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In this course I present the essentials of stochastic process and quantum Monte Carlo (QMC)
for electronic structure theory. I first give the basic definition of a random variable and
stochastic process, the definition of n-time (or n-body) probability and conditional proba-
bility distributions and the equations obeyed by these fundamental quantities (Chapman-
Kolmogorov and Kramers-Moyal equations in integral and local forms, respectively). The
notion of homogeneous Markov process is introduced and illustrated for the two most im-
portant process used in QMC, namely the free and drifted Brownian motions. After intro-
ducing this general framework I present the Metropolis algorithm and as direct application,
the Variational Monte Carlo (VMC) approach. Using VMC the ground-state properties
associated with some approximate trial wave function can be computed. We briefly list
the main forms of trial wavefunctions used in practical QMC applications and describe two
practical approaches for performing the optimization step. Next, the potentially exact Dif-
fusion Monte Carlo (DMC) approach is presented. Using some optimized trial wavefunction,
DMC allows to evaluate almost exact ground-state properties. The only error introduced in
simulations is the so-called fixed-node error, an approximation which is discussed. Finally,

some illustrative recent applications are presented.
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I. SOME PRELIMINARIES: NOTION OF RANDOM VARIABLE AND
STOCHASTIC PROCESS

A. Random variable
1. Definition

A random variable X is a variable subject to randomness. It can take on different values,
each of them with some given probability. The fundamental quantity is the probability
distribution of the random variable that gives all possible values with corresponding proba-

bilities to occur.

Discrete random variable: X € {1,2,..,N} N finite or not. The probability dis-

tribution obeys

N
P(X=i)=P>0and » P =1 (1)

i=1

Continuous random variable (typically, X C R?). The probability distribution density
[or probability density function (PDF)] obeys

P(X =x) = P(x) > 0and /de(x) =1 (2)

2. The uniform distribution over (0,1)

1, if x€(0,1),
P() = =00 3

0, if z¢(0,1).

In practice, the uniform distribution is realized with Random Number Generators (RNG).
Most generators are based on the use of a deterministic algorithm “mimicking” randomness
as best as possible (pseudo-random generators). A common one is the simple linear congru-
ential generator

Tpy1 = (ax, + ¢) mod m (4)
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where xg is defined as the “seed” of the generator. Note that once the seed has been chosen,

the entire series of “random” numbers can be reproduced. A vast literature is devoted to the

problem of producing randomness as pure as possible (minimization of correlations between

pseudo-random numbers). A popular good quality-RNG has been proposed by L’Ecuyer,!

see appendix A.

3. The gaussian distribution over (—oo,+00)

As a consequence of the central-limit theorem, the gaussian distribution is ubiquitous in

real applications. The one-dimensional version is defined as

P(x) = \/%exp [—%l

where p is the mean of the distribution

w=(X) :/+Oodq::cP(x)

—00

and o2 its variance
—+oo

o = (X — p)?) = / dr (¢ — p)’ P(x)

—00

When g = 0 and 02 = 1, the distribution is known as the normal distribution.

Generalization to an arbitrary dimension d is as follows

1 1 —1
P(x) = W exp [—5 ;(X —)iCy (x — M)j]

where g is the mean vector

andC the d X d covariant matrix defined as

Cij = ((x = p)i(x = p);)

(9)

(10)

A simple and practical approach to sample the 1d-gaussian distribution is to use the Box-

Muller algorithm given by



x = v/—2Inwuy cos(2muy)
y = v —2Inuy sin(27uy)

where wuy,us are two uniform random numbers over (0,1). The two values x and y are

(11)

independent and gaussian distributed. The generalization to the d-dimensional case is trivial
after diagonalization of the covariant matrix and factorization of the probability distribution

using the eigenvectors of C

B. Stochastic process
1. General stochastic process

Stochastic process X () = Series of random variables indexed by a time ¢.

The fundamental quantities are the n-time probability distributions. In the continuous
case, it is written as

Po(x1,t1;X9, t; .. X,y Ty) (12)
with 0 <t; <t, < ... <t,, X; denoting the state, or configuration, of the system at time t;
[typically, x = (rq,rs,...,ry), N number of particles]. The interpretation of the probability

distribution density is as follows.

Pn(Xl,tl;Xg,tQ;...;Xn7tn)dX1dX2...an (13)
is the probability of finding the system between x; + dx; at time ¢;, x5 + dxs at time ¢y, etc
with

/Xmd)(Q...anF)n(Xl7 tl, X9, tg, ey Xp, tn) =1 (14)

By integrating the n-time distribution over all states at & first times, we can generate (n—k)-

time probability distribution densities

P (Xkt1, tht1; -3 X, ) =/dxl---dkan(Xl,tl;Xz,tz;.--;thn) (15)

Let us now define the conditional probability densities as follows

P (X1, t15 ooy Xyt g1, Lot 15 - Xy )
Pk(thl; 7Xk7tk‘)

Projn—t) (X1, t15 -3 Xy 0| Xt 1, L1 -3 Xy b)) =

(16)



With this definition

Prtn—k) (X1, t15 o3 X, T X1, L1505 X, B ) dXge 1 AXpyg...dX, (17)

is the probability of finding the system between x;.; + dx;.1 at time tx.q, ...,x, + dx, at

time t,, knowing that the system was at x; at time 1, x5 at time t,,...,x; at time ;.

Stochastic process are now classified according to the nature of their n-time probability

distributions.

2. Fully decorrelated process: The case of the branching process

Fully decorrelated process are the simplest stochastic process we can think of. They
describe a time series of independent random variables. The probability of being between
X1 and X1 + dXgy1 at time t,,1, knowing that we are at x; at time t;, is independent
on x;, (and, then, on all previous states). In terms of conditional probability densities it is

written as (for all possible k)

Pr1 (X1, 13 X2, B3 o X, te[Xey 1, trr) = Pr(Xegns ter) (18)

where Pj(x,t) is the probability distribution at time ¢, namely
Pi(x,t) = /dXQ...anPn(X7t;X2,t2; i Xy, ) (19)

Using Eqs.(16) and (18) the n-time probability distribution can be written as

Pn<X1at1;X27t27"") :le(xk”tk) (20>
k

Because of their simplicity and lack of time correlations such process are usually not very use-
ful for modelizing physical situations. As a simple example, we could use them for describing
the dynamics of a Brownian particle (pollen grain in water) when observation times ¢; are
separated by long time intervals (say, several minutes or more). Another more interesting

exemple is the so-called branching or birth-death process as it is defined in DMC simulations.

Branching process.

We describe now the so-called ”branching” or ”birth-death” process as it is defined in QMC.
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It will be used in the Diffusion Monte Carlo (DMC) algorithm presented below. Note
that it is actually a very particular case of more general branching process introduced in
mathematics.

