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In this course I present the essentials of stochastic process and quantum Monte Carlo (QMC)

for electronic structure theory. I first give the basic definition of a random variable and

stochastic process, the definition of n-time (or n-body) probability and conditional proba-

bility distributions and the equations obeyed by these fundamental quantities (Chapman-

Kolmogorov and Kramers-Moyal equations in integral and local forms, respectively). The

notion of homogeneous Markov process is introduced and illustrated for the two most im-

portant process used in QMC, namely the free and drifted Brownian motions. After intro-

ducing this general framework I present the Metropolis algorithm and as direct application,

the Variational Monte Carlo (VMC) approach. Using VMC the ground-state properties

associated with some approximate trial wave function can be computed. We briefly list

the main forms of trial wavefunctions used in practical QMC applications and describe two

practical approaches for performing the optimization step. Next, the potentially exact Dif-

fusion Monte Carlo (DMC) approach is presented. Using some optimized trial wavefunction,

DMC allows to evaluate almost exact ground-state properties. The only error introduced in

simulations is the so-called fixed-node error, an approximation which is discussed. Finally,

some illustrative recent applications are presented.
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I. SOME PRELIMINARIES: NOTION OF RANDOM VARIABLE AND

STOCHASTIC PROCESS

A. Random variable

1. Definition

A random variable X is a variable subject to randomness. It can take on different values,

each of them with some given probability. The fundamental quantity is the probability

distribution of the random variable that gives all possible values with corresponding proba-

bilities to occur.

Discrete random variable: X ∈ {1, 2, ..., N}, N finite or not. The probability dis-

tribution obeys

P (X = i) = Pi ≥ 0 and
N∑
i=1

Pi = 1 (1)

Continuous random variable (typically, X ⊆ Rd). The probability distribution density

[or probability density function (PDF)] obeys

P (X = x) = P (x) ≥ 0 and

∫
dxP (x) = 1 (2)

2. The uniform distribution over (0, 1)

P (x) =

1, if x ∈ (0, 1),

0, if x /∈ (0, 1).
(3)

In practice, the uniform distribution is realized with Random Number Generators (RNG).

Most generators are based on the use of a deterministic algorithm “mimicking” randomness

as best as possible (pseudo-random generators). A common one is the simple linear congru-

ential generator

xn+1 = (axn + c) mod m (4)
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where x0 is defined as the “seed” of the generator. Note that once the seed has been chosen,

the entire series of “random” numbers can be reproduced. A vast literature is devoted to the

problem of producing randomness as pure as possible (minimization of correlations between

pseudo-random numbers). A popular good quality-RNG has been proposed by L’Ecuyer,1

see appendix A.

3. The gaussian distribution over (−∞,+∞)

As a consequence of the central-limit theorem, the gaussian distribution is ubiquitous in

real applications. The one-dimensional version is defined as

P (x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
(5)

where µ is the mean of the distribution

µ = 〈X〉 =

∫ +∞

−∞
dx x P (x) (6)

and σ2 its variance

σ2 = 〈(X − µ)2〉 =

∫ +∞

−∞
dx (x− µ)2 P (x) (7)

When µ = 0 and σ2 = 1, the distribution is known as the normal distribution.

Generalization to an arbitrary dimension d is as follows

P (x) =
1√

(2π)ddetC
exp

[
−1

2

∑
i,j

(x− µ)iC
−1
ij (x− µ)j

]
(8)

where µ is the mean vector

µi = 〈Xi〉, (9)

andC the d× d covariant matrix defined as

Cij = 〈(x− µ)i(x− µ)j〉 (10)

A simple and practical approach to sample the 1d-gaussian distribution is to use the Box-

Muller algorithm given by
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x =
√
−2 lnu1 cos(2πu2)

y =
√
−2 lnu1 sin(2πu2)

(11)

where u1, u2 are two uniform random numbers over (0,1). The two values x and y are

independent and gaussian distributed. The generalization to the d-dimensional case is trivial

after diagonalization of the covariant matrix and factorization of the probability distribution

using the eigenvectors of C

B. Stochastic process

1. General stochastic process

Stochastic process X(t) = Series of random variables indexed by a time t.

The fundamental quantities are the n-time probability distributions. In the continuous

case, it is written as

Pn(x1, t1; x2, t2; ...; xn, tn) (12)

with 0 ≤ t1 ≤ t2 ≤ ... ≤ tn, xi denoting the state, or configuration, of the system at time ti

[typically, x = (r1, r2, ..., rN), N number of particles]. The interpretation of the probability

distribution density is as follows.

Pn(x1, t1; x2, t2; ...; xn, tn)dx1dx2...dxn (13)

is the probability of finding the system between x1 + dx1 at time t1, x2 + dx2 at time t2, etc

with ∫
dx1dx2...dxnPn(x1, t1; x2, t2; ...; xn, tn) = 1 (14)

By integrating the n-time distribution over all states at k first times, we can generate (n−k)-

time probability distribution densities

Pn−k(xk+1, tk+1; ...; xn, tn) =

∫
dx1...dxkPn(x1, t1; x2, t2; ...; xn, tn) (15)

Let us now define the conditional probability densities as follows

Pk|(n−k)(x1, t1; ...; xk, tk|xk+1, tk+1; ...; xn, tn) =
Pn(x1, t1; ...; xk, tk; xk+1, tk+1; ...; xn, tn)

Pk(x1, t1; ...; xk, tk)

(16)
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With this definition

Pk|(n−k)(x1, t1; ...; xk, tk|xk+1, tk+1; ...; xn, tn)dxk+1dxk+2...dxn (17)

is the probability of finding the system between xk+1 + dxk+1 at time tk+1, ...,xn + dxn at

time tn knowing that the system was at x1 at time t1, x2 at time t2,...,xk at time tk.

Stochastic process are now classified according to the nature of their n-time probability

distributions.

2. Fully decorrelated process: The case of the branching process

Fully decorrelated process are the simplest stochastic process we can think of. They

describe a time series of independent random variables. The probability of being between

xk+1 and xk+1 + dxk+1 at time tk+1, knowing that we are at xk at time tk, is independent

on xk (and, then, on all previous states). In terms of conditional probability densities it is

written as (for all possible k)

Pk|1(x1, t1; x2, t2; ...; xk, tk|xk+1, tk+1) = P1(xk+1, tk+1) (18)

where P1(x, t) is the probability distribution at time t, namely

P1(x, t) =

∫
dx2...dxnPn(x, t; x2, t2; ...; xn, tn) (19)

Using Eqs.(16) and (18) the n-time probability distribution can be written as

Pn(x1, t1; x2, t2, ....) =
∏
k

P1(xk, tk) (20)

Because of their simplicity and lack of time correlations such process are usually not very use-

ful for modelizing physical situations. As a simple example, we could use them for describing

the dynamics of a Brownian particle (pollen grain in water) when observation times tk are

separated by long time intervals (say, several minutes or more). Another more interesting

exemple is the so-called branching or birth-death process as it is defined in DMC simulations.

Branching process.

We describe now the so-called ”branching” or ”birth-death” process as it is defined in QMC.
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It will be used in the Diffusion Monte Carlo (DMC) algorithm presented below. Note

that it is actually a very particular case of more general branching process introduced in

mathematics.

