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Four Lectures on DMRG in Quantum Chemistry

© 'First-Generation' Density Matrix Renormalization Group (DMRG)
in Quantum Chemistry

@ 'Second-Generation’ DMRG:
Matrix Product and Tensor Network States
Matrix Product Operators

© Some (of our) Results of Quantum-Chemical DMRG Calculations

Very useful introductory reference:

U. Schollwdck, The density-matrix renormalization group in the age of
matrix product states, arXiv: 1008.3477v2
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Reviews on DMRG in Quantum Chemistry
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Lecture 1

"First-Generation” DMRG in Quantum Chemistry

@ Standard Configuration Interaction in Explicit Second Quantization

@ Dimension Reduction by Decimation

© Elements of the DMRG Algorithm
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Non-Relativistic Many-Electron Hamiltonian

@ many-electron Hamiltonian in position space (Hartree atomic units)

Yo 7z |

H, = D P — 1

S (s L 6
with 7;; = |r; — ;| and N being the number of electrons.

@ eigenvalue equation: electronic Schrodinger equation

Hy WY (e = Ba(RY) v ({ri}) (2)

@ central in electronic structure theory: how to approximate W ?
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Standard Procedure: Construction of Many-Electron Basis

e Construct many-electron (determinantal) basis set {®;} from a given
(finite) one-electron (orbital) basis set ¢;

@ From the solution of the Roothaan—Hall equations, one obtains n
orbitals from n one-electron basis functions.

e From the N orbitals with the lowest energy, the Hartree—Fock (HF)
Slater determinant is constructed.

@ The other determinants (configurations) are obtained by subsequent
substitution of orbitals in the HF Slater determinant ®g:

{@r} = {@f} — {@f} — {@f (3)

@ Determinants are classified by number of 'excitations’ (=

substitutions in HF reference determinant) into virtual orbitals.
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Standard Full Configuration Interaction (FCI)

@ The number of possible determinants is determined by the number of

virtual orbitals n — V.

@ Including all possible excited Slater determinants for a finite or infinite

one-electron basis set leads to the so-called full Cl approach.

@ Number of Slater determinants ngp for N spin orbitals chosen from a

set of n spin orbitals (slang: N electrons in n spin orbitals):

o0 = () = v v @

Example: There are ~ 10'2 different possibilities to distribute 21

electrons in 43 spin orbitals.

o In physics FCl is called exact diagonalization.
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Truncated Cl Wave Functions

Standard recipe to avoid the factorial scaling of the many-electron

basis-set size: truncate basis! Note: basis is pre-defined!

Assumption: Substitution hierarchy is a useful measure to generate a
systematically improvable basis set.

CIS: all singly-(S)-excited determinants are included:

CIS = CyPo + Z C(az)(I)
(ai)
CISD: all singly- and doubly-(D)-excited determinants are included:

UGS = Co®o+ Y Clay® + D Clainy)®
(ai) (ai) (bj)

Cos Claiys Claipy) € {Cr}
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Determination of the Cl Expansion Coefficients C

The Cl expansion coefficients C'; determined by variational principle:

@ write down the expectation value for the energy
@ introduce the determinantal basis set

@ vary the energy in order to minimize it

Expectation value for the Cl electronic energy:

- <‘I/ecll‘ He |“IleclI
c (v v

Insert expansion of Slater determinants:

_ 2k OkCp (®x| Ha |21)
< >k CkCpL( Pk |PL)
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The CI Eigenvalue Problem

Calculate all derivatives 9ESG! / 9C% and set them equal to zero, which

yields the Cl eigenvalue problem:

H.-C=C- E, (10)

Essential: H is constructed from matrix elements (®x| H. |[Pr) in
the pre-defined determinantal basis {®f }

By solving the Cl eigenvalue problem, ground and excited electronic states

of the system are obtained.

E; is diagonal matrix with total energies of all electronic states that can
be expressed in basis given (M determinants yield M electronic states).
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Standard 'Technical’ Trick: Second Quantization

Operators and wave functions are expressed in terms of creation and
annihilation operators to implement the Slater—Condon rules for the

evaluation of matrix elements (® x| H; |®) directly into the formalism.