Let us consider a weight w > 0 (we will see that this weight will depend on electronic

configuration). The branching process is defined as

X =Ew+U) (21)

where U is the uniform random variable over (0,1) and E the integer part. X takes on

integer values. The probability of having n is denoted as
P, =P(X =n) (22)

Now, it is clear that for a given w, only two values of n with non-zero probability are

possible: n. and n. + 1 where n. = F(w). Now, we have
Poii=1—(n.+1-w) (23)
P,.=n.+1-w (24)
Of course, as it should be, P, 11 + P,.+1 = 1. Let us compute the mean
n=ncn.+1—w)+n.+1)1-(n.+1—w))=w (25)

We thus have

(X) = w (26)

3. General Markov process

These are the key process used in the vast majority of stochastic simulations. The
probability of being between x;,; and X1 + dXp,; at time t;,.; is now dependent on
the previous configurations x; but not on the oldest ones x;4. It is common to say (in a
loosely way) that for a Markov process, the future (at time ¢,;) depends on the present
(time t;) but not on the past (times t;<x). More precisely, the Markov hypothesis is

written as

Pryi(x1, 115X, oy ooy Xyt X1, trgr) = P (X, teXnr1, thr) (27)




The fundamental quantity Py1 (X, tk|Xk11, tet1) characterizing the Markov process is called
the transition kernel or transition probability density. In what follows we shall use the

convenient notation

P(Xg, th = Xpp1, trrn) = Prpn(Xes te[Xes1, trgn) (28)

It is easy to check that the n-time probability density can now be written as

n—1
Po(x1,t1; .. X, 1) = Pr(xq, 1) H P(Xp, ty = X1, tig).- (29)
k=1
From Egs.(15) and (16) we have
/kaJrlP(Xk-, tr — Xk+1, tk+1) =1 (30)

In practice, most of the Markov process used in simulations are invariant under a time shift,

they are said to be homogeneous. In that case

P(Xp, th = Xpy1, tey1) = P(Xp = Xpq, trer — ta) (31)

For simplicity, the time interval will be denoted as ¢ and the transition probability as P(x —
y,t). Because of the time-shift invariance, the one-body density P;(x) is now independent

on time. Let us derive the equation obeyed by P;(x). We have

o PQ(X7y7t>

Px—y,t)= 32
oy = 2ot (32)

Mutiplying the equation by P;(x) and integrating over x we get
/del(x)P(x -y, t)= /deg(x;y,t) = Pi(y). (33)

Following a popular tradition, we shall denote, here and in what follows, the stationary
distribution density as 7

m(x) = Pi(x) (34)

The equation obeyed by 7 is thus /dXﬂ'(X)P(X =y, t)="n(y)




Starting from the distribution 7(x) and applying the transition kernel to all x leads to
configurations y also distributed according to w. It clearly illustrates the interpretation of
7 as the stationary distribution of the stochastic process.

Let us now adopt an alternative point of view. As already mentioned, the transition
probability density characterizes the Markov process. Considered as the kernel of a linear
operator, the properties of its eigensolutions can be studied. A first remark is that the transi-
tion probability is in general not symmetric, P(x — y,t) # P(y — x,t). As a consequence,
it is necessary to distinguish between left- and right-eigenvectors and, in addition, the eigen-
values are not necessarily real. However, because P(x — y,t) > 0 and [dyP(x —y,t) =1
it can be shown that the modulus of all eigenvalues < 1 and that the left-eigenstate associ-
ated with the maximal eigenvalue A\ = 1 is positive everywhere (Krein-Rutman theorem, a

generalization of the Perron-Frobenius theorem to operators [2) The integral equation

/ dxr(x)P(x = y.1) = 7(y) (35)

is thus recovered where 7(x) > 0 is the maximal eigenvector of the transition kernel which

defines the stationary distribution of the stochastic process.

In the preceding section we have derived an integral equation allowing to compute the
stationary density m when the transition kernel is known. Let us now consider the problem
of the computation of the kernel itself. The fundamental equation for P(x — y,t) is a simple
consequence of the Markov hypothesis. It is obtained by observing that if we introduce an
arbitrary intermediate time u € (0,¢) and consider the probability of going from x to y in

a time t we must have

P(x —»y,t) = /dzP(x—>z,u)P(z —y,t—u) (36)

It is known under the name of Chapman-Kolmogorov equation. A much more interest-
ing form is its local form relating time and space derivatives.

Let us derive such an equation in the one-dimensional case. The generalization to an
arbitrary dimension is elementary. The following derivation follows closely that of [3] Let
h(z) be an arbitrary smooth function and consider the time derivative of the transition

probability. We can write

OP(x —y,t) . Pz =y, t+ At) — P(x — y,t)
/ dyh(y)——— = / dyh(y) lim A
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Applying the Chapman-Kolmogorov equation we have

/dyh(y)M = lim i[/dyh(y)/dzp(x — z,t)P(z = v, AT)—/ dyh(y)P(x — y,t)]

ot At—0 At
Changing the name of the dummy variable y into z in the last integral of the RHS and using
[ dyP(z — y, At) =1 then

/dyh(y)w = Altglo Ait[/dzP(x — 2, t) /dyP(z — vy, AT)[h(y) — h(z)H

Now, we introduce a Taylor expansion of h(y) around z:

z) + i A (2) y 7—1'2)”

and defining the “jump moments”

I . n
DW(z) = — Jim [ dy(y = 2)"P(z = y, A7)

we get

/ dyh(y)w — / dzP(a = 2,1) Y DI (2)h(2)

n=1

Integrating by parts n times we get

/dzh(z) [8P =21 Z ™ (2)P(x — z,t)]] =0

n=1

and finally this integral being valid for any h the equation for the transition probability can

be written as

8P(w(; LN o a%)n[ D™ (y)P(x — y, t)] (37)

In its general d-dimensional version it writes

n=1

w S Y o [DW (y)P(x =y, t)|. (38)

n=1 Ji--Jn ay]l ay]n .....

This equation is known under the name of Kramers-Moyal expansion (of the master

equation). Here, the “jump moments” are defined as

(n) L U Ty _y,
DY, (¥) = Jim At<gm<t+At> v,.(0) (39)

Yi (t)=yx

This equation is known under the name of Kramers-Moyal expansion (of the master
equation). Let us now discuss the Markovian process at the heart of QMC approaches

presented below.
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4. Markovian process at work in QMC

e [Free diffusion or brownian process.
The free diffusion process is invariant by space translation and thus, DM = 0. It is defined
by a constant diagonal diffusion matrix Dg) = % and D2 =0

In one dimension the Kramers-Moyal expansion is written as

OP(x — y,t) 107
pr = §ay2P(x — y,t) (40)

with initial condition, P(z — y,t = 0) = §(z — y) This equation is known under the name
of free diffusion (or heat) equation. By using a Fourier transform the gaussian solution

of this equation is easily obtained. We have

1 _(y—a)?