Let us consider a weight w ≥ 0 (we will see that this weight will depend on electronic

configuration). The branching process is defined as

X = E(w + U) (21)

where U is the uniform random variable over (0,1) and E the integer part. X takes on

integer values. The probability of having n is denoted as

Pn = P (X = n) (22)

Now, it is clear that for a given w, only two values of n with non-zero probability are

possible: nc and nc + 1 where nc ≡ E(w). Now, we have

Pnc+1 = 1− (nc + 1− w) (23)

Pnc = nc + 1− w (24)

Of course, as it should be, Pnc+1 + Pnc+1 = 1. Let us compute the mean

n̄ = nc(nc + 1− w) + (nc + 1)(1− (nc + 1− w)) = w (25)

We thus have

〈X〉 = w (26)

3. General Markov process

These are the key process used in the vast majority of stochastic simulations. The

probability of being between xk+1 and xk+1 + dxk+1 at time tk+1 is now dependent on

the previous configurations xk but not on the oldest ones xl<k. It is common to say (in a

loosely way) that for a Markov process, the future (at time tk+1) depends on the present

(time tk) but not on the past (times tl<k). More precisely, the Markov hypothesis is

written as

Pk|1(x1, t1; x2, t2, .....,xk, tk|xk+1, tk+1) = P1|1(xk, tk|xk+1, tk+1) (27)
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The fundamental quantity P1|1(xk, tk|xk+1, tk+1) characterizing the Markov process is called

the transition kernel or transition probability density. In what follows we shall use the

convenient notation

P (xk, tk → xk+1, tk+1) = P1|1(xk, tk|xk+1, tk+1) (28)

It is easy to check that the n-time probability density can now be written as

Pn(x1, t1; ...; xn, tn) = P1(x1, t1)
n−1∏
k=1

P (xk, tk → xk+1, tk+1). (29)

From Eqs.(15) and (16) we have∫
dxk+1P (xk, tk → xk+1, tk+1) = 1 (30)

In practice, most of the Markov process used in simulations are invariant under a time shift,

they are said to be homogeneous. In that case

P (xk, tk → xk+1, tk+1) = P (xk → xk+1, tk+1 − tk) (31)

For simplicity, the time interval will be denoted as t and the transition probability as P (x→

y, t). Because of the time-shift invariance, the one-body density P1(x) is now independent

on time. Let us derive the equation obeyed by P1(x). We have

P (x→ y, t) =
P2(x; y, t)

P1(x)
(32)

Mutiplying the equation by P1(x) and integrating over x we get∫
dxP1(x)P (x→ y, t) =

∫
dxP2(x; y, t) = P1(y). (33)

Following a popular tradition, we shall denote, here and in what follows, the stationary

distribution density as π

π(x) = P1(x) (34)

The equation obeyed by π is thus

∫
dxπ(x)P (x→ y, t) = π(y)
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Starting from the distribution π(x) and applying the transition kernel to all x leads to

configurations y also distributed according to π. It clearly illustrates the interpretation of

π as the stationary distribution of the stochastic process.

Let us now adopt an alternative point of view. As already mentioned, the transition

probability density characterizes the Markov process. Considered as the kernel of a linear

operator, the properties of its eigensolutions can be studied. A first remark is that the transi-

tion probability is in general not symmetric, P (x→ y, t) 6= P (y→ x, t). As a consequence,

it is necessary to distinguish between left- and right-eigenvectors and, in addition, the eigen-

values are not necessarily real. However, because P (x→ y, t) ≥ 0 and
∫
dyP (x→ y, t) = 1

it can be shown that the modulus of all eigenvalues ≤ 1 and that the left-eigenstate associ-

ated with the maximal eigenvalue λ = 1 is positive everywhere (Krein-Rutman theorem, a

generalization of the Perron-Frobenius theorem to operators [2) The integral equation∫
dxπ(x)P (x→ y, t) = π(y) (35)

is thus recovered where π(x) ≥ 0 is the maximal eigenvector of the transition kernel which

defines the stationary distribution of the stochastic process.

In the preceding section we have derived an integral equation allowing to compute the

stationary density π when the transition kernel is known. Let us now consider the problem

of the computation of the kernel itself. The fundamental equation for P (x→ y, t) is a simple

consequence of the Markov hypothesis. It is obtained by observing that if we introduce an

arbitrary intermediate time u ∈ (0, t) and consider the probability of going from x to y in

a time t we must have

P (x→ y, t) =

∫
dzP (x→ z, u)P (z→ y, t− u) (36)

It is known under the name of Chapman-Kolmogorov equation. A much more interest-

ing form is its local form relating time and space derivatives.

Let us derive such an equation in the one-dimensional case. The generalization to an

arbitrary dimension is elementary. The following derivation follows closely that of [3] Let

h(x) be an arbitrary smooth function and consider the time derivative of the transition

probability. We can write∫
dyh(y)

∂P (x→ y, t)

∂t
=

∫
dyh(y) lim

∆t→0

P (x→ y, t+ ∆t)− P (x→ y, t)

∆t

10



Applying the Chapman-Kolmogorov equation we have∫
dyh(y)

∂P (x→ y, t)

∂t
= lim

∆t→0

1

∆t

[ ∫
dyh(y)

∫
dzP (x→ z, t)P (z → y,∆τ)−

∫
dyh(y)P (x→ y, t)

]
Changing the name of the dummy variable y into z in the last integral of the RHS and using∫
dyP (z → y,∆t) = 1 then∫

dyh(y)
∂P (x→ y, t)

∂t
= lim

∆t→0

1

∆t

[ ∫
dzP (x→ z, t)

∫
dyP (z → y,∆τ)[h(y)− h(z)]

]
Now, we introduce a Taylor expansion of h(y) around z:

h(y) = h(z) +
∞∑
n=1

h(n)(z)
(y − z)n

n!

and defining the “jump moments”

D(n)(z) =
1

n!
lim

∆t→0

∫
dy(y − z)nP (z → y,∆τ)

we get ∫
dyh(y)

∂P (x→ y, t)

∂t
=

∫
dzP (x→ z, t)

∞∑
n=1

D(n)(z)h(n)(z)

Integrating by parts n times we get∫
dzh(z)

[∂P (x→ z, t)

∂t
−
∞∑
n=1

(
− ∂

∂z

)n
[D(n)(z)P (x→ z, t)]

]
= 0

and finally this integral being valid for any h the equation for the transition probability can

be written as
∂P (x→ y, t)

∂t
=
∞∑
n=1

(
− ∂

∂y

)n
[D(n)(y)P (x→ y, t)] (37)

In its general d-dimensional version it writes

∂P (x→ y, t)

∂t
=
∞∑
n=1

(−1)n
∑
j1...jn

∂n

∂yj1 · · · ∂yjn

[
D

(n)
j1,...,jn

(y)P (x→ y, t)
]
. (38)

This equation is known under the name of Kramers-Moyal expansion (of the master

equation). Here, the “jump moments” are defined as

D
(n)
j1,...,jm

(y) =
1

n!
lim

∆t→0

1

∆t

〈 n∏
µ=1

[Yjµ(t+ ∆t)− Yjµ(t)]

〉∣∣∣∣∣
Yk(t)=yk

. (39)

This equation is known under the name of Kramers-Moyal expansion (of the master

equation). Let us now discuss the Markovian process at the heart of QMC approaches

presented below.
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4. Markovian process at work in QMC

• Free diffusion or brownian process.

The free diffusion process is invariant by space translation and thus, D(1) = 0. It is defined

by a constant diagonal diffusion matrix D
(2)
ij = 1

2
and D(n>2) = 0

In one dimension the Kramers-Moyal expansion is written as

∂P (x→ y, t)

∂t
=

1

2

∂2

∂y2
P (x→ y, t) (40)

with initial condition, P (x → y, t = 0) = δ(x − y) This equation is known under the name

of free diffusion (or heat) equation. By using a Fourier transform the gaussian solution

of this equation is easily obtained. We have

p(x→ y, t) =
1√
2πt

e−
(y−x)2

2t (41)

In d dimensions the solution is a product of independent one-dimensional gaussian distribu-

tions for each coordinate

p(x→ y, t) =
d∏
i=1

1√
2πt

e−
(yi−xi)

2

2t =
1

√
2πt

d
e−

(y−x)2

2t (42)

Using the gaussian transition probability density, brownian trajectories can be generated

step-by-step. From Eq.(42) it is seen that the quantities (yi−xi)√
t

are independent and normally

distributed. y can thus be obtained from x by drawing a gaussian number for each coordinate

(yi − xi)√
t

= ηi i = 1, d (43)

where η is a normal random vector. The previous expression can be rewritten as

yi = xi +
√
tηi i = 1, d (44)

This last equation is the simplest example of a discretized form of the so-called Stochastic

Differential Equation (SDE) associated with a diffusion process.