H,; in second quantization (i, j, k, [ are spin orbital indices):
= Ha = Y {(6:lh(i)|6;)ala
ij

3 3206:00) (66(2)] 9(1,2) 612)) 65l alaar (1)

zgkl

Cl wave function in second quantization:

FCI

= CyPp + Z Claiag Ta;®g + Z C(ai b)) abaja Ta;®g - (12)
(ai) (ad)(bj)
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ClI Energy in Second Quantization

ES (v Ha
SO kOt (6i(1) h(1) |6;(1)

ij KL

v (13)

=hij

Vi

3 303 CRCLTEE (61(1) (3] 9(1,2) [60(2) 65 (1) (14)

ijkl KL

Fijkl

Lijk

n 1 n
Z’Yijhij + 5 Z TijriGijr (15)
i

ijkl

tiKL or TlKkLl are matrix elements of determinantal basis functions over

palrs or quadruples of elementary operators a' and a.

7;; are I';;11 are density matrix elements.
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Is there a better way to construct the finite-dimensional
determinantal basis set in order to avoid the factorial scaling?
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Coupled-Cluster — An Advanced Cl-type Wave Function

Ansatz:
UG® = exp (T) ®4F (16)

Excitation operator:

T=T +To+Ts+ - (17)
where
cluster-amplitudes
~ =~
To = Z t?;’.'f.' ~afajala; = T = Zt?alai (18)
ab- - ig-- ) i at
—— a pairs aTa
a times . times
Notation:

CCS(T'=T1),CCSD (T'=T1+T5), CCSDT (T'=T1 + T+ T3) ,---

Coupled-cluster improves on truncated Cl, because certain (disconnected)

higher excited configurations (e.g., t?ajlait?ialakaliaj) are included.
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Is there a better way to construct the finite-dimensional
determinantal basis set in order to avoid the factorial scaling?

Let’s investigate FCI from a different perspective:
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Many-Electron Hamiltonian in Second Quantization

@ many-electron Hamiltonian in second quantization

Hy = E hl,awaja-l- Z Vijual, Jg/aka’ala

z]kl
o,0!

with o € {a, B} and the creators and annihilators a;, and a

@ with one-electron integrals /;;

n= [em (—%W -y f—j) 05(r) dir

@ and two-electron integrals V;;

d3T1d3T2

// 07 (r1)@;(r2)dn(r2)di(r1)

12
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Full Cl in (Explicit) Second Quantization

1

e Elementary operators: a,, and a;,

@ Hamiltonian matrix is now constructed from the matrix representation

for the elementary operators by direct products

o By contrast to standard procedure, instead of evaluating the
action of the elementary operators on the determinantal basis
functions, we set-up a matrix representation of the elementary
operators and construct a matrix representation of the
Hamiltonian DIRECTLY.

This Hamiltonian matrix can then be diagonalized.
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Elementary operators in (Explicit) Second Quantization

"

@ a,;,  and a;, operate on spin orbital with two states: occ. and unocc.

1 0
0)ir = ( , ) and (1) = ( 1 ) (22)

@ Corresponding matrix representation of elementary operators:

0 — 1D, 00 1\ (o

e = (P()-(1) @

Fan 0 0[O0\ [0

e (D))

e () e
1

0 > (26)
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Matrices for Hamiltonian in (Explicit) Second Quantization

@ Dimension of elementary operators defined for orbital space of n spin
orbitals with 2 states each: 2" = dimension of the Hamiltonian is 2™

(NB: for spatial orbitals we have 4™ where 4 is the number of states per orbital [empty, up, down, doubly occupied])

),

@ 2"-dimensional elementary operator: (the spin index has been omitted for the sake of clarity

a]\_(l 0>®...®<1 0> ®<0 0)@(1 0) ®_”®<1
g 0o -1/, o -1 ), 1o ), 01 ) 0

matrix structure needed for anticommutation

= o <

cf. Jordan—Wigner transformation

@ Then, 2™ x 2™-matrix of term of the one-electron part of Hamiltonian reads:

R
hijaja; =

h{(l 0>® ®<1 0) ®(0 0)@(1 0> © ®<1 0)}
o -1/, o -1 ). oo ), o1/ o 1)
X[<1 0>®”_®(1 0) ®<u 1>®<10> ®”_®(10>]

0 —1 N 0 -1 J—1 0o 0 j 0 1 1 0 1 n

@ Similar expression for the two-electron part, but product of four
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Nothing has been gained yet!

Even worse: Huge matrices have been generated which contain
mostly zeros and need to be multiplied and added.
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Nothing has been gained yet!

Even worse: Huge matrices have been generated which contain
mostly zeros and need to be multiplied and added.

Need to find a way to reduce the dimension !
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What is the best reduced many-particle basis?