\/Z_mfe T (41)

plz —y,t) =

In d dimensions the solution is a product of independent one-dimensional gaussian distribu-

tions for each coordinate

d 1 wi—=? 1 v—x)?2
yz 7, y—x
p(x —y,t H = Je o (42)
=1

V 27Tt ot

Using the gaussian transition probability density, brownian trajectories can be generated
step-by-step. From Eq.(42) it is seen that the quantities (i f ) are independent and normally
distributed. y can thus be obtained from x by drawing a gaussian number for each coordinate

(yi — 1)

Vit

where 7 is a normal random vector. The previous expression can be rewritten as

yi = + Vg i=1,d (44)

This last equation is the simplest example of a discretized form of the so-called Stochastic

Differential Equation (SDE) associated with a diffusion process.

o Drifted diffusion or drifted Brownian motion. As we shall see later, QMC methods

are based on a more general version of the free Brownian motion where a drift part is

12



introduced to enhance the Monte Carlo convergence (importance sampling). In this case,

both DM and D® are non-vanishing. The first jump moment is known as the drift vector
b(x) = DV(x) (45)

In this case, the equation of evolution (KM expansion) is known as the Fokker-Planck

equation. It is written as

OP(x = y,t)

YD Py, 1)~ By b(y) POx - . 1) (46)

In the case of a constant drift vector b this equation can still be solved using a Fourier

transform, we get

1 (6% tb ) (17>
vV 2mt

Stochastic trajectories are generated using the discretized SDE

P(x —y,t) =

yi = x; + bi(wy, ..., xq)t + Vin, i=1 to d (48)

In the case of a general drift b(x), no analytical solution exists. However, it is still possible
to generate trajectories by using a small enough time-step 7 instead of an arbitrary time
t as above. For that, we need to introduce a short-time approximation of the transition
probability. When the time-step is sufficiently small, the variation of position is small and
at leading order the drift vector can be considered as constant. The transition probability

density is thus approximated as

1 —x — b(x)7)?
Px—y,7)= : tdexp—(y 5 (x)7)
V2m

(49)

This qualitative statement can be made more rigorous by looking at the small time-step
limit of the exact solution of the Fokker-Planck equation, Eq.(46). Having a short-time
gaussian expression for the transition probability, stochastic trajectories can be generated

according to

yi =i + bi(x)T+ /1, i=1,d (50)

Note that the equations for each component are now coupled through the drift vector.
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The stationary density m of the process can be obtained by solving w = 0 that is

1
5 Vim = V(br) =0

It is easily seen that this equality is fulfilled when

_ 1Vr(x)
2 7(x)

b(x) (51)

Markov process with drift can thus be used to sample a given distribution 7 (x) (for example,

—efﬂ; il ). For that, we choose a drift vector according to

the Boltzmann distribution 7(x) =
Eq.(51) (here, b = —gVE (x)) and we generate trajectories using the stochastic differential
equation, Eq.(48). Note that with such a scheme a (small) bias on the stationary distribu-
tion related to the use of a small but finite time-step is present. In contrast, it is not the

case with the Metropolis algorithm presented in the next section.

e Other Markov process. There exist a great variety of Markovian process. Let us just

say a few words about two important examples.

i) The Lévy flight: A generalization of the browian motion allowing large moves

c PRl
Flasue) =4[5 e

where z > u, = location parameter, and ¢ =scale parameter.

Probability distribution:

“Heavy-tailed” probability distribution (large values of z have non-negligible probability

to occur). Note that < 22 >= oo (mean), < z? >= oo (variance)!!

Kramers-Moyal equation derived above

W -3 (- 2)"[D(”)(Q)P(I — y,1)]

becomes here

OP(x —y,t) (- 0~
ot N oy®




with fractional derivative (0 < a < 2).

An intense activity aout the modelization of the paths followed by animals or humans when
searching for food, hunting, (or even searching for lost keys on the beach...) has been
developed. See, for example, the influential work by H. Eugene Stanley and collaborators

of 1999 (“Optimizing the success of random searches”?).
ii) The Poisson process: A simple example of discrete Markov process
Poisson process of intensity A (A > 0. Equation of evolution of discrete variable X

p(X =n)(t + At) —p(X = n)(t)
At

=p(X =n-1)) — p(X =n)(t)

when At goes to zero, the probability distribution is given by

)"
P(X =n,t) = e”\t( ') , n integer
n!

5. Stochastic process with memory effects (beyond Markov ones)

. Being almost never used in realistic simulations, they will not discussed here.

II. THE METROPOLIS ALGORITHM
A. Sampling a general density in high dimension

The purpose of the Metropolis algorithm,®® is to sample a general density 7 in arbitrary
dimension. Two remarkable features of the algorithm are that i) it can be used for (very)
large-dimensional spaces and ii) only the ratio of probability densities % are to be eval-
uated, not the probability density 7 alone. The first property is remarkable and make in
practice the Metropolis algorithm the only practical choice for treating problemes in high
dimensions. This is the reason why the algorithm is so widely used and is in the list pro-
posed in 2000 by Dongarra and Sullivan of the “10 algorithms with the greatest influence
on the development and practice of science and engineering in the 20th century”” Note that

applications including dimensions as large as several thousands are routine, and much larger

dimensions can be successfully treated. The second important feature is that there is no need
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to know the normalization of 7. It is an important practical point since the normalization
is usually a physically relevant quantity (for example, the partition function in statistical

physics) and is in general not known.

The basic idea of the Metropolis algorithm is to generate by a step-by-step procedure
configurations in space distributed according to w. The fundamental quantity of the algo-
rithm is the trial transition probability density denoted here as PT(x — y). The algorithm

is as follows.

METROPOLIS ALGORITHM

At each Monte Carlo step a new state x;,1 is generated from the current state x; by a
two-step procedure:

1) Draw a “trial” state denoted as x! using some trial transition probability PT(x — y)
2) Accept the trial state as the new state (x;41 = x7) or reject it (x;1; = x;) with
probability ¢(x;,xr) (0 < ¢ < 1) given by

m(x)PT(xT — x;)
7(x;)PT(x; — xT) } (52)

q= Min[l,

At this point, several remarks are in order.

e A necessary condition that the algorithm be valid (sample the density ) is that the
transition probability is ergodic. Ergodicity means that for any initial state xy and final
state x, and any neighborhood of x (for example, neighborhood= set of all states y such as
l|x — y|| <€) there is a finite probability starting from xo to reach the neighborhood of x
in a finite number of moves.

o If the ergodicity property is fulfilled, the Metropolis algorithm converges to = indepen-
dently on the choice of the trial transition probability and/or the initial conditions xq. Such
quantities only determines the rate of convergence of the Markov chain towards 7.

e To have a practical scheme, the trial transition density must be chosen easy to sample
(see, below).

e To accept a change with probability ¢ means: Draw a uniform random number u over

(0,1), if u < ¢ the change is accepted, if not it is rejected.
For a derivation of the Metropolis algorithm in the discrete case, see appendix C.
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B. Computing multi-dimensional integrals with the Metropolis algorithm
1. Integrals as probabilistic averages
In a Monte Carlo calculation, the integrals to be computed are of the form

1) = [ dxr(x) () (53
where 7 is some probability density defined over R? and f some integrand.
Note that the most general form for a d-dimensional integral (without ), namely I =

[ dxg(x), can always be rewritten under the form given in Eq.(53) by introducing some

arbitrary positive function gy with

ﬂ' P L
[ dxgo(x)
and
_9
f= T

However, to be able to do that, we need to know the normalization of the function gq since
it enters now the integrand f, a constraint which severely reduces the possible choices for
go- In practice, a reasonable strategy is to search where g is maximal and choose g, as
some gausian approximation around its maximum. However, this strategy will work in high
dimension only if f does not vary too much in region where m(= go) is large.