• Drifted diffusion or drifted Brownian motion. As we shall see later, QMC methods

are based on a more general version of the free Brownian motion where a drift part is
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introduced to enhance the Monte Carlo convergence (importance sampling). In this case,

both D(1) and D(2) are non-vanishing. The first jump moment is known as the drift vector

b(x) = D(1)(x) (45)

In this case, the equation of evolution (KM expansion) is known as the Fokker-Planck

equation. It is written as

∂P (x→ y, t)

∂t
=

1

2
∇2
yP (x→ y, t)−∇y[b(y)P (x→ y, t)] (46)

In the case of a constant drift vector b this equation can still be solved using a Fourier

transform, we get

P (x→ y, t) =
1

√
2πt

d
e−

(y−x−b t)2

2t (47)

Stochastic trajectories are generated using the discretized SDE

yi = xi + bi(x1, ..., xd)t+
√
tηi i = 1 to d (48)

In the case of a general drift b(x), no analytical solution exists. However, it is still possible

to generate trajectories by using a small enough time-step τ instead of an arbitrary time

t as above. For that, we need to introduce a short-time approximation of the transition

probability. When the time-step is sufficiently small, the variation of position is small and

at leading order the drift vector can be considered as constant. The transition probability

density is thus approximated as

P (x→ y, τ) =
1

√
2πt

d
exp−(y − x− b(x)τ)2

2τ
(49)

This qualitative statement can be made more rigorous by looking at the small time-step

limit of the exact solution of the Fokker-Planck equation, Eq.(46). Having a short-time

gaussian expression for the transition probability, stochastic trajectories can be generated

according to

yi = xi + bi(x)τ +
√
τηi i = 1, d (50)

Note that the equations for each component are now coupled through the drift vector.
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The stationary density π of the process can be obtained by solving ∂P (x→y,t)
∂t

= 0 that is

1

2
∇2π −∇(bπ) = 0

It is easily seen that this equality is fulfilled when

b(x) =
1

2

∇π(x)

π(x)
(51)

Markov process with drift can thus be used to sample a given distribution π(x) (for example,

the Boltzmann distribution π(x) = e−βE(x)

Z
). For that, we choose a drift vector according to

Eq.(51) (here, b = −β
2
∇E(x)) and we generate trajectories using the stochastic differential

equation, Eq.(48). Note that with such a scheme a (small) bias on the stationary distribu-

tion related to the use of a small but finite time-step is present. In contrast, it is not the

case with the Metropolis algorithm presented in the next section.

• Other Markov process. There exist a great variety of Markovian process. Let us just

say a few words about two important examples.

i) The Lévy flight: A generalization of the browian motion allowing large moves

Probability distribution:

f(x;µ, c) =

√
c

2π

e−
c

2(x−µ)

(x− µ)3/2

where x > µ, µ = location parameter, and c =scale parameter.

“Heavy-tailed” probability distribution (large values of x have non-negligible probability

to occur). Note that < x2 >=∞ (mean), < x2 >=∞ (variance)!!

Kramers-Moyal equation derived above

∂P (x→ y, t)

∂t
=
∞∑
n=1

(
− ∂

∂y

)n
[D(n)(y)P (x→ y, t)]

becomes here

∂P (x→ y, t)

∂t
= −(− ∂α

∂yα
)[D(2)(y)P (x→ y, t)]− ∂

∂y
[D(1)P (x→ y, t)]
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with fractional derivative (0 < α ≤ 2).

An intense activity aout the modelization of the paths followed by animals or humans when

searching for food, hunting, (or even searching for lost keys on the beach...) has been

developed. See, for example, the influential work by H. Eugene Stanley and collaborators

of 1999 (“Optimizing the success of random searches”4).

ii) The Poisson process: A simple example of discrete Markov process

Poisson process of intensity λ (λ > 0. Equation of evolution of discrete variable X

p(X = n)(t+ ∆t)− p(X = n)(t)

∆t
= p(X = n− 1)(t)− p(X = n)(t)

when ∆t goes to zero, the probability distribution is given by

P(X = n, t) = e−λt
(λt)n

n!
, n integer

5. Stochastic process with memory effects (beyond Markov ones)

. Being almost never used in realistic simulations, they will not discussed here.

II. THE METROPOLIS ALGORITHM

A. Sampling a general density in high dimension

The purpose of the Metropolis algorithm,56 is to sample a general density π in arbitrary

dimension. Two remarkable features of the algorithm are that i) it can be used for (very)

large-dimensional spaces and ii) only the ratio of probability densities π(x)
π(y)

are to be eval-

uated, not the probability density π alone. The first property is remarkable and make in

practice the Metropolis algorithm the only practical choice for treating problemes in high

dimensions. This is the reason why the algorithm is so widely used and is in the list pro-

posed in 2000 by Dongarra and Sullivan of the “10 algorithms with the greatest influence

on the development and practice of science and engineering in the 20th century”7 Note that

applications including dimensions as large as several thousands are routine, and much larger

dimensions can be successfully treated. The second important feature is that there is no need
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to know the normalization of π. It is an important practical point since the normalization

is usually a physically relevant quantity (for example, the partition function in statistical

physics) and is in general not known.

The basic idea of the Metropolis algorithm is to generate by a step-by-step procedure

configurations in space distributed according to π. The fundamental quantity of the algo-

rithm is the trial transition probability density denoted here as P T (x→ y). The algorithm

is as follows.

METROPOLIS ALGORITHM

At each Monte Carlo step a new state xi+1 is generated from the current state xi by a

two-step procedure:

1) Draw a “trial” state denoted as xT using some trial transition probability P T (x→ y)

2) Accept the trial state as the new state (xi+1 = xT ) or reject it (xi+1 = xi) with

probability q(xi,xT ) (0 ≤ q ≤ 1) given by

q = Min
[
1,
π(xT )P T (xT → xi)

π(xi)P T (xi → xT )

]
(52)

At this point, several remarks are in order.

• A necessary condition that the algorithm be valid (sample the density π) is that the

transition probability is ergodic. Ergodicity means that for any initial state x0 and final

state x, and any neighborhood of x (for example, neighborhood= set of all states y such as

||x− y|| ≤ ε) there is a finite probability starting from x0 to reach the neighborhood of x

in a finite number of moves.

• If the ergodicity property is fulfilled, the Metropolis algorithm converges to π indepen-

dently on the choice of the trial transition probability and/or the initial conditions x0. Such

quantities only determines the rate of convergence of the Markov chain towards π.

• To have a practical scheme, the trial transition density must be chosen easy to sample

(see, below).

• To accept a change with probability q means: Draw a uniform random number u over

(0,1), if u ≤ q the change is accepted, if not it is rejected.

For a derivation of the Metropolis algorithm in the discrete case, see appendix C.
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B. Computing multi-dimensional integrals with the Metropolis algorithm

1. Integrals as probabilistic averages

In a Monte Carlo calculation, the integrals to be computed are of the form

I(f) =

∫
dxπ(x)f(x) (53)

where π is some probability density defined over Rd and f some integrand.

Note that the most general form for a d-dimensional integral (without π), namely I =∫
dxg(x), can always be rewritten under the form given in Eq.(53) by introducing some

arbitrary positive function g0 with

π =
g0∫

dxg0(x)

and

f =
g

π

However, to be able to do that, we need to know the normalization of the function g0 since

it enters now the integrand f , a constraint which severely reduces the possible choices for

g0. In practice, a reasonable strategy is to search where g is maximal and choose g0 as

some gausian approximation around its maximum. However, this strategy will work in high

dimension only if f does not vary too much in region where π(= g0) is large.