First attempt: Wilson’s renormalization group

tum Chemistry



Wilson's Renormalization Group: Dimension Reduction

)

© Choose a number of orbitals [ whose many-electron Hamiltonian He(f

can still be constructed and exactly diagonalized.

@ Diagonalize HS) of dimension 2! (or 4! for spatial orbitals) and select

m lowest-energy eigenvectors out of the 2! eigenvectors.

© Reduce the dimension of He(f) from 2! to m by transformation with

0

the rectangular m x 2! matrix of m eigenvectors of Hef .

@ Construct HSH) from HS) and HS) defined for an orbital taken

from the n — [ remaining orbitals.

@ Continue with 2) until [+ 1 =n.
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Issues with Wilson's Renormalization Group

° He(f) requires exact diagonalization (or a subspace iteration technique
like Lanczos, which produces a large portion of the low-energy
eigenvectors) and thus its dimension 2! is limited and I must therefore
be rather small

@ No guarantee that reduced basis is optimum choice in some sense.

@ No information from those n — [ remaining orbitals, which have not

been considered at the [th iteration step, is taken into account in the

(

construction of H, f) (particularly bad, when [ is small)

€
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What is the best reduced many-particle basis in terms of a
least-squares fit?

Second attempt: White’s DMRG
— transform with eigenvectors of a reduced density matrix

S. R. White, Phys. Rev. Lett. 1992 69 2863; Phys. Rev. B 1993 48 10345

tum Chemistry



The (two-site) DMRG Algorithm: Terminology

@ arrange all spatial orbitals as a one-dimensional lattice

@ lattice consists of sites
site
o o 0o 0 --- @ (27)
lattice

@ the sites of solid state physics are the orbitals in quantum chemistry

o divide lattice into system block, two single sites, environment block

[ @« o o .- 0| o o | o o o - o |
system environment
(active (explicitly (complementary

subsystem) treated subsystem)
subsystem)
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The DMRG Algorithm: Initialization

@ Construct many-particle states explicitly on active subsystem

— actually: find matrix representation of elementary operators defined

on this subsystem

e NB: For a total(!) system of N electrons, many-particle states with 0

to a maximum of NN electrons need to be considered

@ Hence, active subsystem can comprise only few orbitals (too many

sites prohibitive because of factorial scaling of states)

e Find a way to increase the number of orbitals (blocking), while

keeping the number of basis states on the active subsystem constant

(decimation)
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The DMRG Algorithm: Blocking

@ enlarge the system (and environment) by one site ('blocking’)
old system

new system

@ new states are tensor products of those on old system + those on new site

@ calculate operators of new system as direct product of operators defined for
old system and new site

@ Dimension of operators on old system: m; Dim. of ops. on single site: 4
=- Dimension of operators defined on new system: 4m
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Construction & Diagonalization of Total Hamiltonian

@ consider system and environment each enlarged by one of the explicitly
treated sites (dimension for both: 4m)

@ any electronic state defined on the total orbital space (superblock) can be
written as a tensor product over system |¢) and environment |j) basis states

MG = Zwul ® 1) (28)

@ corresponding superblock Hamiltonian Hyyperbiock is calculated as a sum of
all elementary operator products defined on enlarged system and enlarged
environment (dimension: 4m x 4m = 16m?)

@ NB: realize that in the first set of iterations (sweep), in which the active
subsystem grows orbital by orbital, guessing of a reduced number of states
on the environment is required (warm-up)

@ diagonalize Hgyperblock to obtain Cl-type coefficients ww (scaling:
2\3 )

n's diagonalizer)
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Construction & Diagonalization of Reduced Density Matrix

@ The DMRG Cl-type coefficients 1;; carry two indices as they are
explicitly obtained for the i-th system and the j-th environment basis
state.

@ The reduced density matrix p*/¢ (RDM) for the system can be
obtained by tracing out all (sub)states j from the environment:

Pfi//e = Z Vi (29)

j€{e}

ofe

AN of dimension 4m

@ This matrix p

e m eigenvectors of p*/¢ can be used for the dimension reduction of all

elementary operators from 4m back to the original dimension m
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Understanding Relation of RDM to Least-Squares Fitting

@ We have the following bases at our disposal:
system: {|i);i=1,...,ms}
environment: {|j);7=1,...,m.}

@ In the product basis (bipartition) we express a pure state of the

superblock (total system; real coefficients assumed):
Uo =Y yyli) @ 5) (30)
ij

@ Now search for m < mg orthogonal, linear-independent system states
{luy;u=1,...,m}

into which we expand the approximate state

oL = chlu ® |5) (31)
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RDM, SVD, and Least-Squares Fitting

o We wish ¥, ~ \f/;l by requiring that
2

S = ‘\Ilel — 0| = min (32)