Actually, a fundamental point to realize is that for all physical problems defined in (very)
high dimension some density 7 is always present in the integrands, the density giving the
weight of the state (configuration) with respect to all other possible states. In practice, this
density is non-zero only for a very tiny fraction of all possible states, such states correspond-
ing to the so-called “physically accessible” states. If it would not be the case, the situation
would just be desesperate since sampling a huge number of states with a limited number of
Monte Carlo steps (say, up to about a few billions) is not possible.

Coming back to the definition of I(f), Eq.(53), it can be interpreted as the probabilistic

mean of f with respect to m writting



and the integral can be expressed as the average of f over an infinite number of configurations
sampled with the Metropolis algorithm (ergodic property)

I(f)= lim Zf X;). (54)

K—+o0 K

Of course, in practical simulations, a large but finite number of points is used. The integral

is thus written as
Ig(f) = I(f) + e(K) (55)
where Ik (f) is the Monte Carlo value obtained with K configurations,

K

Ie(f) = 3 () (56)

=1

and €(K) some residual statistal error. This error is discussed in the next section.

2. Optimizing the sampling and evaluatiing the statistical error

Optimizing the sampling. As seen, in the Metropolis algorithm the configurations are
changed using the the trial transition probability density. Although the values of the inte-
grals do not depend on the transition density, it determines the quality of the sampling and

thus the rate of convergence to the density 7 and then to the exact values for the integrals.

e A first natural choice is the “historical” one made by Metropolis and collaborators in
their original work where P7(x — y) is taken to be a uniform transition density in some
small region around x. Mathematically, it is written as

A, if y €z — 22+ 2)¢

Plx—y)= (57)

0, otherwise

where A is some positive constant defining the magnitude of the proposed trial move around

the current position. The acceptance probability ¢, as defined in Eq.(52), is given by

, 7(x)
qx,y) = Min|l, —= 58
(x,y) = Min[1, 725 (59)
To make the simulation converge rapidly, it is desirable to take large values of A, leading

to a better sampling of the configuration space. Unfortunately, when using large values of
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A the trial configuration, which is chosen randomly and far from the physically-accpetable
state x, has almost no chance to be accepted. On the opposite case where A is chosen
very small, the trial configuration is almost systematically accepted since ¢ ~ 1. However,
the new state is now very close of x and the sampling of the configuration space is very
inefficient.

In actual simulations, some estimator allowing to determine the optimal value of A is

introduced. A standard solution consists in defining the average acceptance probability

n=(q) as
# of accepted moves
’[’] =

# of moves (59)

and to adjust A so that the acceptation ratio is about one half.

e Optimal choice. The optimal choice of P? consists in drawing trial configurations
according to 7(y), independently on the current position x, that is, PT(x — y) = n(y). In
that case, successive drawings are independent, large moves in the configuration space can

be done and the acceptance probability is equal to one:

_w(y)P'(y —x)  w(y)m(x)
1Y) = P x> y) ~ womly)

Unfortunately, there is no efficient algorithm known to draw directly a general density in
a high-dimensional case. Actually, it is the very reason why the Metropolis algorithm has

been introduced!

e Transition probability density of the drifted random walk
To go beyond the standard uniform transition density, it is very desirable to include some
information about the shape of the distribution 7 to be sampled. Indeed, instead of making
“blind moves” in random directions as in the historical algorithm it is much better to propose
moves into directions where 7 increases significantly and avoiding moves toward region where
7 decreases stiffly.

This can be beautifully realized with the transition probability density of the drifted ran-
dom walk introduced above, Eq.(49). It is the transition probability used when Variational

Monte Carlo (VMC) calculations for electronic structure, see the next section.

e Statistical error.
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The Metropolis algorithm is a simple and efficient algorithm for generating states distributed
according to an arbitrary density. However, the price to pay for such a simplicity is the fact
that the successive states produced are correlated. Accordingly, some care is needed when
estimating the statistical error associated with the arithmetic averages computed. First of
all, it is important to check that we are not in the transient regime associated with the
initial configuration used. Second we have to estimate the correlation time of the Markov
chain.

Let f(z) a quantity whose expectation value is to be computed, I(f) = [ daen(z)f(z) A

unbiased estimator of the expectation value is the arithmetic sum
1 n
fo= = f(@) (60)
i=1

where n is a finite number of configurations drawn with the Metropolis algorithm. Note that
f,, is a random variable and that its value depends on the series of random numbers used
to generate the successive states of the sum. Unbiased means here that if the finite sum is

computed an infinite number of times with different random realizations, then

(fa) == (fl)) =I(f) (61)

Due to the central limit theorem valid for Markov process, we know that for sufficiently

large n the distribution of the random variable f,, becomes gaussian

_ 1 _ (n=(a))?

P(f) = e

where
2

o = (f.7) = (fa)

Now, a practical way to compute the error bar is to realize a certain number of independent

(62)

calculations of f, and to estimate the variance of the distribution P(f). Let N, the number of
independent calculations, we denote fnk k = 1, Ny, the values obtained for each calculation.

Unbiased estimates of the mean and variance are
1 &
= =k

and




/52
An estimate of the statistical error §f on the estimate of I(f) is then §f = % that is

Ny
1 Ny — k -2
of = m ; (fn = {fa)) (63)

In practical calculations, the N, calculations are never fully independent and some correla-
tion are introduced. Such correlations can be explicited as follows. By inserting (61) into

(62) we get
n—1 .
1 1
2== 2) (1 - )
= e 2300 el
where

ci = (frfevi) — (fi) (frra)

(time translation implies independence on k). Calculation of the ¢; can be performed by
estimating the various correlators from the N, realizations. Formula (63) can be easily

generalized using such correlators. For a discussion of such aspects, see for example®.

II1. COMPUTING THE QUANTUM-MECHANICAL PROPERTIES
ASSOCIATED WITH SOME TRIAL WAVEFUNCTION: THE
VARIATIONAL MONTE CARLO (VMC) METHOD

A. The basic idea

e Consider a trial wavefunction Uz (in our applications: [x = (ry,...,ry), N number of
particles (electrons)| chosen to be a good representation of the unknown wavefunction
e Use the Metropolis algorithm for sampling the quantum-mechanical probability density

associated with W,, namely
N 2
’/T(X) _ ’ T(X)‘ .
J x| ¥z (x))|

e Compute properties as probabilistic averages over sampled configurations.

In the case of the energy, the variational energy F, is obtained as

o _ (UrlHr) [
S (W[ W) J x| |?
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that is

B, = [ dxr(ELx

where E(x) is the so-called local energy.

HY

The probabilistic average is then evaluated as follows
K

where x* denotes the configurations drawn with the Metropolis algorithm.

Other properties can be computed in a similar way

(Wr|O¥r)

. 1
(Ur|Ur) :/dXO(X)W(X) = lim RZO(Xz)

The trial transition probability density is chosen to be the short-time drifted gaussian

transition probability density, Eq.(49)

Zero-variance property for the energy. As seen above, the statistical error on probabilistic
averages is proportional to the square root of the variance of the integrand, that is here,
of the local energy. Now, the “closest” the trial wave function is of the exact solution,
the smaller the fluctuations of E; are. In the limit of an exact wavefunction, fluctuations

vanish. This property is referred to as the zero-variance property.