Actually, a fundamental point to realize is that for all physical problems defined in (very)

high dimension some density π is always present in the integrands, the density giving the

weight of the state (configuration) with respect to all other possible states. In practice, this

density is non-zero only for a very tiny fraction of all possible states, such states correspond-

ing to the so-called “physically accessible” states. If it would not be the case, the situation

would just be desesperate since sampling a huge number of states with a limited number of

Monte Carlo steps (say, up to about a few billions) is not possible.

Coming back to the definition of I(f), Eq.(53), it can be interpreted as the probabilistic

mean of f with respect to π writting

I(f) = 〈f〉
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and the integral can be expressed as the average of f over an infinite number of configurations

sampled with the Metropolis algorithm (ergodic property)

I(f) = lim
K→+∞

1

K

K∑
i=1

f(xi). (54)

Of course, in practical simulations, a large but finite number of points is used. The integral

is thus written as

IK(f) = I(f) + ε(K) (55)

where IK(f) is the Monte Carlo value obtained with K configurations,

IK(f) =
1

K

K∑
i=1

f(xi) (56)

and ε(K) some residual statistal error. This error is discussed in the next section.

2. Optimizing the sampling and evaluatiing the statistical error

Optimizing the sampling. As seen, in the Metropolis algorithm the configurations are

changed using the the trial transition probability density. Although the values of the inte-

grals do not depend on the transition density, it determines the quality of the sampling and

thus the rate of convergence to the density π and then to the exact values for the integrals.

• A first natural choice is the “historical” one made by Metropolis and collaborators in

their original work where P T (x → y) is taken to be a uniform transition density in some

small region around x. Mathematically, it is written as

P T (x→ y) =


1

∆d , if y ∈ [xi − ∆
2
, xi + ∆

2
]d

0, otherwise
(57)

where ∆ is some positive constant defining the magnitude of the proposed trial move around

the current position. The acceptance probability q, as defined in Eq.(52), is given by

q(x,y) = Min
[
1,
π(x)

π(y)

]
(58)

To make the simulation converge rapidly, it is desirable to take large values of ∆, leading

to a better sampling of the configuration space. Unfortunately, when using large values of
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∆ the trial configuration, which is chosen randomly and far from the physically-accpetable

state x, has almost no chance to be accepted. On the opposite case where ∆ is chosen

very small, the trial configuration is almost systematically accepted since q ' 1. However,

the new state is now very close of x and the sampling of the configuration space is very

inefficient.

In actual simulations, some estimator allowing to determine the optimal value of ∆ is

introduced. A standard solution consists in defining the average acceptance probability

η = 〈q〉 as

η =
# of accepted moves

# of moves
(59)

and to adjust ∆ so that the acceptation ratio is about one half.

• Optimal choice. The optimal choice of P T consists in drawing trial configurations

according to π(y), independently on the current position x, that is, P T (x→ y) = π(y). In

that case, successive drawings are independent, large moves in the configuration space can

be done and the acceptance probability is equal to one:

q(x,y) =
π(y)P T (y→ x)

π(x)P T (x→ y)
=
π(y)π(x)

π(x)π(y)
= 1

Unfortunately, there is no efficient algorithm known to draw directly a general density in

a high-dimensional case. Actually, it is the very reason why the Metropolis algorithm has

been introduced!

• Transition probability density of the drifted random walk

To go beyond the standard uniform transition density, it is very desirable to include some

information about the shape of the distribution π to be sampled. Indeed, instead of making

“blind moves” in random directions as in the historical algorithm it is much better to propose

moves into directions where π increases significantly and avoiding moves toward region where

π decreases stiffly.

This can be beautifully realized with the transition probability density of the drifted ran-

dom walk introduced above, Eq.(49). It is the transition probability used when Variational

Monte Carlo (VMC) calculations for electronic structure, see the next section.

• Statistical error.
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The Metropolis algorithm is a simple and efficient algorithm for generating states distributed

according to an arbitrary density. However, the price to pay for such a simplicity is the fact

that the successive states produced are correlated. Accordingly, some care is needed when

estimating the statistical error associated with the arithmetic averages computed. First of

all, it is important to check that we are not in the transient regime associated with the

initial configuration used. Second we have to estimate the correlation time of the Markov

chain.

Let f(x) a quantity whose expectation value is to be computed, I(f) =
∫
dxπ(x)f(x) A

unbiased estimator of the expectation value is the arithmetic sum

f̄n =
1

n

n∑
i=1

f(xi) (60)

where n is a finite number of configurations drawn with the Metropolis algorithm. Note that

f̄n is a random variable and that its value depends on the series of random numbers used

to generate the successive states of the sum. Unbiased means here that if the finite sum is

computed an infinite number of times with different random realizations, then

〈f̄n〉 =
1

n

n∑
i=1

〈f(xi)〉 = I(f) (61)

Due to the central limit theorem valid for Markov process, we know that for sufficiently

large n the distribution of the random variable f̄n becomes gaussian

P (f̄) =
1√

2πσ2
n

e
− (f̄n−〈fn〉)2

2σ2
n

where

σ2
n = 〈f̄n

2〉 − 〈f̄n〉
2

(62)

Now, a practical way to compute the error bar is to realize a certain number of independent

calculations of f̄n and to estimate the variance of the distribution P (f̄). Let Nb the number of

independent calculations, we denote f̄n
k
k = 1, Nb, the values obtained for each calculation.

Unbiased estimates of the mean and variance are

〈f̄n〉 =
1

Nb

Nb∑
k=1

f̄n
k

and

σ2
n =

1

Nb − 1

Nb∑
k=1

(f̄n
k − 〈f̄n〉)

2

20



An estimate of the statistical error δf on the estimate of I(f) is then δf =

√
σ2
n√

Nb
, that is

δf =
1√

Nb(Nb − 1)

√√√√ Nb∑
k=1

(f̄n
k − 〈f̄n〉)

2
(63)

In practical calculations, the Nb calculations are never fully independent and some correla-

tion are introduced. Such correlations can be explicited as follows. By inserting (61) into

(62) we get

σ2 =
1

n
[c0 + 2

n−1∑
i=1

(1− i

n
)ci]

where

ci = 〈fkfk+i〉 − 〈fk〉〈fk+i〉

(time translation implies independence on k). Calculation of the ci can be performed by

estimating the various correlators from the Nb realizations. Formula (63) can be easily

generalized using such correlators. For a discussion of such aspects, see for example8.

III. COMPUTING THE QUANTUM-MECHANICAL PROPERTIES

ASSOCIATED WITH SOME TRIAL WAVEFUNCTION: THE

VARIATIONAL MONTE CARLO (VMC) METHOD

A. The basic idea

• Consider a trial wavefunction ΨT (in our applications: [x = (r1, ..., rN), N number of

particles (electrons)] chosen to be a good representation of the unknown wavefunction

• Use the Metropolis algorithm for sampling the quantum-mechanical probability density

associated with ΨT , namely

π(x) =
|ΨT (x)|2∫
dx|ΨT (x)|2

.

• Compute properties as probabilistic averages over sampled configurations.

In the case of the energy, the variational energy Ev is obtained as

Ev =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

=

∫
dx|ΨT |2HΨT

ΨT∫
dx|ΨT |2
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that is

Ev =

∫
dxπ(x)EL(x)

where EL(x) is the so-called local energy.

EL(x) =
HΨT

ΨT

The probabilistic average is then evaluated as follows

Evar = 〈EL〉 = lim
K→∞

1

K

K∑
i=1

EL(xi)

where xi denotes the configurations drawn with the Metropolis algorithm.

Other properties can be computed in a similar way

〈ΨT |O|ΨT 〉
〈ΨT |ΨT 〉

=

∫
dxO(x)π(x) = lim

K→∞

1

K

K∑
i=1

O(xi)

The trial transition probability density is chosen to be the short-time drifted gaussian

transition probability density, Eq.(49)

Zero-variance property for the energy. As seen above, the statistical error on probabilistic

averages is proportional to the square root of the variance of the integrand, that is here,

of the local energy. Now, the “closest” the trial wave function is of the exact solution,

the smaller the fluctuations of EL are. In the limit of an exact wavefunction, fluctuations

vanish. This property is referred to as the zero-variance property.