@ Introduce a similar reduced-dimensional basis on the environment:
{lv);v=1,...,m} with (jlv) = cy; and 3, lewi]? =1
such that the approximate state takes the simple form

Ve =Y cklur) @ |og) (33)
k

(Schmidt decomposition)

e With Uy, = (i|ug) and Vj, = (j|vi) we have for the squared norm

S = Z [ﬂ}ij - Z ckUikVik
ij k

(34)

DMRG in Quantum Chemistry Markus Reiher 32 /155




RDM, SVD, and Least-Squares Fitting

o Here, we recognize the similarity to the least-squares fitting

problem in linear algebra!

@ Hence, we may use singular value decomposition (SVD) of a
rectangular matrix to minimize S — factorize ¢ = (1;):

Yp=U-D-VT (35)

@ The matrix U = (Ujy,) is orthogonal and of dimension ms x ms.
® The matrix V' = (V};) is column-orthogonal and of dimension

Me X M.
@ D is an ms-dimensional diagonal matrix and contains the singular

values of v (assume mgs < m,, otherwise consider 1)1).

DMRG in Quantum Chemistry Markus Reiher 33 / 155



RDM, SVD, and Least-Squares Fitting

@ The m largest diagonal elements of D are the desired coefficients ¢,
and the corresponding column vectors of U and V are the desired
lug) and |vg).

@ But how can one make the connection to the RDM?

@ Consider the von Neumann density operator for the superblock
(30) N
P - |\Ilel el - Z 1/}1]7/11] | | ® |]><] | (36)
i’ 55!
@ reduced density operator from tracing out the enviroment states
ps = Trep= > ity [i)(i'|(5"]5)(']5") (37)
j// Z'Z'/]'J/
= > i li) (i) (38)
i j
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RDM, SVD, and Least-Squares Fitting
@ The RDM is then obtained as
ps =T with (py)ir = Zl/)z‘j%"j (39)
e for which we can insert the SVD ]

ps =7 E

@ Hence, U diagonalizes p; and thus its eigenvalues D?i are related to

(wpvh.(vpuhy=uv-D?.UT (40)

the coefficients ¢j of the Schmidt decomposition !
@ Thus, instead of calculating the SVD, one can diagonalize p; to
obtain the ¢, = \/D,%k from the m highest eigenvalues of D? and the

corresponding eigenvectors |ug).
2

o l.e., the larger the eigenvalue D;;, the better represents |u;) the

system part of the superblock state
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RDM, SVD, and Least-Squares Fitting

@ Accuracy of approximation can be measured by the truncation error €

e=1-Y Diy (41)
k=1

O. Legeza, J. Réder, B. A. Hess, Phys. Rev. B 67 (2003) 125114

@ This transfers to the accuracy of an observable O as follows

(O)w,, — (O)g | = |Tr(Ops) —Tr(Ops)| = Z 0D

i=m+1
ms ms
< Y 10ulD} < max|Ou| Y Dy
i>m
i=m+1 i=m+1
= max|Oz-z-|e (42)
i>m

J. Réder, PhD Thesis, University of Erlangen, 2003
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Pictorially: Diagonalization of the RDM

@ reduced density matrix is diagonalized — 4m eigenpairs

4dm x 4m
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Pictorially: Diagonalization of the RDM

@ reduced density matrix is diagonalized — 4m eigenpairs

O

@ choose the m eigenvectors with the highest eigenvalues

@ keep m variable to always adjust to the optimum number of relevant
eigenvectors (O Legeza: dynamic block-state selection DBSS)

@ selected eigenvectors transform the many-particle basis of the (enlarged)
system to a reduced basis
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Pictorially: Renormalization of Operators

@ transformation by selected eigenvectors yields new many-particle basis of the
system (optimum reduced m-dimensional basis in a least-squares sense)

@ operators are now transformed to the new basis, i.e. renormalized:

]

- [

OT &new O = anew (43)

@ columns of the transformation matrix O consist of the selected eigenvectors

@ dimension of the operators is reduced from 4m to m
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Features of the DMRG Algorithm

@ DMRG is a CAS approach!

@ DMROG iterations increase AS orbital by orbital until the environment is
completely absorbed into the system.

@ Then, the iteration direction is reversed to optimize the environment

representation.

@ This defines a 'linear’ algorithm, and explains why the orbital ordering can
be important (convergence to local minima possible!).