Zero-variance property for general observables O. Using the Hellman-Feynman theorem
expressing (O) as the derivative of the energy with respect to the magnitude of the operator
considered as an external field and using the ZV property for the energy, it is possible to

construct new estimators for O having also a zero-variace property. For more details, see®!?.

B. The trial wavefunction

In QMC there is a great freedom in choosing the functional form of the trial wavefunction

(no computation of one- or bi-electronic integrals, just first and second derivatives of Wr).
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A great variety of functional forms has thus been considered.

1. Spin-free formalism

In constrast with most electronic structure methods where spin variables are introduced,
in QMC the trial wavefunctions are spin-free, that is they depend only on the space coordi-
nates of the electrons, x = (ry,...,ry). This is possible since the Schréodinger equation to be
solved is spin-variable independent. For a discussion of the use of a spin-free formalism in
quantum chemistry, see for example!'!. Without entering into the details, let us just say that
the matrix elements of a fully symmetric and spin-free operator between two determinants

|I) and |J) can be obtained as
(D1|O|Dy)xq = (DFD}0| DFD])x (64)

where D7 (o = a, 3) are space-only determinants built from the space orbitals corresponding
to spin . The subscript over brackets indicates the variables of integration used.
To give an example, the following spin-space determinants describing a set of doubly

occupied orbitals

¢1(I‘1)Oé ¢1(I‘2)01 ¢1(1"N)04
¢1(r1)B  di(r2)B - oi(ry)p

onja(ri)a dnpa(ra)a - Pnja(rn)a
¢N/2(I“1)5 ¢N/2(1“2)ﬁ §Z5N/2(I'N)5

has the same averages over spin-free operators as the pure space product of determinants

¢1(r1) ... di(rny2) G1(rnyo41) --- di(rn)
. . . . . . (65)
¢N/2(I'1) ¢N/2(I'N/2) (/5N/2(I‘N/2+1) €Z5N/2(I‘N)

where a-electrons have been arbitrarily chosen to have particle labels {1, ..., N/2} and S-

electrons particle labels {N/2+ 1, ..., N}
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2. Different types of wavefunction used

o Multi-determinant Slater-Jastrow. The most popular form is the multi-determinant Slater

Jastrow form written as
Ndet

k=1

where {®7} (0 = «, () is a set of molecular orbitals and e’ is the Jastrow factor. The role of
the Jastrow factor is to impose the exact behavior of the wavefunction in the [r;; — 0]-limit
(electron-electron cusp condition) and, also, to incorporate some two-body (electron-electron
and electron-nucleus) and three-body (electron-electron-nucleus) correlations (to describe
the best as possible the shape of the Coulomb hole'?). Many different forms for the Jastrow
factor have been introduced. Typically,
T= ulry) + Y ) v(ria) + Y w(ryia;mja)
i<j i o« i<j «
where r;; = |r; — R,|, and r; = |r; — R,|. Various forms for the functions u,v, and w have
been tested. For example, the minimal Padé form for u
ar;;
wlry) = 77 b]rij'

e Use of a backflow term. In trial wavefunctions including backflow, the electron coor-
dinate r; is replaced by a quasi-particle (dressed) coordinate r; = r; + > i n(ri;)(r; — ;)
and is introduced in Slater forms. Physically, this backflow displacement is supposed to
reproduce the characteristic “flow pattern” where the quantum fluid is pushed out of the

way in front of a moving particle and fills in the space behind it. For more details, see Ref.!?

e Resonating VB form and geminal forms. Let ® be the pairing function (geminal) which
takes into account the correlation between two electrons with opposite spin. If the system
is unpolarized and the state is a spin singlet, the antisymmetrized geminal product (AGP)

wavefunction is
\IJAGP<I‘17 s 7rN) = A[(I)(I‘I, I‘%)@(I‘g, I‘ﬁ) o q)(r}\\f—l? r\]LV)L (67>

where A is an operator that antisymmetrizes the product in the square brackets and the

geminal is a singlet:

1

e(r',rt) = o(r', r)— (| 1) = [ 41), (68)

S

2
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implying that ¢(r,r’) is symmetric under a permutation of its variables. Given this condi-
tions, one can prove that the spatial part of the ¥ 4p can be written in a very compact

form:
acp(ri,...,rn) = det(Ay), (69)

where A;; is a % X % matrix defined as:
Ay = o(r], rh). (70)

R

For more details, see Ref.!*

o Perturbatively selected Configuration Interaction expansion. In quantum chemistry
Configuration Interaction (CI) expansions are widely used. They allow a systematic im-
provement of the wavefunction through increase of the number of determinants and of the
basis set used. In QMC the use of CI expansions is problematic due to the very large number
of determinants. Indeed, at each Monte Carlo iteration -and there can be as many as one bil-
lion of such elementary steps- the first and second derivatives (Laplacian) must be computed
for the current electronic configuration. However, despite these drawbacks, CI expansions
have nevertheless been recently employed in QMC. It is possible only because 1) the CI
expansion is reduced by a suitable selection of the most important determinants!®6 2) effi-
cient techniques have been developed to make the CI expansion computable in a reasonable

time.'” 9. Some applications can be found in Ref.!6 20,

e Valence Bond trial wavefunction. The use of Valance Bond (VB) wavefunctions is very
attractive in quantum chemistry. Indeed, VB forms give a simple and very appealing inter-
pretation of the electronic structure in terms of Lewis pairs (bound pairs, lone pair, etc. ).
Unfortunately, from a technical point of view VB wavefunctions are made of non-orthogonal
determinants, a point which dramatically increases the computational effort (passing from
a standard N3 law to a N! law). A number of QMC works using VB wavefunctions have

been presented, see Ref.?! %

o Multi-Jastrow form The so-called Multi-Jastrow is obtained by replacing the global
Jastrow form into local Jastrows attached to one-particle molecular orbitals. Using such
local forms allows to describe the electron-electron correlation in a more specific way (elec-

tron correlation is different into a 1s orbitals, 3d orbitals, polarizable lone pairs, etc.) See.
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e etc. (any home-made approximate wavefunction can be easily used in QMC).

IV. COMPUTING THE EXACT GROUND-STATE ENERGY: THE
DIFFUSION MONTE CARLO (DMC) METHOD

A. Diffusion Monte Carlo

Let us start with the time-dependent Schrédinger equation (atomic units)

OU(x,t) 1,
I = —§V U(x,t)+ (V(x) — Er)¥(x,1t)

where Frp is some arbitrary reference energy. Let us make the transformation to imaginary
time (Wick’s rotation)
t— —it
oV (x,t)
ot

Important: As far as time-independent properties are considered, this transformation has

— %v%p(x, t) — (V(x) — Ep)V¥(x,t) (71)

no consequences. In particular, the eigensolutions of the Hamiltonian are not modified.