Zero-variance property for general observables O. Using the Hellman-Feynman theorem

expressing 〈O〉 as the derivative of the energy with respect to the magnitude of the operator

considered as an external field and using the ZV property for the energy, it is possible to

construct new estimators for O having also a zero-variace property. For more details, see9,10.

B. The trial wavefunction

In QMC there is a great freedom in choosing the functional form of the trial wavefunction

(no computation of one- or bi-electronic integrals, just first and second derivatives of ΨT ).
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A great variety of functional forms has thus been considered.

1. Spin-free formalism

In constrast with most electronic structure methods where spin variables are introduced,

in QMC the trial wavefunctions are spin-free, that is they depend only on the space coordi-

nates of the electrons, x = (r1, ..., rN). This is possible since the Schrödinger equation to be

solved is spin-variable independent. For a discussion of the use of a spin-free formalism in

quantum chemistry, see for example11. Without entering into the details, let us just say that

the matrix elements of a fully symmetric and spin-free operator between two determinants

|I〉 and |J〉 can be obtained as

〈DI |O|DJ〉x,σ = 〈Dα
ID

β
I |O|D

α
JD

β
J〉x (64)

where Dσ (σ = α, β) are space-only determinants built from the space orbitals corresponding

to spin σ. The subscript over brackets indicates the variables of integration used.

To give an example, the following spin-space determinants describing a set of doubly

occupied orbitals ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1)α φ1(r2)α · · · φ1(rN)α

φ1(r1)β φ1(r2)β · · · φ1(rN)β
...

...
. . .

...

φN/2(r1)α φN/2(r2)α · · · φN/2(rN)α

φN/2(r1)β φN/2(r2)β · · · φN/2(rN)β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
has the same averages over spin-free operators as the pure space product of determinants∣∣∣∣∣∣∣∣∣

φ1(r1) . . . φ1(rN/2)
...

...
...

φN/2(r1) . . . φN/2(rN/2)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
φ1(rN/2+1) . . . φ1(rN)

...
...

...

φN/2(rN/2+1) . . . φN/2(rN)

∣∣∣∣∣∣∣∣∣ (65)

where α-electrons have been arbitrarily chosen to have particle labels {1, ..., N/2} and β-

electrons particle labels {N/2 + 1, ..., N}
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2. Different types of wavefunction used

• Multi-determinant Slater-Jastrow. The most popular form is the multi-determinant Slater

Jastrow form written as

ΨT = eJ(r1,...,rN )

Ndet∑
k=1

ckDetk({Φα
i })Detk({Φ

β
i }), (66)

where {Φσ
i }(σ = α, β) is a set of molecular orbitals and eJ is the Jastrow factor. The role of

the Jastrow factor is to impose the exact behavior of the wavefunction in the [rij → 0]-limit

(electron-electron cusp condition) and, also, to incorporate some two-body (electron-electron

and electron-nucleus) and three-body (electron-electron-nucleus) correlations (to describe

the best as possible the shape of the Coulomb hole12). Many different forms for the Jastrow

factor have been introduced. Typically,

J =
∑
i<j

u(rij) +
∑
i

∑
α

v(riα) +
∑
i<j

∑
α

w(rij, riα, rjα)

where rij = |ri − Rα|, and riα = |ri − Rα|. Various forms for the functions u,v, and w have

been tested. For example, the minimal Padé form for u

u(rij) =
arij

1 + brij
.

• Use of a backflow term. In trial wavefunctions including backflow, the electron coor-

dinate ri is replaced by a quasi-particle (dressed) coordinate r̄i = ri +
∑

j 6=i η(rij)(ri − rj)

and is introduced in Slater forms. Physically, this backflow displacement is supposed to

reproduce the characteristic “flow pattern” where the quantum fluid is pushed out of the

way in front of a moving particle and fills in the space behind it. For more details, see Ref.13

• Resonating VB form and geminal forms. Let Φ be the pairing function (geminal) which

takes into account the correlation between two electrons with opposite spin. If the system

is unpolarized and the state is a spin singlet, the antisymmetrized geminal product (AGP)

wavefunction is

ΨAGP (r1, . . . , rN) = Â[Φ(r↑1, r
↓
2)Φ(r↑3, r

↓
4) · · ·Φ(r↑N−1, r

↓
N)], (67)

where Â is an operator that antisymmetrizes the product in the square brackets and the

geminal is a singlet:

Φ(r↑, r↓) = φ(r↑, r↓)
1√
2

(| ↑↓〉 − | ↓↑〉) , (68)
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implying that φ(r, r′) is symmetric under a permutation of its variables. Given this condi-

tions, one can prove that the spatial part of the ΨAGP can be written in a very compact

form:

ΨAGP (r1, . . . , rN) = det(Aij), (69)

where Aij is a N
2
× N

2
matrix defined as:

Aij = φ(r↑i , r
↓
j). (70)

For more details, see Ref.14

• Perturbatively selected Configuration Interaction expansion. In quantum chemistry

Configuration Interaction (CI) expansions are widely used. They allow a systematic im-

provement of the wavefunction through increase of the number of determinants and of the

basis set used. In QMC the use of CI expansions is problematic due to the very large number

of determinants. Indeed, at each Monte Carlo iteration -and there can be as many as one bil-

lion of such elementary steps- the first and second derivatives (Laplacian) must be computed

for the current electronic configuration. However, despite these drawbacks, CI expansions

have nevertheless been recently employed in QMC. It is possible only because 1) the CI

expansion is reduced by a suitable selection of the most important determinants15,16 2) effi-

cient techniques have been developed to make the CI expansion computable in a reasonable

time.17–19. Some applications can be found in Ref.16,20.

• Valence Bond trial wavefunction. The use of Valance Bond (VB) wavefunctions is very

attractive in quantum chemistry. Indeed, VB forms give a simple and very appealing inter-

pretation of the electronic structure in terms of Lewis pairs (bound pairs, lone pair, etc. ).

Unfortunately, from a technical point of view VB wavefunctions are made of non-orthogonal

determinants, a point which dramatically increases the computational effort (passing from

a standard N3 law to a N ! law). A number of QMC works using VB wavefunctions have

been presented, see Ref.21–23

• Multi-Jastrow form The so-called Multi-Jastrow is obtained by replacing the global

Jastrow form into local Jastrows attached to one-particle molecular orbitals. Using such

local forms allows to describe the electron-electron correlation in a more specific way (elec-

tron correlation is different into a 1s orbitals, 3d orbitals, polarizable lone pairs, etc.) See24.
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• etc. (any home-made approximate wavefunction can be easily used in QMC).

IV. COMPUTING THE EXACT GROUND-STATE ENERGY: THE

DIFFUSION MONTE CARLO (DMC) METHOD

A. Diffusion Monte Carlo

Let us start with the time-dependent Schrödinger equation (atomic units)

i
∂Ψ(x, t)

∂t
= −1

2
∇2Ψ(x, t) + (V (x)− ET )Ψ(x, t)

where ET is some arbitrary reference energy. Let us make the transformation to imaginary

time (Wick’s rotation)

t→ −it
∂Ψ(x, t)

∂t
=

1

2
∇2Ψ(x, t)− (V (x)− ET )Ψ(x, t) (71)

Important: As far as time-independent properties are considered, this transformation has

no consequences. In particular, the eigensolutions of the Hamiltonian are not modified.