G. Moritz, B. A. Hess, M. Reiher, J. Chem. Phys. 2005 122 024107

@ It was thought that DMRG is therefore only beneficial for

pseudo-one-dimensional molecules.
@ DMRG state is a superposition of FCl-type basis states.

@ An FCI/CAS solution can be converged; but the basis cannot be completely
known in terms of CSFs if DMRG shall be efficient
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DMRG Convergence for Complicated Electronic Structures

@ If DMRG calculations shall be competitive, these issues must be addressed:

o dynamic correlation effects need to be included
see work of G. K.-L. Chan et al., T. Yanai & Y. Kurashige et al. on multi-reference perturbation theory;
problem: requires up to 4-body reduced density matrices! (see also last lecture)

o efficient warm-up sweep (environment guess)
see work of O. Legeza et al. (CI-DEAS and entanglement measures for orbital ordering)

o number of renormalized states m should be as small as possible

@ orbital ordering:
crucial to avoid convergence to local energy minima in case of small m
(especially, if no RDM noise or perturbation are considered)

G. Moritz, B. A. Hess, M. Reiher, J. Chem. Phys. 2005 122 024107

@ environment states: in principle, the better the approximation of
environment states the faster convergence should be

G. Moritz, M. Reiher, J. Chem. Phys. 2006 124 034103
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Determining Factors of DMRG Convergence

© (Choice of the one-electron basis set for the representation of the

molecular orbitals)
@ Size of the active space (CAS)

© Choice of the type of molecular orbitals
(HF, NO's, localized orbitals, ..., DMRG-SCF)

@ Environment-state guess in the first sweep
(CI-DEAS by O. Legeza or noise/perturbation added to RDM)

@ Ordering of orbitals (exploit entanglement measures, see below)

@ Number of renormalized subsystem states m (= bond dimension, see

later); extrapolate (run at least 3 calcs with varying m)

= All of these parameters must be reported for DMRG results !

S. Keller, M. Reiher, Chimia 68 2014 200-203 [arXiv: 1401.5497]
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Lecture 2

'Second-Generation’ DMRG:
Matrix Product and Tensor Network States

@ New Parametrization of the Electronic Wave Function:
Tensor Network States (TNS)

@ Matrix Product States (MPSs) and Matrix Product Operators
(MPOs)
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How to Efficiently Represent (Electronic) Quantum States?

@ Tensor-product construction of the N-particle Hilbert space from

1-particle Hilbert spaces
V= Y Cigeiy [i1) ® iz) ® - @ |in) (44)
11Z2Zn
e Dimension inreases exponentially with system size (4™ for spatial
orbitals). Cj,i,...i,, (=CT) is element of the coefficient tensor

@ In principle, it should be sufficient to parameterize a manifold of
states such that there exists a large overlap with the exact state.
F. Verstraete, Adv. Phys. 2008 57 143; quantum chemistry has always relied on this!

@ How to reduce the complexity of W.; by a class of variational wave
functions that capture the physics of the Hamiltonian?

DMRG in Quantum Chemistry Markus Reiher 44 / 155




Parameterization of the Wave Function

D Cirigein 1) ® ig) @ -+ @ in) (45)

7:17:2"'7;L

Configuration Interaction ansatz

ICT) = (1 +y cm) HF) (46)

Coupled Cluster ansatz
o) = (H [1+ 7] ) [HF) (47)

@ Restricted sum over basis states with a certain substitution pattern
generated by 'excitation’ operator 7,

— vyields a pre-defined (!) many-particle basis set

@ numerous specialized selection/restriction protocols
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Instead of standard Cl-type calculations by
diagonalization/projection

U, = Z CiliQ"'in ‘Zl) 02y ‘22> X ® ‘Zn> (48)

1192

construct Cl coefficients from correlations among orbitals

U, = Z Ci1i2---in |Z1> X |Z2> Q& |Z7L> (49)

1192 in

= tensor construction of expansion coefficients
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Some Early Tensor Network (TN) Approaches
... for spin Hamiltonians developed:

o 1-dimensional TN: Matrix Product States (MPS) / DMRG
S. R. White, Phys. Rev. Lett. 1992 69 2863

S. Rémmer, S. Ostlund, Phys. Rev. Lett. 1995 75 3537

@ 2-dimensional TN: Projected Entangled Pair States (PEPS)

F. Verstraete, M. M. Wolf, D. Perez-Garcia, J. |. Cirac PRL 2006 96 220601

@ higher-dimensional TN:
Multiscale Entanglement Renormalization Ansatz (MERA)

M. Aguado, G. Vidal, Phys. Chem. Rev. 2008 100 070404
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MPS & DMRG

@ Structure of White's DMRG wave function: Matrix Product States (MPS)

S. Rémmer, S. Ostlund, Phys. Rev. Lett. 1995 75 3537

s — 3 A Al i @iy @ @) (50)
inigrin
@ DMRG algorithm defines a protocol for the iterative improvement of
the matrices A% by using the reduced density matrix (RDM) for the
AS of the total system.