Let us note ¥Ur(x) a (time-independent) trial wavefunction and introduce a “mixed”

density

f(x,t) = Up(x)¥(x,t) (72)

Multiplying each side of Eq.(81) by W, we get

of(x,t) 1 orf (%, 1)
o VTV [\IIT(X)

| = (V(x) = Er)f(x,1)

With simple algebra we get

1 f 1 1 V23U,
—\Ij 21 J — 2 b = b2
UV LG ] = GV bV gt b
where the drift vector is given by
VU
b=
. (73)

Remarking that
_ HYy  1VPUp

E, = - 1%
L=y, 2\1/T+
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finally, we have

of(x,t)
ot

= SVA01) = Vb0 fx,1)] — (Bo) — Br) f(x.1) (74)

or

of (x,t)
ot

where L is the Fokker-Planck operator

= (L — (Ep — ET))f(Xv t)

L= %v‘é’ —V[b/] (75)

Eq.(74) determining the evolution of the mixed density f can be considered as the funda-

mental equation of diffusion Monte Carlo.

The time evolution of the density results from two coupled contributions:

1

(1) A first term describing a diffusion process associated with a constant diffusion D = 3

and a drift term, b = V\Ij—‘?. Note that the stationary density is given by m = W2,
(2) A potential part given by the local energy. Considered alone, the equation of evolution

9f(x,1)
ot

= —(EL(X) - ET)f(X’ t)

whose solution is

Fx,) = f(x,t = 0)eFrLI=Fr)

This part describes a so-called birth-death process or branching process. At point x the
density increases/decreases in time according to the variation of the local energy around the

trial energy. Denoting 7 the small time-step used in the simulation we have
fxt+7) = w(x,7)f(x,1) (76)
where the weight w is defined as

w(x, 1) = e T ELE)=Er)

Diffusion Monte Carlo combines both process. The resulting stationary distribution can
be obtained by writing
L - (EL - ET) - O
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It is easy to check that « fulfilling this equation is given by

mpmc = YrPo (77)

where @ is the unknown exact ground-state and Ep has ben taken equal to Ej.
An unbiased estimator of the ground-state energy is the expectation value of the local
energy over the stationary distribution Indeed, because the operator H is a hermitian (self-

adjoint) operator we can write

g YT [ @ iE
[ oWy [ oWy
and then
E() = /dXﬂ'DMc<X>EL(X) (78)

A minimal DMC algorithm is thus
e Start from a population of walkers
e Move independently each walker according to Eq.(79)
e For each walker compute the branching weight w. From w build an integer whose expec-
tation value gives w, for example m = F(w + u), u random number and E=integer part.
e Remove (m = 0) or duplicate reach walker a certain number of times (m > 0). In average,
this step reproduces the evolution of the density as given in Eq.(76)
e Modify the reference energy Er to keep the number of walkers approximately constant.

e Add contribution of the new walkers to each average (for the energy, Eq.(78)) and iterate.

Population control step. As seen the number of walkers can varied in time. The total

number of walkers at time ¢ is given by

M(t) = /dxf(x,t)

and its time variation by

dM (1) / IES)

dt ot

In the case where only the diffusion part is considered, we have

dM (t)

— = /def(x,t) —0
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The norm of the density is conserved and the number of walkers can be kept constant. It is

no longer the case when adding the branching term

M(#)

dM(t) = —/dX(EL(x) — Er)f(x,t) = - Z(EL(k) — Er)

dt
k=1

Since nothing prevents the population to increase or decrease indefinitely a population con-
trol step must be introduced. A standard solution consists in modifying smoothly the

reference energy such that to keep in average the population constant.

Er(t+7) = Brlt) + = m[%]

B. DMUC for fermions: The sign problem and the fixed-node approximation

As just presented the DMC algorithm is exact only if the trial wavefunction W, never
vanishes (at finite distances), say W7 > 0. It can be directly employed for quantum systems
with no Fermi constraints (bosonic systems, quantum oscillators, ensemble of distinguishable
particles, etc.). Indeed, in such cases the ground-state eigenfunction ®, is nodeless (say,

positive).

Unfortunately, for fermionic systems such an eigenstate is physically forbidden by the

Pauli exclusion principle [25], and the fermionic ground-state has now a sign.

Let us see what happens if the DMC algorithm is used as it is.

Let us recall that the walkers are moved move according to

Yyi = & + bi(xX)T + /T i =1,3N (79)
with
b(x) = % (80)

e The values of x where W7 vanishes are called the zeros (or nodes) of Wr. It can be
shown that the nodes of the exact wavefunctions are a variety of dimension (3N — 1) (the

nodes “cut” the configuration space). It is the same for the trial wavefunctions used.
e Nodal pockets are the subdomains of constant sign for the wavefunction

e The union of nodal pockets is the entire configuration space
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e The nodes of ¥, are infinitely repulsive barriers for the walkers, and thus each

walker is trapped for ever into the nodal pocket where it starts from.

e The nodes of U1 being not exact, the Schrodinger equation is solved with the approxima-
tion that the solution vanishes wherever W, vanishes. It is the fixed-node approximation.

We can easily show the variational property
E{N > Eq

Alternative point of view
The basic idea of DMC is to transform the (imaginary) time-dependent Schrédinger

equation

oV (x,t)

o = —(H — Er)¥(x.1) (81)

into a generalized diffusion equation by introducing a mixed density f as
f(X7 t) = \I[T<X)\I[(X7 t) (82>

It can be viewed as applying a similarity transformation to the SE so that

ofx,t)
CL) 1t

with

. 1
L =L~ (B~ Er)=Yr(H - Br) g~
T

The eigensolutions of L* and ¥, (H — ET)% are related via

with u; = Urd,.

If U vanishes, some new boundary conditions depending on W, are put on the operator
L*. The energy obtained by simulating L* is now the ground-state energy of the Hamil-
tonian with these new boundary-conditions which are not exact,this is the fixed-node

approximation.

Mathematical digression For fermions the functional space of wave functions is divided into two
orthogonal spaces

L*RMNY=BaF (83)
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where F' is the vector space of “fermionic” wavefunctions defined as follows:

U € F if and only if ¥[o(x)] = sgn(o)¥[(x)] (84)
where ¢ ranges in some permutation subgroup of the symmetric group Sy leaving invariant some 2-subsets
partition of {1,..., N} (corresponding to “spin up” or “spin down” electrons). In particular, all totally skew-
symmetric functions are in this case. B, the vector space of “bosonic” wavefunctions, is then simply the
orthogonal of F'. In particular, all totally symmetric functions are in B.

The Pauli principle can then be summarized by saying that the “fermionic” eigensolutions of H physically
admissible are those obtained by restricting the Hamiltonian to the vector space F. In particular, the totally

symmetric nodeless lowest eigenstate of H is forbidden for fermions (the so-called “bosonic” ground-state).
Note that in contrast with standard presentations of the Pauli exclusion principle, no spin coordinates

have been introduced here. Actually, at the non-relativistic level such coordinates are not needed, see
e.g.[25,11]. However, they are of common use since within a spin-space representation the Pauli exclusion
principle is particularly simple to express. The eigenstates are written as a combination of space and spin
functions and only those that are totally antisymmetric under the exchange of space-spin coordinates of
any pair of particles are physically allowed. In a spin-free (space-only) formalism as used here, the spatial
wavefunctions ¥(x) just need to be antisymmetric under permutations within two subsets of particles that
can be formally associated with spin “up” and “down” particles.

