may need. We define
now, introducing the chemical potential µ:

i~GT (r2t2, r1t1) = θ(t2 − t1)
∑

n

θ(εn − µ)φn(r2)φ∗n(r1)e−iεn(t2−t1)/~

− θ(t1 − t2)
∑

n

θ(µ− εn)φn(r2)φ∗n(r1)e−iεn(t2−t1)/~

Then again:
(
i~ ∂
∂t2
− Ĥ(r2,∇2)

)
GT (r2t2, r1t1) = δ(t2 − t1)δ(r2 − r1)

A nice thing with GT is that we have separated occupied and unoccupied
(virtual) states thanks to the θ(µ− εn) factor. As a consequence:

−i~GT (r2t2, r1t1) = θ(µ− εn)
∑

n

φn(r2)φ∗n(r1), for t1 = t2 + 0+

which is nothing but the one-particle density matrix.



Green’s function perturbation theory basics

We consider the eigensolutions of the Schrödinger equation with/without
a potential V that we consider as the ”perturbation”:

[i∂t − H0(r ,∇r )− V (r)]ψ(rt) = 0

[i∂t − H0(r ,∇r )]ψ0(rt) = 0

and the corresponding Green’s function:

[i∂t − H0(r ,∇r )− V (r)]G (rt, r′t ′) = δ(r − r′)δ(t − t ′)

[i∂t − H0(r ,∇r )]G0(rt, r′t ′) = δ(r − r′)δ(t − t ′).

Then (Exercise):

ψ(rt) = ψ0(rt) +

∫ ∫
dr′dt ′G0(rt, r′t ′)V (r′)ψ(r′t ′)

ψ(rt) = ψ0(rt) +

∫ ∫
dr′dt ′G (rt, r′t ′)V (r′)ψ0(r′t ′)



Perturbation theory and the Dyson equation

From the previous equations (dropping the integration variables) :

ψ = ψ0 + G0V (ψ0 + G0Vψ)

= ψ0 + G0Vψ0 + G0VG0V (ψ0 + G0Vψ)

= ψ0 + (G0 + G0VG0 + G0VG0VG0 + ...)Vψ0

which lays the fundaments of a perturbation theory in terms of successive
orders of the ”scattering potential” V. Comparing with the last equation
of the previous slide, one ends up with the so-called Dyson equation:

G = G0 + G0VG or symbolically: G−1 = G−1
0 − V .

namely, with e.g. 1 = (r1t1) and V (34) = V (r3)δ(r3 − r4)δ(t3 − t4):

G (12) = G0(12) +

∫ ∫
d3d4 G0(13)V (34)G (42),



The quantum billiard

We have seen that:

G = G0 + G0VG = G0 + G0VG0 + G0VG0VG0 + ...

This represents the amplitude of probability of going from (rt) to (r’t’)
without ”collision” (G0), with one collision (G0VG0), with two collisions
(G0VG0VG0).

Note that contrary to a true billiard, the interaction can be long range.



Part II: Green’s functions for interacting electrons

I Second quantization: creation/destruction and field operators

I Schrödinger, interaction and Heisenberg representation

I Definition: the time-ordered one-particle Green’s function

References:

I A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle,
Physics (McGraw-Hill, New York, 1971),

I R. D. Mattuck, A Guide to Feynmnan Diagrams in the Many-Body
Problem, (McGraw-Hill, 1976) [reprinted by Dover, 1992].



Creation/destruction operators

We define the ”vacuum” state |0 > with zero particles.

We then define the ”creation operator” (c†i ) that puts one particle in
orbital φi : ci†|0 >= |ni = 1 >.

The destruction operator (ci ) can remove the particle from this state:
cici†|0 >= ci |ni = 1 >= |0 >.

To preserve the anti-symmetry of fermionic wavefunctions:

{
c†i , c

†
j

}
= 0 and its adjoint {ci , cj} = 0, with:

{
Â, B̂

}
= ÂB̂ + B̂Â.

In particular: c†i c
†
i = cici = 0 (nul operator) since for fermions one

cannot create two particles in the same quantum state.



Creation/destruction operators (II)

Further: c†i ci |n1, n2, ..., ni , ... >= ni |n1, n2, ..., ni , ... >.

c†i ci = n̂i count the number of particles in orbital (i).

Consequently:
∑

i n̂i = N̂ counts the number of fermions in the system.