@ Transformation matrices Al represent the change of the many-electron
basis when adding to the active subsystem (AS) states on a single orbital

taken from the environment.

@ In the finite-CAS DMRG, the first and last matrices Al“] and Alin], resp.,
are actually vectors (of length 4 for spatial orbitals).
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Reconstruction of Cl coefficients

@ Reconstruct a Cl-type wave function from the DMRG state, because

o allows us to interpret/understand the states in the standard way,
e makes DMRG calculations for different m values comparable,

e allows us to study DMRG convergence in terms of determinants being
picked up.

@ MPS structure yields the Cl coefficients:

Ms Me

C{“} = z Z wmnl+1nl+2m, (Al[nl] te A[2n2]>

m;ny
m  m/

x (Afyge. Al

(51)

m/ing,
Cl coefficient calculated from renormalization matrices and DMRG-state

expansion coefficients ¥mn,  n,,,m’ (for active system of size [)

M. Reiher, Chem. Phys. 126 2007 244109
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Example: Transition Structure of Ozone

O, transition state energy O, transition state CI coefficients
g RIS B IR IR RS R I S A R S R R
[ : : : : | X G—O SDI: 111001000000110110|
[ 224307 - ; ] i &0 SD2: 110110000000111001 | ]
[ ] : -0 SD3: 111100000000111100|
22430 n ; A--A SD4: 111100000000111001 | ]
B T g;sa 4 | w7 SDS: 111010000000110101 |
L i i %=X N ]
[ |OODMRG| sl 11 : SD6: 101 1100
g [ f 1 = !
£ L H J 3 Jlicfeshatal 7
£ 224331 H 1 2o B al BHEE i
= H 2 H 4
z F : 1 ¢ H ]
5 224351 yeeeeeteeey | £ i B
: [ A I ‘ l ] oo} : q
F ! eion F VY 3
22438 - E 3 ]
[ 01 4 B
I SR R VU BN AN UUUUES I USRS 3 & i " x " ]
22440 y
0 5 10 25 30 005 Kt () 25 30

15 20 15
DMRG microiteration steps DMRG microiteration steps

G. Moritz, M. Reiher, J. Chem. Phys. 126 (2007) 244109

(see this reference also for a DMRG flow chart)
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Example: Transition Structure of Ozone

O, transition state energy O, transition state CI coefficients
g RIS B IR IR RS R 07%‘ N B A RN
[ : : ! : 5| b sk e G—© SDI: 111001000000110110]
[ 224307 1 ook i &0 SD2: 110110000000111001 | ]
[ ] o~ I -0 SD3: 111100000000111100|
22430 ] [ ; A--A SD4: 111100000000111001 | ]
U0 | o HE 1 [ | w7 SDS: 111010000000110101 |
[ | —.casc ] 0.5~ i *--X SD6: 101 11100
[ |O-ODMRG|| | 1] 5 : ]
3 r : 1 E
2 sl H J 3 Jhiffats
g 243 H 1 2o04r f al ooea h|
= H o) L H 4
z F : 1 ¢ F ; ]
B [ a0l 11 sosb | E
§ 20435k oedeeseetesey | 4k i ]
% = L 1 . ] 1 e2f i E
F B ® icn 8 F VY 3
22438 [ i ]
L St 01f ;: E
I I N N N RIS SO EUDUUEN S EPRRS R 3 Py i " " K 3
22440 X
0 5 10 25 30 005 b 25 30

15 15
DMRG microiteration steps DMRG microiteration steps

G. Moritz, M. Reiher, J. Chem. Phys. 126 (2007) 244109

(see this reference also for a DMRG flow chart)
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Example: Transition Structure of Ozone