Because the Schrodinger Hamiltonian is spin-independent and the diffusion processes introduced are
defined in a pure space representation, the use of spin coordinates is not adapted and is thus avoided in

QMLC.

Finally, the problem to solve in QMC is to design an efficient algorithm allowing to
converge to the ground-state fermionic eigenfunction (lowest eigenstate of H restricted to
vector space F'). Unfortunately, up to now it has not been possible to define a computation-
ally tractable (polynomial) algorithm implementing exactly such a property for a general
fermionic system. This problem -known under the name of “sign problem” is of uttermost
practical importance and is viewed as one of the most important problems to be solved in
computational many-body physics [26—29]

WY denotes the Fixed-Node (FN) ground-state eigenfunction obtained by imposing the
nodal boundaries to W. Due to its very construction the fixed-node solution has the same
sign as the trial wavefunction (¥7(x)WE™(x) > 0). The fermionic problem defined over the
entire configuration space R is thus recast in a sum of independent bosonic-type problems
defined in each nodal volume cut by the nodes of the approximate trial wavefunction. In-
stead of defining a unique Fokker-Planck operator with a non-divergent drift vector over all
space, a set of independent FP operators restricted to each nodal cell domain is considered.
Transposed into the original Hamiltonian problem, it means that the Schrodinger equation
is solved independently in each nodal cell (mathematically, the N-body Schrédinger ground-
state is computed with additional Dirichlet boundary condition on the nodal set N' where

UL vanishes, NV = {x € R¥ : UL (x) = 0}. In the general case, the zeroes of the trial
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wavefunction do not coincide with those of the unknown fermionic eigensolution and we are
thus left with a systematic bias, the fixed-node error.

At this point, several important theoretical and practical aspects of the fixed-node ap-
proximation must be discussed.

Mathematical foundation of the fized-node approach. A mathematical analysis of the
fixed-node approach and the justification of the statements given above can be found in
Cances et al. [30] and Rousset [31]. A convenient framework to analyze the fixed-node
approach is to express it as a variational problem in the functional space of anti(skew)-
symmetric functions with Dirichlet-type boundary conditions.

The tiling theorem. By solving the Schrodinger equation as a juxtaposition of independent
problems, there is no reason why ground-state energies computed separately in each domain
should be identical. The fixed-node energy is defined as the minimum of such energies.
Unfortunately, in QMC calculations for non-trivial systems, the minimum found may depend
on the initial conditions in the case where not all nodal domains are sampled, a situation
that may arise since the number and localization of such domains in high dimension is in
general not known. Hopefully, for fermionic ground-states Ceperley [32] has proved under
physically reasonable conditions the existence of a tiling theorem for the exact ground-state:
There is only one distinct kind of nodal regions. All others are related to it by permutational
symmetry (with same energy). Unfortunately, in practice we need that W satisfies the tiling
property, not just the unknown ground-state. In actual simulations, it is generally assumed
that Hartree-Fock or Kohn-Sham-type wavefunctions satisfy the tiling property. Results
seem to validate such a statement. However, some (mathematical) work is needed to clarify
this point.

When W7 is chosen to be positive and does not vanish (except at infinity) the DMC
algorithm just presented will converge to the stationary density corresponding to the lowest
(positive) eigenstate of H. For bosonic systems this latter state is the physical ground-state
and DMC is an exact method for solving the Schrodinger equation.

When we are dealing with fermions (electrons) the situation is different. The fermionic
ground-state is antisymmetric and has a non-constant sign. The algorithm presented can
also be used using a fermionic U (for example, a Hartree-Fock determinant). However, the

ground-state properties obtained are no longer exact.
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e Wherever Up vanishes, the drift vector diverges. The walkers are trapped for ever
within the nodal cells. The problem is recast into a set of independent bosonic calculations
in each nodal region.

e The nodes of W7 are of two types: exchange nodes and other nodes. Exchange nodes are
(3N — 3)-dimensional, exact nodes (3N — 1)-dimensional. The nodes are not known and
there is a fixed-node bias.

e Fixed-node energy has a variational property
EfN > Ey

the equality occuring when the nodes of U1 are exact.

e A priori each simulation performed in each nodal cell leads to a different energy. The
DMC energy is the minimum of them. However, Ceperley has shown that there exists a
tiling property,” .

e The nodes being a (3N —1)-dimensional object, their structure is not trivial and to decrease

of fixed-node error in a systematic way is not a simple problem.

V. TRIAL WAVEFUNCTION OPTIMIZATION
A. The problem

When accurate results are searched for, we need to reduce the two following errors:
(1) The statistical fluctuations related to the finite number of Monte Carlo steps
(2) The fixed-node bias related to the use of an approximate nodal hypersurface.

Both errors can be decreased by optimizing the parameters of the trial wavefunction.
Different criteria can be used to define the “quality” of a trial wavefunction. The two most
employed:

e Minimization of the variational energy
By — (rlH1)
(Ur|Vr)
where p denotes the set of parameters of Ur(x, p)
e Minimization of the variance of the Hamiltonian
(¥l [H = E(p)|¥1)
(Wr|Pr)

o*(p) =
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B. The correlated approach

The most natural idea to optimize the trial wavefunction is to minimize the total energy
evaluated for a finite number of configurations N, drawn in a preliminary Variational Monte

Carlo step:

E(p) ~ Nic Z Er(x;)

In practice, such a idea is difficult to realize for two reasons:

(1) For a finite number of walkers E(p) is not bounded from below and the minimizer can
change parameters in a wird way so that to concentrate the wavefunction around one or a
few points having a very low local energy.

(2) The stationary distribution, W2 (x,p) depends on parameters p, and thus new con-
figurations must be redrawn at each change of parameters. The variational energy being
calculated for a finite number of points, the energy curve E(p) is then noisy and it is a

tricky situation for the minimizer.

Practical solution:

(1) When a not too large number of configurations is used (a few thousand’s) it is much
preferable to minimize the variance since it is a quantity bounded from below (o2 > 0) for
any finite number of configurations.

(2) To avoid the noisy character of E(p) or o?(p) a fixed set of configurations can be used

and a correlated approach introduced?

& 3 wi(EL — E)?(xi,p)

2 _
g (p) - 1 N
—_— . . w
Nc lel 1
: ‘I’%(Xi,r’) :
where N, number of configurations and w; = i) The configurations are drawn once
T\ &%y

for all according to W2 (x;, pp). In such conditions the energy curve is no longer noisy and
standard minimizers (for example, quasi-Newton) can be employed.
Note that o?(p) is a reasonable estimate of

(Ur|(H — E)*|¥r)
(Vr[Wr)

only if the weights remain all close to one. It is thus important to quantify this aspect in
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some way, for example by introducing

1 (Ziwi)2
= Nc ZiwiQ

When 7 is close to one, the number of configurations playing a role is close to N, and the
estimation of the energy/variance is reasonable. In contrast, when only a few configurations

contribute, 7 is close to zero and a new set of reference points must absolutely be drawn.

C. The linear method

The linear method has been recently introduced by Umrigar et al.?® and is presently one
of the most efficient approach to optimize a large number of parameters (both linear and
non-linear).