Considering all possible cases (ni or nj = 0, 1 for fermions), one find that:

{
c†i , cj

}
= δij namely : c†i cj + cjc

†
i = δij .

which allows e.g. to demonstrate the normalization of:

|...ni ...〉 =
∏

i

(c+
i )ni |0〉



Change of basis and the field operator

From the set of (creation/destruction) operators associated with a basis
|α〉, one can by using the closure relation:

∑
α |α〉〈α| = 1 obtain the

creation/destruction operators in another |β〉 basis:

c†β |0〉 = |β〉 =
∑

α

〈α|β〉|α〉 =
∑

α

〈α|β〉c†α|0〉

so that (with a similar demonstration for the destruction operator):

c†β =
∑

α

< α|β > c†α and: cβ =
∑

α

< β|α > cα.

A special basis is given by the |r〉 position representation, yielding the
field operators:

”cr” = ψ̂(r) =
∑

α

〈r|α〉cα =
∑

α

φα(r)cα



Field operators: properties and interpretation

They verify the standard (fermionic) commutation relations:

{
ψ̂(r), ψ̂(r′)

}
= 0, and:

{
ψ̂(r), ψ̂†(r′)

}
= δ(r − r′).

For an interpretation, let’s act with the creation field onto the vacuum
state and take the associated probability amplitude in (r’):

< r′|ψ̂†(r)|0 >=< r′|
∑

α

φ∗α(r)c†α|0 >=
∑

α

φ∗α(r) < r′|α >= δ(r − r′).

The field operator ψ̂†(r) adds a particle in the ”state” |r >, namely
creates a particle (fermion) in (r) ! The destruction operator ψ̂(r)
destroys it. We can also define the number-of-particle operator:

N̂ =
∑

α

c†αcα =

∫
dr ρ̂(r) with: ρ̂(r) = ψ̂†(r)ψ̂(r)

which counts the number of particles in the (α) states or as a function of
their space location. ρ̂(r) is the density operator.



The (usual) Schrödinger representation

Assume the standard many-body Hamiltonian Ĥ:

Ĥ =
N∑

i=1

−~2∇2

2me
+
∑

I ,i

1

4πε0

−ZI

|RI − ri |
+

1

2

∑

i 6=j

1

4πε0

1

|ri − rj |

where {RI ,ZI} are the ions position and charge, while the {ri} (i=1,N)
indicate the position of the N-electrons in the system. Such an
Hamiltonian is time-independent. On the contrary, the
eigen-wavefunctions are time-dependent, satisfying the Schrödinger
equation:

i~
d |ψS(t) >

dt
= ĤψS(t), ⇒ |ψS(t) >= e−i Ĥ(t−t0)/~|ψS(t0) >,

where we use the (S)-index for ”Schrödinger”.



The Heisenberg representation

We now define the eigenstates in the Heisenberg representation:

|ψH(t) >= exp(i Ĥt/~)|ψS(t) > ⇒ i~
d |ψH(t) >

dt
= 0.

Concerning the operators in such a representation:

< ψ
′

S |ÔS |ψS > =< ψ
′

H |exp(i Ĥt/~)ÔSexp(−i Ĥt/~)|ψH >

=< ψ
′

H |ÔH(t)|ψH >,

with: ÔH(t) = exp(i Ĥt/~)ÔSexp(−i Ĥt/~), so that (Exercice):

i~
dÔH(t)

dt
= [ÔH(t), Ĥ]. The time evolution is now in the operator !



The time-ordered single-particle Green’s function

We DEFINE the time-ordered single-particle Green’s function as follows:

i~G (rt, r′t ′) =
< ψ0

H |T
[
ψ̂H(rt)ψ̂†H(r′t ′)

]
|ψ0

H >

< ψ0
H |ψ0

H >
,

where:

I |ψ0
H > is the ground-state many-body wave function in the

Heisenberg representation (time-independent),

I ψ̂H(rt) and ψ̂†H(r′t ′) are the destruction/creation field operators in
the Heisenberg representation (time-dependent),

I T is the time-ordering operator, that orders the operators from left
to right according to decreasing time (earliest on the right) with a
(−1) factor for each permutation needed (for fermions).