Let us note ΨT (x) a (time-independent) trial wavefunction and introduce a “mixed”

density

f(x, t) ≡ ΨT (x)Ψ(x, t) (72)

Multiplying each side of Eq.(81) by ΨT , we get

∂f(x, t)

∂t
=

1

2
ΨT (x)∇2[

f(x, t)

ΨT (x)
]− (V (x)− ET )f(x, t)

With simple algebra we get

1

2
ΨT∇2[

f

ΨT

] =
1

2
∇2f − b∇f − 1

2

∇2ΨT

ΨT

+ b2f

where the drift vector is given by

b =
∇ΨT

ΨT

(73)

Remarking that

EL =
HΨT

ΨT

= −1

2

∇2ΨT

ΨT

+ V
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finally, we have

∂f(x, t)

∂t
=

1

2
∇2f(x, t)−∇[b(x)f(x, t)]− (EL(x)− ET )f(x, t) (74)

or
∂f(x, t)

∂t
=
(
L− (EL − ET )

)
f(x, t)

where L is the Fokker-Planck operator

L =
1

2
∇2 −∇[b.] (75)

Eq.(74) determining the evolution of the mixed density f can be considered as the funda-

mental equation of diffusion Monte Carlo.

The time evolution of the density results from two coupled contributions:

(1) A first term describing a diffusion process associated with a constant diffusion D = 1
2

and a drift term, b = ∇ΨT
ΨT

. Note that the stationary density is given by π = Ψ2
T .

(2) A potential part given by the local energy. Considered alone, the equation of evolution

is
∂f(x, t)

∂t
= −(EL(x)− ET )f(x, t)

whose solution is

f(x, t) = f(x, t = 0)e−t(EL(x)−ET )

This part describes a so-called birth-death process or branching process. At point x the

density increases/decreases in time according to the variation of the local energy around the

trial energy. Denoting τ the small time-step used in the simulation we have

f(x, t+ τ) = w(x, τ)f(x, t) (76)

where the weight w is defined as

w(x, τ) = e−τ(EL(x)−ET )

Diffusion Monte Carlo combines both process. The resulting stationary distribution can

be obtained by writing

L− (EL − ET ) = 0
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It is easy to check that π fulfilling this equation is given by

πDMC = ΨTΦ0 (77)

where Φ0 is the unknown exact ground-state and ET has ben taken equal to E0.

An unbiased estimator of the ground-state energy is the expectation value of the local

energy over the stationary distribution Indeed, because the operator H is a hermitian (self-

adjoint) operator we can write

E0 =

∫
Φ0HΨT∫
Φ0ΨT

=

∫
Φ0ΨT

HΨT
ΨT∫

Φ0ΨT

and then

E0 =

∫
dxπDMC(x)EL(x) (78)

A minimal DMC algorithm is thus

• Start from a population of walkers

• Move independently each walker according to Eq.(79)

• For each walker compute the branching weight w. From w build an integer whose expec-

tation value gives w, for example m = E(w + u), u random number and E=integer part.

• Remove (m = 0) or duplicate reach walker a certain number of times (m ≥ 0). In average,

this step reproduces the evolution of the density as given in Eq.(76)

• Modify the reference energy ET to keep the number of walkers approximately constant.

• Add contribution of the new walkers to each average (for the energy, Eq.(78)) and iterate.

Population control step. As seen the number of walkers can varied in time. The total

number of walkers at time t is given by

M(t) =

∫
dxf(x, t)

and its time variation by
dM(t)

dt
=

∫
dx
∂f(x, t)

∂t

In the case where only the diffusion part is considered, we have

dM(t)

dt
=

∫
dxLf(x, t) = 0
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The norm of the density is conserved and the number of walkers can be kept constant. It is

no longer the case when adding the branching term

dM(t)

dt
= −

∫
dx(EL(x)− ET )f(x, t) = −

M(t)∑
k=1

(EL(k)− ET )

Since nothing prevents the population to increase or decrease indefinitely a population con-

trol step must be introduced. A standard solution consists in modifying smoothly the

reference energy such that to keep in average the population constant.

ET (t+ τ) = ET (t) +
K

τ
ln[
M(t+ τ)

M(t)
]

B. DMC for fermions: The sign problem and the fixed-node approximation

As just presented the DMC algorithm is exact only if the trial wavefunction ΨT never

vanishes (at finite distances), say ΨT > 0. It can be directly employed for quantum systems

with no Fermi constraints (bosonic systems, quantum oscillators, ensemble of distinguishable

particles, etc.). Indeed, in such cases the ground-state eigenfunction Φ0 is nodeless (say,

positive).

Unfortunately, for fermionic systems such an eigenstate is physically forbidden by the

Pauli exclusion principle [25], and the fermionic ground-state has now a sign.

Let us see what happens if the DMC algorithm is used as it is.

Let us recall that the walkers are moved move according to

yi = xi + bi(x)τ +
√
τηi i = 1, 3N (79)

with

b(x) =
∇ΨT (x)

ΨT (x)
(80)

• The values of x where ΨT vanishes are called the zeros (or nodes) of ΨT . It can be

shown that the nodes of the exact wavefunctions are a variety of dimension (3N − 1) (the

nodes “cut” the configuration space). It is the same for the trial wavefunctions used.

• Nodal pockets are the subdomains of constant sign for the wavefunction

• The union of nodal pockets is the entire configuration space
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• The nodes of ΨT are infinitely repulsive barriers for the walkers, and thus each

walker is trapped for ever into the nodal pocket where it starts from.

• The nodes of ΨT being not exact, the Schrödinger equation is solved with the approxima-

tion that the solution vanishes wherever ΨT vanishes. It is the fixed-node approximation.

We can easily show the variational property

EFN
0 ≥ E0

Alternative point of view

The basic idea of DMC is to transform the (imaginary) time-dependent Schrödinger

equation

∂Ψ(x, t)

∂t
= −(H − ET )Ψ(x, t) (81)

into a generalized diffusion equation by introducing a mixed density f as

f(x, t) ≡ ΨT (x)Ψ(x, t) (82)

It can be viewed as applying a similarity transformation to the SE so that

∂f(x, t)

∂t
= L∗f(x, t)

with

L∗ = L− (EL − ET ) = ΨT (H − ET )
1

ΨT

The eigensolutions of L∗ and ΨT (H − ET ) 1
ΨT

are related via

L∗ui = −(Ei − ET )ui

with ui = ΨTΦi.

If ΨT vanishes, some new boundary conditions depending on ΨT are put on the operator

L∗. The energy obtained by simulating L∗ is now the ground-state energy of the Hamil-

tonian with these new boundary-conditions which are not exact,this is the fixed-node

approximation.

Mathematical digression For fermions the functional space of wave functions is divided into two
orthogonal spaces

L2(RdN ) = B ⊕ F (83)
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where F is the vector space of “fermionic” wavefunctions defined as follows:

Ψ ∈ F if and only if Ψ[σ(x)] = sgn(σ)Ψ[(x)] (84)

where σ ranges in some permutation subgroup of the symmetric group SN leaving invariant some 2-subsets
partition of {1, ..., N} (corresponding to “spin up” or “spin down” electrons). In particular, all totally skew-
symmetric functions are in this case. B, the vector space of “bosonic” wavefunctions, is then simply the
orthogonal of F . In particular, all totally symmetric functions are in B.

The Pauli principle can then be summarized by saying that the “fermionic” eigensolutions of H physically
admissible are those obtained by restricting the Hamiltonian to the vector space F . In particular, the totally
symmetric nodeless lowest eigenstate of H is forbidden for fermions (the so-called “bosonic” ground-state).

Note that in contrast with standard presentations of the Pauli exclusion principle, no spin coordinates
have been introduced here. Actually, at the non-relativistic level such coordinates are not needed, see
e.g.[25,11]. However, they are of common use since within a spin-space representation the Pauli exclusion
principle is particularly simple to express. The eigenstates are written as a combination of space and spin
functions and only those that are totally antisymmetric under the exchange of space-spin coordinates of
any pair of particles are physically allowed. In a spin-free (space-only) formalism as used here, the spatial
wavefunctions Ψ(x) just need to be antisymmetric under permutations within two subsets of particles that
can be formally associated with spin “up” and “down” particles.

Because the Schrödinger Hamiltonian is spin-independent and the diffusion processes introduced are

defined in a pure space representation, the use of spin coordinates is not adapted and is thus avoided in

QMC.