The method is based on the minimization of the variational energy. Let us call IV, the
number of parameters. The method consists in introducing a linear Taylor expansion around

the current parameters py.

NP
Ur(x,p) = ¥r(x,po) + Y (P — Po)i¥; (85)
i=1
where the functions ¥; are defined as
‘;[]i _ a\IjT(Xa pO)
Op;

Functions ¥, are now considered as a basis for the trial wavefunction and the energy is
minimized in this basis set. Remarking that the ¥; are not orthogonal, the problem to solve

is thus a generalized eigenvalue problem
HAp = ESAp (86)
where H and S are the Hamiltonian and overlap matrices, respectively.
Hij = (V;|H|¥;) and S;; = (¥;|¥;)

These quantities can be calculated in a VMC calculation using W2 as stationary distribution

U, HU,

H. = (—
g <‘IIO ‘IJO >\I/(2)
and
v, U
S =g, 7,1
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VI. A FEW NUMERICAL APPLICATIONS: EXPLORING ATOMIC,
MOLECULAR AND SOLID-STATE SYSTEMS

Let us now present some (very) recent applications of QMC for a variety of systems.

A. G2 benchmark

Benchmark sets are useful in electronic structure theory. They allow to compare the
results obtained by various methods against some reference data. The so-called G2 set
(actually G1 set) has been introduced by Curtiss and collaborators and has been exten-
sively used as benchmark in quantum chemistry. The benchmark consists in comparing the
(corrected) experimental values for the atomization energies of a set of N,,,; = 55 simple
molecules with those obtained with the method to be evaluated. The criterium used is the
mean absolute deviation (MAD) defined as

1 Niol

MAD = Eft — et
D DLAE

=1

where E® is the atomization energy of molecule 7. The smaller the MAD is the better the

method reproduces the experimental values.

DFT and post-HF methods
e LDA: MAD ~ 40 kcal/mol
e B3LYP and B3PW91: MAD ~ 2.5 kcal/mol
e CCSDT /aug-cc-pVQZ MAD ~ 2.8 kcal/mol
e CCSDT Complete Basis Set limit, MAD ~ 1.3 kcal/mol

QMC
e Grossman (2002) HF nodes, use of pseudo-potientials, MAD ~ 2.9 kcal/mol
e Nemec et al. (2010) HF nodes, all-electron, MAD ~ 3.2 kcal/mol.
e Petruziello et al. (2012) MAD: 5z basis set ~ 1.2 kcal/mol.

The best MAD obtained with QMC is comparable to that obtained with CCSDT in the

infinite basis set limit.
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B. Non-covalent interactions

See Table 1 of the paper of Dubecky et al. (2016) “Noncovalent Interactions by Quantum
Monte Carlo”.3* A long list of references (in chronological order) presenting QMC calcula-

tions of noncovalent interactions is given.

C. Water nano-droplets

Reference:??

D. Barrier heights

Krongchon et al. “Accurate barrier heights using diffusion Monte Carlo” (2017)%¢ Bench-

mark calculations of the barrier heights of 19 non-hydrogen-transfer chemical reactions.

E. 3d-metal containing molecules

K. Doblhoft-Dier et al. “Diffusion Monte Carlo for Accurate Dissociation Energies of
3d Transition Metal Containing Molecules” (2016)37. Benchmark calculations of for 20

transition metal containing dimers. Set introduced by Truhlar et al. (2015)7

F. H and He under very high pressure

Reference:3®

G. cuprates

Reference:3? 40 41

H. Solids

Reference:*? Reference:*3
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Appendix A: L’Ecuyer pseudo-random generator
The L’Ecuyer pseudo-random generator is a combined multiple recursive generator
Zn = (Tn — Yn) mod my

where x,, and y,, are
Ty = (a1Tp_1 + axy_o + agx,_3) mod my
Yn = (01Yn—1 + bayn_o + b3y,_3) mod my
with coefficients a; = 0,as = 63308, a3 = —183326,b; = 86098, by = 0,b3 = —539608, and
moduli m; = 231 — 1 = 2147483647 and ms = 2145483479.
The period is approximately 2'®> (about 10°9).

Appendix B: Ornstein-Uhlenbeck process
The Ornstein-Uhlenbeck process is associated with a linear drift vector
b(x) = —kx
, where k some positive constant. The transition probability density is

1 - 2
Pz — y,t) = exp — v —72)

1—? V172

where v = e™*.

Appendix C: Derivation of the Metropolis algorithm in the discrete case
e Def. 1 Probability distribution 7; > 0i=1,Nand ) . m =1

e Def. 2 transition probability (or stochastic matrix) Pi_,;:

i P, >0

N
ii.> P,; =1 (independent on %)

J=1
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e Def. 3 Ergodic transition probability

Vip Vi there exist a non-zero probability that after a finite number of steps starting

from ig we end at 7.

e Def. 4 Stationary (or invariant) distribution 7:
Z Py =,

Metropolis algorithm

Let wa being a trial ergodic transition probability, then P;_,; defined as follows
(
Piy; = PL;Min(1, R;j) jA#I

Pisi= Pl + g PL(1—Min(1, Ry)) j=i

. w; PT .
with Rij = ﬁ

\ =]

is an ergodic transition probability admitting m; as stationary distribution.

Proof:
1. P,,; is a transition probability

e P;,; > 0 obvious

2. Stationary distribution
We have to show: > . mP,,; = 7,
For that we first show that {P,_,;;m;} obeys detailed balance

7Tz‘Pz'—>j = 7Tij—>z' V(iaj)
Proof:
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e i=j obvious

e i#£j: the ratio of the two sides of the previous equality is

ijj%i _ RZ]Mln(l,Rﬂ)

'/TszH] Mm(l, Rz])

Remarking that R;; = 1/R;; and distinguising between the two cases correspond-

ing to R;; > 1 and R;; < 1, we easily verify that this ratio is equal to 1.

Finally, using the detailed balance relation we get

E 7Tz'PHj:E ij)jﬁi:ﬂ-j
i i

thus, m; is the stationary distrbution.

Appendix D: Convergence of the Metropolis algorithm

Let us precise the way the distribution converges to the stationary one.
Let f® be a distribution, that is a set of N positive real numbers. The application of

the stochastoc matrix to this distribution is written as
1 =3 5P = P
J
We have the following property

lim fi(n) ~ Pnfi(o) =T Vf(o)
n—oo

The different steps of the proof are as follows.

e Let us associate to P;_,; a symmetric real matrix defined as follows

1
M;; = \/W_ipmj\/?
J

Let us insist that the stochastic matrix is in general not symmetric.

e It is easy to check that /7 is eigenstate of M with eigenvalue 1

> Mg/ = Vi
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e We also see that
f@)
NG

N3

e Let us now use the spectral decomposition of M. For large n, M"™ becomes the

PO = /zM"

projector in the eigenspace associated with the largest eigenvalue. Due to its particular
structure, it can be shown that M has eigenvalues \; such that 0 < |)\;| < 1 and in
the case where m does not vanish, the associated eigenspace is not degenerate. As a

consequence

PO — ¢ q

where c is the overlap between the initial distribution f(®)/\/7 and the eigenstate /7

of matrix M.
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