The time-ordered single-particle Green’s function (II)

We use the definition of the time-ordering operator:

i~G (rt, r′t ′) =
< ψ0

H |ψ̂H(rt)ψ̂†H(r′t ′)|ψ0
H >

< ψ0
H |ψ0

H >
t ≥ t ′,

= −< ψ0
H |ψ̂†H(r′t ′)ψ̂H(rt)|ψ0

H >

< ψ0
H |ψ0

H >
t < t ′.

or with: |ψ0
H >= e i Ĥt/~|ψ0

S(t) > and ÔH(rt) = e i Ĥt/~ÔS(r)e−i Ĥt/~:

i~G (rt, r′t ′) = θ(t − t ′) < ψ0
S(t)|ψ̂S(r)e−i Ĥ(t−t′)/~ψ̂†S(r′)|ψ0

S(t ′) >

− θ(t ′ − t) < ψ0
S(t ′)|ψ̂†S(r′)e−i Ĥ(t′−t)/~ψ̂S(r)|ψ0

S(t) >,

where we have taken |ψ0
H > to be normalised.



The electron-propagator

Can we understand the following term (case t > t ′) ?

i~G (rt, r′t ′) = θ(t − t ′) < ψ0
S(t)|ψ̂S(r)e−i Ĥ(t−t′)/~ψ̂†S(r′)|ψ0

S(t ′) >

I ψ̂†S(r′)|ψ0
S(t ′) > represents a state with one electron added in (r)′ to

the N-electron ground-state at time (t’),

I e i Ĥ(t−t′)/~ propagates this state from time (t’) to time (t),

I finally one remove one electron in r at time (t) and see how much
this N-electron system overlaps with the N-electron ground-state.

The final projection measures how much the ψ̂†S(r′)|ψ0
S(t ′) >

(N+1)-electron-state overlaps after a (t-t’) delay with the ψ̂†S(r)|ψ0
S(t) >

(N+1)-electron-state.



The electron-propagator (II)

Remember that a wave function ψ(r1, r2, ...) represents the amplitude of
probability of finding en electron in (r1), another one in (r2), etc. As
such, the process described here above can be interpreted as the
amplitude of probability of finding an additional electron in (rt) -
additional to the N-electron ground-state - having previously added an
additional electron in (r′t ′) to the N-electron ground-state.

The one-body Green’s function can be
interpreted as a propagator of the added
electron. Note that while describing the
evolution of ”one” electron from (r′t ′)
to (rt), it is a true many-body quantity
accounting for all interactions (including
the exchange!)



The hole-propagator

We now examine G (rt, r′t ′) for t < t ′.

i~G (rt, r′t ′) = −θ(t ′ − t)×
< ψ0

S(t ′)|ψ̂†S(r′)e−i Ĥ(t′−t)/~ψ̂S(r)|ψ0
S(t) >

Here we create a hole in (r) at time
(t < t ′) in the N-electron ground-state
and propagate this (N-1)-electron state
from (t) to (t’) where we project it onto
the (N-1)-electron state where a hole
has been created in (r’). Again this is
associated with the amplitude of
probability for the hole to move from
(rt) to (r′t ′).



Lehman amplitudes

Let’s consider:

i~G>(rt, r′t ′) = 〈ψ0
S(t)|ψ̂S(r) e−i Ĥ(t−t′)/~ψ̂†S(r′)|ψ0

S(t ′)〉

With
{
EN+1
n , ψn,N+1

H

}
the eigenstates of the (N+1) electron system:

e−i Ĥ(t−t′)/~ =
∑

n

e−iE
N+1
n (t−t′)/~|ψn,N+1

H 〉〈ψn,N+1
H |

and |ψ0
S(t ′)〉 = e−iE

N
0 t′/~|ψ0

H〉, 〈ψ0
S(t)| = 〈ψ0

H |e iE
N
0 t/~

we obtain (with the ”overbar” for the complex conjugate) :

〈ψ0
S(t)|ψ̂S(r) e−i Ĥ(t−t′)/~ψ̂†S(r′)|ψ0

S(t ′)〉 =
∑

n

f N+1
n (r)f

N+1

n (r′)e−iε
N+1
n (t−t′)/~

f N+1
n (r) = 〈ψ0

H |ψ̂S(r)|ψn,N+1
H 〉 is called an (addition) Lehman amplitude.

εN+1
n = (EN+1

n − EN
0 ) is an addition energy.