O, transition state energy O, transition state CI coefficients
—— T T T 0.7 | R R R
22428 : : : ' - " ' j ]
[ : : ! : 5| b sk e G—© SDI: 111001000000110110]
[ 224307 1 ook i &0 SD2: 110110000000111001 | ]
[ ] e~ i -0 SD3: 111100000000111100|
22430 - ] [ ; A--A SD4: 111100000000111001 | ]
U0 | o HE 1 [ | w7 SDS: 111010000000110101 |
[ | —.casc ] 0.5~ i *--X SD6: 101 11100
[ |O-ODMRG|| | 1] r 1
3 r : 1 E
ER L H q 2 jrifmtol
g 2AS3E 5 ] 204p I o BEHEE il
= H o) L 4
= F i 1 ¢ F ]
B [ a0l 11 sosb E
§ 20435k oedeeseetesey | 4k i ]
L > n . i j 1 e2f 1
F ! aion > 8 F e 3
22438 r L ]
L St 01f i |
t N7 b 3 A)% | ]
I I N N N RIS SO EUDUUEN S EPRRS R L Py i " " K 3
22440 X
5 00 20000t

5 10 25 30

15 0 15
DMRG microiteration steps DMRG microiteration steps

G. Moritz, M. Reiher, J. Chem. Phys. 126 (2007) 244109

(see this reference also for a DMRG flow chart)
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SR-CAS Approach

@ Our 2007 scheme could only reconstruct FCI from DMRG wave functions for

which a FCI calculation was also possible.

@ Cure: Sampling-Reconstruction Complete-Active-Space algorithm:
Monte Carlo scheme for sampling configurations
@ Only the most important configurations are kept.

@ The accuracy is easily controlled by a completeness measure COM:

COM=1- Y (7

Ie€{sample}

K. Boguslawski, K. H. Marti, M. Reiher, J. Chem. Phys. 134 (2011) 224101
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Derivation of MPS Structure of DMRG Wave Function

The CI coefficient tensor Cj,js...i,,

U, = Z 0111‘2...1'” ’21> & |7,2> R & ’Zn>
P19 in
= Z Ci1i2-~~in ’il, ig, e in> = Z C](I)[ (53)
9162+ +in I

can be decomposed by sequential SVDs, which clarifies the MPS structure
of the DMRG wave function.

Consider a DMRG state function with the first orbital (from the left) in
the AS and (n — 1) orbitals in the environment,

‘I’BMRG — Z Vg li1) @ j) with j = (i2...10p) (54)
i1,J

Hence, the coefficient tensor Cj,;,...;,, is approximated by a matrix 1; ;.
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Derivation of MPS Structure of DMRG Wave Function

1,5 is of dimension (m x m"™~!) and can be subjected to an SVD

(ig...in)

T1
Civigin = Vi = Vis(ig.in) = E Uirar Dayar Vg,
ai

T1
Z Uilal Caliz...in (55)

a1
with the rank r; < m. Now, change notation:

a) matrix U is written as a collection of row vectors A’ with entries
[
A = Uija -

b) coefficient tensor Cy,;,. i, is re-ordered as a matrix ¢(a1i2)(i3...in) of
dimension (71 - m x m"~2)
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Derivation of MPS Structure of DMRG Wave Function

. so that we obtain for the original coefficient tensor
T1
Cirigin = 3 AR W(ari)(ig.nin)
a1

Next, the matrix 14, i,)(is...i,,) 1S Subjected to another SVD

r2
Viaria)(isin) = P Ulaliz)as Dasas Vis(is..in)

az

T2
E U(a]_ig)aQ Ca2i3...in
a2

T2
Z A?l a2 ¢(a2i3)(i4..4in)
a2

where the last step is again just a change of notation ...

DMRG in Quantum Chemistry Markus Reiher
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Derivation of MPS Structure of DMRG Wave Function

. which, however, allows us to write the original tensor in compact form

L T2

2112 “in Z Z A“ Af121a2 (a2i3)(i4...in) (60)

a; a2

Now, the new matrix ¥(4,4,)(i,...i,,) Of dimension (rg - m x m"3) is
subjected to the next SVD.

This 'game’ continues until we finally obtain

Ciliz'"in = Z AZI Afzgum AZL 12an 1AZ;71 (61)
ai...a
= A“A"z--.AinflAin (62)

where the sums are interpreted as matrix multiplications in the last step.
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MPS Structure of Operators: MPOs

Consider occupation-number-vector basis states |o) and |o”).