Finally, the problem to solve in QMC is to design an efficient algorithm allowing to

converge to the ground-state fermionic eigenfunction (lowest eigenstate of H restricted to

vector space F ). Unfortunately, up to now it has not been possible to define a computation-

ally tractable (polynomial) algorithm implementing exactly such a property for a general

fermionic system. This problem -known under the name of “sign problem” is of uttermost

practical importance and is viewed as one of the most important problems to be solved in

computational many-body physics [26–29]

ΨFN
0 denotes the Fixed-Node (FN) ground-state eigenfunction obtained by imposing the

nodal boundaries to ΨT . Due to its very construction the fixed-node solution has the same

sign as the trial wavefunction (ΨT (x)ΨFN
0 (x) ≥ 0). The fermionic problem defined over the

entire configuration space RdN is thus recast in a sum of independent bosonic-type problems

defined in each nodal volume cut by the nodes of the approximate trial wavefunction. In-

stead of defining a unique Fokker-Planck operator with a non-divergent drift vector over all

space, a set of independent FP operators restricted to each nodal cell domain is considered.

Transposed into the original Hamiltonian problem, it means that the Schrödinger equation

is solved independently in each nodal cell (mathematically, the N -body Schrödinger ground-

state is computed with additional Dirichlet boundary condition on the nodal set N where

ΨF
T vanishes, N = {x ∈ RdN : ΨF

T (x) = 0}. In the general case, the zeroes of the trial
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wavefunction do not coincide with those of the unknown fermionic eigensolution and we are

thus left with a systematic bias, the fixed-node error.

At this point, several important theoretical and practical aspects of the fixed-node ap-

proximation must be discussed.

Mathematical foundation of the fixed-node approach. A mathematical analysis of the

fixed-node approach and the justification of the statements given above can be found in

Cancès et al. [30] and Rousset [31]. A convenient framework to analyze the fixed-node

approach is to express it as a variational problem in the functional space of anti(skew)-

symmetric functions with Dirichlet-type boundary conditions.

The tiling theorem. By solving the Schrödinger equation as a juxtaposition of independent

problems, there is no reason why ground-state energies computed separately in each domain

should be identical. The fixed-node energy is defined as the minimum of such energies.

Unfortunately, in QMC calculations for non-trivial systems, the minimum found may depend

on the initial conditions in the case where not all nodal domains are sampled, a situation

that may arise since the number and localization of such domains in high dimension is in

general not known. Hopefully, for fermionic ground-states Ceperley [32] has proved under

physically reasonable conditions the existence of a tiling theorem for the exact ground-state:

There is only one distinct kind of nodal regions. All others are related to it by permutational

symmetry (with same energy). Unfortunately, in practice we need that ΨT satisfies the tiling

property, not just the unknown ground-state. In actual simulations, it is generally assumed

that Hartree-Fock or Kohn-Sham-type wavefunctions satisfy the tiling property. Results

seem to validate such a statement. However, some (mathematical) work is needed to clarify

this point.

When ΨT is chosen to be positive and does not vanish (except at infinity) the DMC

algorithm just presented will converge to the stationary density corresponding to the lowest

(positive) eigenstate of H. For bosonic systems this latter state is the physical ground-state

and DMC is an exact method for solving the Schrödinger equation.

When we are dealing with fermions (electrons) the situation is different. The fermionic

ground-state is antisymmetric and has a non-constant sign. The algorithm presented can

also be used using a fermionic ΨT (for example, a Hartree-Fock determinant). However, the

ground-state properties obtained are no longer exact.
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• Wherever ΨT vanishes, the drift vector diverges. The walkers are trapped for ever

within the nodal cells. The problem is recast into a set of independent bosonic calculations

in each nodal region.

• The nodes of ΨT are of two types: exchange nodes and other nodes. Exchange nodes are

(3N − 3)-dimensional, exact nodes (3N − 1)-dimensional. The nodes are not known and

there is a fixed-node bias.

• Fixed-node energy has a variational property

EFN
0 ≥ E0

the equality occuring when the nodes of ΨT are exact.

• A priori each simulation performed in each nodal cell leads to a different energy. The

DMC energy is the minimum of them. However, Ceperley has shown that there exists a

tiling property,? .

• The nodes being a (3N−1)-dimensional object, their structure is not trivial and to decrease

of fixed-node error in a systematic way is not a simple problem.

V. TRIAL WAVEFUNCTION OPTIMIZATION

A. The problem

When accurate results are searched for, we need to reduce the two following errors:

(1) The statistical fluctuations related to the finite number of Monte Carlo steps

(2) The fixed-node bias related to the use of an approximate nodal hypersurface.

Both errors can be decreased by optimizing the parameters of the trial wavefunction.

Different criteria can be used to define the “quality” of a trial wavefunction. The two most

employed:

• Minimization of the variational energy

E(p) =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

where p denotes the set of parameters of ΨT (x,p)

• Minimization of the variance of the Hamiltonian

σ2(p) =
〈ΨT |[H − E(p)]2|ΨT 〉

〈ΨT |ΨT 〉
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B. The correlated approach

The most natural idea to optimize the trial wavefunction is to minimize the total energy

evaluated for a finite number of configurations Nc drawn in a preliminary Variational Monte

Carlo step:

E(p) ' 1

Nc

Nc∑
i=1

EL(xi)

In practice, such a idea is difficult to realize for two reasons:

(1) For a finite number of walkers E(p) is not bounded from below and the minimizer can

change parameters in a wird way so that to concentrate the wavefunction around one or a

few points having a very low local energy.

(2) The stationary distribution, Ψ2
T (x,p) depends on parameters p, and thus new con-

figurations must be redrawn at each change of parameters. The variational energy being

calculated for a finite number of points, the energy curve E(p) is then noisy and it is a

tricky situation for the minimizer.

Practical solution:

(1) When a not too large number of configurations is used (a few thousand’s) it is much

preferable to minimize the variance since it is a quantity bounded from below (σ2 ≥ 0) for

any finite number of configurations.

(2) To avoid the noisy character of E(p) or σ2(p) a fixed set of configurations can be used

and a correlated approach introduced?

σ2(p) =
1
Nc

∑Nc
i=1 wi(EL − E)2(xi,p)

1
Nc

∑Nc
i=1 wi

where Nc number of configurations and wi =
Ψ2
T (xi,p)

Ψ2
T (xi,p0)

. The configurations are drawn once

for all according to Ψ2
T (xi,p0). In such conditions the energy curve is no longer noisy and

standard minimizers (for example, quasi-Newton) can be employed.

Note that σ2(p) is a reasonable estimate of

〈ΨT |(H − E)2|ΨT 〉
〈ΨT |ΨT 〉

only if the weights remain all close to one. It is thus important to quantify this aspect in
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some way, for example by introducing

η =
1

Nc

(
∑

iwi)
2∑

iwi
2

When η is close to one, the number of configurations playing a role is close to Nc and the

estimation of the energy/variance is reasonable. In contrast, when only a few configurations

contribute, η is close to zero and a new set of reference points must absolutely be drawn.

C. The linear method

The linear method has been recently introduced by Umrigar et al.33 and is presently one

of the most efficient approach to optimize a large number of parameters (both linear and

non-linear).

The method is based on the minimization of the variational energy. Let us call Np the

number of parameters. The method consists in introducing a linear Taylor expansion around

the current parameters p0.

ΨT (x,p) = ΨT (x,p0) +

Np∑
i=1

(p− p0)iΨi (85)

where the functions Ψi are defined as

Ψi =
∂ΨT (x,p0)

∂pi

Functions Ψi are now considered as a basis for the trial wavefunction and the energy is

minimized in this basis set. Remarking that the Ψi are not orthogonal, the problem to solve

is thus a generalized eigenvalue problem

H∆p = ES∆p (86)

where H and S are the Hamiltonian and overlap matrices, respectively.