Lehman amplitudes (II)

We can proceed similarly with the hole-related part of the Green’s
function to obtain:

i~G (rt, r′t ′) = θ(t − t ′)
∑

n

f N+1
n (r)f

N+1

n (r′)e−iε
N+1
n (t−t′)/~

− θ(t ′ − t)
∑

n

f N−1
n (r)f

N−1

n (r′)e−iε
N−1
n (t−t′)/~

where we have introduce the Lehman removal amplitude and removal
energies:

f N−1
n (r) = 〈ψn,N−1

H |ψ̂S(r)|ψ0
H〉 and εN−1

n = (EN
0 − EN−1

n )

This form is very reminiscent of the independent electron Green’s
function, but one should not identify the Lehman amplitudes as one-body
wavefunctions (except for non-interacting electron systems, see below).



Addition/removal energies and photoemission experiments

• By solving the 1-electron Schrödinger equation: 
 
 
 
we obtain the band structure εn which can be determined experimentally 
by photoemission or inverse photoemission (valence or conduction bands).

One particle approximations

⋮

E

hν 
⋮

Energy conservation: 
   before  → hν + EN,0 
   after     → Ekin + EN-1,n 

The binding energy is: 
   Ekin − hν = EN,0 − EN-1,n  = εn 
    EN-1,n = ε1 +…+ εn + … + εN

Ekin 

N→N-1
εn ×


�1

2
—2 +Vext(r)

�
fn(r) = enfn(r)

Energy conservation:
hν + EN

0 = Ekin + EN−1
n

Identify:
εN−1
n = EN

0 − EN−1
n (< µ).

• By solving the 1-electron Schrödinger equation: 
 
 
 
we obtain the band structure εn which can be determined experimentally 
by photoemission or inverse photoemission (valence or conduction bands).

One particle approximations

⋮

E hν 

⋮

Energy conservation: 
   before  → Ekin + EN,0 
   after     → hν + EN+1,n 

The binding energy is: 
   Ekin − hν = EN+1,n − EN,0 = εn 
    EN+1,n = ε1 + … + εN + εn

Ekin 

N→N+1

εn


�1

2
—2 +Vext(r)

�
fn(r) = enfn(r)

Energy conservation:
Ekin + EN

0 = hν + EN−1
n

Identify:
εN+1
n = EN+1

n − EN
0 (> µ).



Time-ordered Green’s function in the frequency domain

Defining the Fourier transform : g(ω) =
∫
dτe iωτg(τ), with (use

complex integration and residue theorem):

θ(±τ) = ∓ lim
η→0+

1

2iπ

∫ +∞

−∞
dω

e−iωτ

ω ± iη
, one obtains (Exercise):

G (r, r′;ω) =
∑

n

fn(r)f ∗n (r′)

~ω − εn + iη~ sgn(εn − µ)

where the φn and εn are the addition/removal Lehman amplitudes and
energies depending on the sign of (εn − µ).



Poles of the time-ordered Green’s function in the complex
plane

The Green’s function has poles at the:

(1) ”electron addition energies”: ~ω = (EN+1
n − EN

0 )− iη,
(2) ”electron removal energies”: ~ω = (EN

0 − EN−1
n ) + iη.

!IP$

!EA$ Re(ω)$
(hole$addi1on$«$excita1ons$»)$

(electron$addi1on$«$excita1ons$»)$

�!�!�!�!�!�!

�!�!�!�!�!�!

….$
….$

η$
µ

On this graph, we have added:

I the ionisation potential: IP = (EN−1
0 − EN

0 ),

I the electronic affinity: AE = (EN
0 − EN+1

0 ),

I and the gap in between with the chemical potential µ.



Retarded Green’s function

We define the retarded single-particle Green’s function as follows:

i~GR(rt, r′t ′) = θ(t − t ′) < ψ0
H |ψ̂H(rt)ψ̂†H(r′t ′)|ψ0

H >

where the time-ordering operator has been removed. The retarded
Green’s function has all poles in the lower half complex plane:

(1) ”electron addition energies”: ~ω = (EN+1
n − EN

0 )− iη,
(2) ”electron removal energies”: ~ω = (EN

0 − EN−1
n )− iη.



Advanced Green’s function

We define the advanced single-particle Green’s function as follows:

i~GA(rt, r′t ′) = −θ(t ′ − t) < ψ0
H |ψ̂H(rt)ψ̂†H(r′t ′)|ψ0

H >

The advanced Green’s function has all poles in the upper half complex
plane:

(1) ”electron addition energies”: ~ω = (EN+1
n − EN

0 ) + iη,
(2) ”electron removal energies”: ~ω = (EN

0 − EN−1
n ) + iη.



Spectral functions

Using the relation: Im
(

1
ω±iη

)
= ∓πδ(ω), one finds:

(−1

π

)
ImGR(r, r′;ω) = A(r, r′;ω) + B(r, r′;ω) with:

A(r, r′;ω) =
∑

n

f N+1
n (r)

[
f N+1
n (r′)

]∗
δ(ω − (EN+1

n − EN
O ))

B(r, r′;ω) =
∑

n

f N−1
n (r)

[
f N−1
n (r′)

]∗
δ(ω − (E 0

N − EN−1
n ))

In return: GR(r, r′;ω) =
∫
dω′ [A(r,r′;ω′)+B(r,r′;ω′)]

ω−ω′+iη . Further:

∫
dω′ [A(r, r′;ω′) + B(r, r′;ω′)] = 〈ψN

0 |{ψ̂(r), ψ̂†(r′)}|ψN
0 〉 = δ(r − r′)

The spectral functions are related to local density of states.



Complement: The charge density

Let’s verify a relation demonstrated in the non-interacting case:

−i~GT (rt, r(t + 0+)) = θ(t ′ − t)
∑

n

f N−1
n (r)f

N−1

n (r)e−iε
N−1
n (−0+)/~

=
∑

n

〈ψ0
H |ψ̂†S(r)|ψn,N−1

H 〉〈ψn,N−1
H |ψ̂S(r)|ψ0

H〉

= 〈ψ0
H |ψ̂†S(r)ψ̂S(r)|ψ0

H〉 = n(r)

Using now the frequency domain and the residue theorem again:

1

2iπ

∫

C
dωe iωηGT (r, r;ω) = n(r)

=
∑

n

< ψN
0 |ψ†S(r′)|ψN−1

n >< ψN−1
n |ψS(r)|ψN

0 >

=< ψN
0 |ψ†S(r)ψS(r)|ψN

0 >=< ψN
0 |n̂(r)|ψN

0 > !IP$

Re(ω)$�!�!�!�!�!�!

�!�!�!�!�!�!

….$
….$µ

Im(ω)$
C



Systems described by a single Slater determinant

• If there was no electron-electron interaction, the variables could easily 
be separated and the N-electrons wavefunction could be replaced by the 
product of N 1-electron wavefunctions: 
 
 
which are the solutions of a 1-electron Schrödinger equation: 
 
 

• The total energy would simply be:

One particle approximations

⋮

E

ε1 , ε2
ε3 , ε4

εN-1 , εN
εN-3 , εN-2εN-5 , εN-4

εN+1 , εN+2
εN+3 , εN+4

EN,0 = ε1 + ε2 + … + εN-1 + εN

E = Â
n

en

 (r1, r2, . . . , rN) = �1(r1)�2(r2) · · · �N(rN)

"
�1

2
r2 + Vext(r)

#
�n(r) = "n�n(r)

|ψN
0 > = |n1, n2, n3, ..., nN , 0, 0, ... >

|ψN+1
n > = |n1, n2, n3, ..., nN , 0, 0, ..., nN+n, ... >

ψ̂S(r) =
∑

k

φk(r)ĉk

where all {ni} are equal to 1 and ”populate” the φi
orbitals.

Then: f N+1
n (r) =< ψN

0 |ψS(r)|ψN+1
n >= (−1)NφN+n(r).

If the {φn} are the one-body Hamiltonian eigenstates then the Lehman
amplitudes can be identify to the Hamiltonian eigen-wavefunctions.



To conclude: ΣX = iGV C as an introduction to GW

Let’s consider the integral:

i

2π

∫

C
dωe iωηGT (r, r′;ω)V C (r, r′)

with (η) an infinitesimal positive and V C the
Coulomb potential, where the contour C is in
the upper half-plane.

!IP$

Re(ω)$�!�!�!�!�!�!

�!�!�!�!�!�!

….$
….$µ

Im(ω)$
C

We can then use the residue theorem to obtain:

i

2π

∫

C
dωe iωηGT (r, r′;ω)V C (r, r′) =

i

2π
(2iπ)

occupied∑

n

φn(r)φ∗n(r′)V C (r, r′)

= −
occupied∑

n

φn(r)φ∗n(r′)

|r − r′|

which is the exchange Fock operator (putting back properly the spin !).