Hij = 〈Ψi|H|Ψj〉 and Sij = 〈Ψi|Ψj〉

These quantities can be calculated in a VMC calculation using Ψ2
0 as stationary distribution

Hij = 〈Ψi

Ψ0

HΨj

Ψ0

〉Ψ2
0

and

Sij = 〈Ψi

Ψ0

Ψj

Ψ0

〉Ψ2
0
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VI. A FEW NUMERICAL APPLICATIONS: EXPLORING ATOMIC,

MOLECULAR AND SOLID-STATE SYSTEMS

Let us now present some (very) recent applications of QMC for a variety of systems.

A. G2 benchmark

Benchmark sets are useful in electronic structure theory. They allow to compare the

results obtained by various methods against some reference data. The so-called G2 set

(actually G1 set) has been introduced by Curtiss and collaborators and has been exten-

sively used as benchmark in quantum chemistry. The benchmark consists in comparing the

(corrected) experimental values for the atomization energies of a set of Nmol = 55 simple

molecules with those obtained with the method to be evaluated. The criterium used is the

mean absolute deviation (MAD) defined as

MAD =
1

Nmol

Nmol∑
i=1

|Eat
i − E

at;expt
i |

where Eat
i is the atomization energy of molecule i. The smaller the MAD is the better the

method reproduces the experimental values.

DFT and post-HF methods

• LDA: MAD ∼ 40 kcal/mol

• B3LYP and B3PW91: MAD ∼ 2.5 kcal/mol

• CCSDT/aug-cc-pVQZ MAD ∼ 2.8 kcal/mol

• CCSDT Complete Basis Set limit, MAD ∼ 1.3 kcal/mol

QMC

• Grossman (2002) HF nodes, use of pseudo-potientials, MAD ∼ 2.9 kcal/mol

• Nemec et al. (2010) HF nodes, all-electron, MAD ∼ 3.2 kcal/mol.

• Petruziello et al. (2012) MAD: 5z basis set ∼ 1.2 kcal/mol.

The best MAD obtained with QMC is comparable to that obtained with CCSDT in the

infinite basis set limit.
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B. Non-covalent interactions

See Table 1 of the paper of Dubecky et al. (2016) “Noncovalent Interactions by Quantum

Monte Carlo”.34 A long list of references (in chronological order) presenting QMC calcula-

tions of noncovalent interactions is given.

C. Water nano-droplets

Reference:35

D. Barrier heights

Krongchon et al. “Accurate barrier heights using diffusion Monte Carlo” (2017)36 Bench-

mark calculations of the barrier heights of 19 non-hydrogen-transfer chemical reactions.

E. 3d-metal containing molecules

K. Doblhoff-Dier et al. “Diffusion Monte Carlo for Accurate Dissociation Energies of

3d Transition Metal Containing Molecules” (2016)37. Benchmark calculations of for 20

transition metal containing dimers. Set introduced by Truhlar et al. (2015)?

F. H and He under very high pressure

Reference:38

G. cuprates

Reference:39,40,41

H. Solids

Reference:42 Reference:43
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Appendix A: L’Ecuyer pseudo-random generator

The L’Ecuyer pseudo-random generator is a combined multiple recursive generator

zn = (xn − yn) mod m1

where xn and yn are

xn = (a1xn−1 + a2xn−2 + a3xn−3) mod m1

yn = (b1yn−1 + b2yn−2 + b3yn−3) mod m2

with coefficients a1 = 0, a2 = 63308, a3 = −183326, b1 = 86098, b2 = 0, b3 = −539608, and

moduli m1 = 231 − 1 = 2147483647 and m2 = 2145483479.

The period is approximately 2185 (about 1056).

Appendix B: Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is associated with a linear drift vector

b(x) = −kx

, where k some positive constant. The transition probability density is

P (x→ y, t) =
1√

1− γ2
exp−(y − γx)2√

1− γ2

where γ = e−kt.

Appendix C: Derivation of the Metropolis algorithm in the discrete case

• Def. 1 Probability distribution πi ≥ 0 i=1,N and
∑

i πi = 1

• Def. 2 transition probability (or stochastic matrix) Pi→j:

i. Pi→j ≥ 0

ii.
N∑
j=1

Pi→j = 1 (independent on i)
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• Def. 3 Ergodic transition probability

∀i0 ∀i there exist a non-zero probability that after a finite number of steps starting

from i0 we end at i.

• Def. 4 Stationary (or invariant) distribution π:∑
i

πiPi→j = πj

Metropolis algorithm

Let P T
i→j being a trial ergodic transition probability, then Pi→j defined as follows

Pi→j = P T
i→jMin(1, Rij) j 6= i

Pi→i = P T
i→i +

∑
k 6=i

P T
i→k(1−Min(1, Rik)) j = i

with Rij =
πjP

T
j→i

πiPTi→j

is an ergodic transition probability admitting πi as stationary distribution.

Proof:

1. Pi→j is a transition probability

• Pi→j ≥ 0 obvious

•
N∑
j=1

Pi→j =
∑
j 6=i

Pi→j + Pi→i

=
∑
j 6=i

P T
i→j + P T

i→i

= 1

2. Stationary distribution

We have to show:
∑

i πiPi→j = πj

For that we first show that {Pi→j; πi} obeys detailed balance

πiPi→j = πjPj→i ∀(i, j)

Proof:
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• i=j obvious

• i6=j: the ratio of the two sides of the previous equality is

πjPj→i
πiPi→j

=
RijMin(1, Rji)

Min(1, Rij)
.

Remarking that Rij = 1/Rji and distinguising between the two cases correspond-

ing to Rij ≥ 1 and Rij < 1, we easily verify that this ratio is equal to 1.

Finally, using the detailed balance relation we get

∑
i

πiPi→j =
∑
i

πjPj→i = πj

thus, πi is the stationary distrbution.

Appendix D: Convergence of the Metropolis algorithm

Let us precise the way the distribution converges to the stationary one.

Let f (k) be a distribution, that is a set of N positive real numbers. The application of

the stochastoc matrix to this distribution is written as

f
(k+1)
i =

∑
j

f
(k)
j Pj→i ≡ Pf

(k)
i

We have the following property

lim
n→∞

f
(n)
i ∼ P nf

(0)
i = πi ∀f (0)

The different steps of the proof are as follows.

• Let us associate to Pi→j a symmetric real matrix defined as follows

Mij =
√
πiPi→j

1
√
πj

Let us insist that the stochastic matrix is in general not symmetric.

• It is easy to check that
√
π is eigenstate of M with eigenvalue 1∑

j

Mij
√
πj =

√
πi
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• We also see that

P nf (0) =
√
πMnf

(0)

√
π

• Let us now use the spectral decomposition of M . For large n, Mn becomes the

projector in the eigenspace associated with the largest eigenvalue. Due to its particular

structure, it can be shown that M has eigenvalues λi such that 0 ≤ |λi| ≤ 1 and in

the case where π does not vanish, the associated eigenspace is not degenerate. As a

consequence

P nf (0) = c π

where c is the overlap between the initial distribution f (0)/
√
π and the eigenstate

√
π

of matrix M .
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30E. Cancès, B. Jourdain, and T. Lelièvre, “Quantum monte-carlo simulations of fermions.

a mathematical analysis of the fixed-node approximation,” Math. Mod. Meth. Appl. Sci.

16, 1403–1440 (2006).

31M. Rousset, “On a probabilistic interpretation of shape derivatives of dirichlet groundstates

with application to fermion nodes,” ESAIM: Mathematical Modelling and Numerical Anal-

ysis 44(5), 977–995 (2010).

32D. Ceperley, “Fermion nodes,” J. Stat. Phys. 63, 1237–1267 (1991).

33C. Umrigar, J. Toulouse, C. Filippi, S. Sorella, and R. Hennig, Phys. Rev. Lett. 98, 110201

(2007).

34M. Dubeck, L. Mitas, and P. Jureka, “Noncovalent interactions by quantum monte carlo,”

Chem. Rev. 116(9), 5188–5215 (2016).
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