The coefficients wq,+ of a general operator

W=3" woorlo) (o] (63)

may be encoded in matrix-product form

W= D W W W (64)

G—1% in—11
11 5eensln—1

Combining Egs. (63) and (64), operator W reads

Z Z szllgl U :lflil” o W;:iol’ri |O'> (0’". (65)

o0’ i1, 5in—1
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Simplify Eq. (65) by contraction over the local site indices oy, 0] in 0,0

O' o
lz 14 Z zllllz,|al Ull (66)

Ul,al

so that Eq. (65) reads

- Z Wlll ' Zl 171 “Wiri—ll‘ (67)
U15eyin—1
Motivation for this: Entries of the resulting Wzll Li, Matrices are the
T

elementary operators G, and G, acting on a single site (=orbital)!

In this way, the local-site MPS concept, which denotes for site [ the [-th

optimization step in a sweep, is transfered to operators (MPOs).
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Why write a new code? — Two variants of DMRG:

Traditional DMRG

° [¢Y) =
> rCLrloL) ®|oR)

o coefficients valid for one
bipartition into L and R
(need basis

transformations)

@ considered to be faster

for ground state

MPO-DMRG

° ) =
S, Mo M2 . Mo o)

o coefficients valid for whole

system

o Easy and efficient

implementation of observables

e (NB: Both variants will perform

similarly if implemented
properly)
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DMRG with Matrix Product States (MPS) and Matrix
Product Operators (MPO)

Our new MPO-based DMRG program: QCMaquis

Download: http://www.reiher.ethz.ch/software/maquis.html

W) = an|a> — W) :Z Z M} MZ2, - MO o)

o o ai,..,an_1

W = Z Weor|o) (0! —

Z z W01‘71 W[Z’lo;lbl Wa'nﬂ' |0'><0'/|

oo’ by,....bn—1

S. Keller, M. Dolfi, M. Troyer, M. Reiher, J. Chem. Phys. 143, 244118 (2015)

DMRG in Quantum Chemistry Markus Reiher 61 / 155



MPS-MPO Operations: Expectation Values

2 : ort O'LO'L 2 : o2t 0204
<¢‘W|¢ NICLL 1 bL 11 NGQGIWble
O'L(TL Ugaé

aL_la'L_lbL_l ala’lbl

< Z N0113W0'10‘1M0'1 )Ma'lz L MO'/L L

a ayay ar_q
010'1
N— -
N1
wt
M?
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Spin Symmetry Adaptation: MPS and MPO Put Together

F[a](l +1) Z Wigner-9j [ak ]M[S,]TWLIZ];JS FE‘;] (Z)MES,}J
aijkss’
AAAAAAA T _,El @
AAAAAAAA - A*T)l . .
AAAAAAAA e )
— ~ —~— —

S. Keller, M. Reiher, J. Chem. Phys. 144, 134101 (2016)
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Local part of the eigenvalue problem

R
a;—1,a 01,0 aua _
Z Z Z th 1 —1,b; R ZM : 1,a] EM‘I‘L 1,83 — 0
o} al_ja}bi—1b;
i oi
« one-site DMRG lrewrlteM as vector v

» Mo has dimension 4m?

Hv—FEv =0

U. Schollwdck, Ann. Phys. (2011), 326, 96.

DMRG in Quantum Chemistry



DMRG - ground state search

T k)| | k)
Find optimal approximation to. £ = )
by optimizing the entries in M*)ei,
Extreme sparsity requires:

* sparse, iterative eigensolvers that aim at the ground state (Jacobi-Davidson)
* in general an iterative procedure with decimation steps

Graphical representation of the standard eigenvalue problem:

________ ERL ~o

current estimate of ground state energy

entries of M[(¥)73 are optimized
U. Schollwéck, Ann. Phys. (2011), 326, 96.
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DMRG - ground state search

Sketch of sweep algorithm:
1. diagonalization to
_____ optimize MPS entries
2. 8SVD for correct
_____ normalization and

decimation
_____ 3. update left and —————
right boundaries
L Y J g [ L .
collected in one tensor new updated
by appropriate contraction: left boundary right boundary

right boundary

> > B———----- 5 revert sweep direction and continue
EEEE I back and forth until convergence

» decimation step reduces scaling from exponential to polynomial
« full-Cl solution is approximated in a least-squares sense

U. Schollwéck, Ann. Phys. (2011), 326, 96.
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DMRG - excited states

sparsity requires eigensolvers that are efficient only for the ground state
——> is DMRG a ground state method?

ground state search in the space orthogonal to lower lying states

—> excited states

alternative approach

zero-point -
energy * root-targeting through

diagonalization with lower bound
on energy allows direct targeting
of excited states

e

energy of lowest
fundamental band  can be fully parallelized

» successfully implemented and
tested and vDMRG

— 5 energies of higher
excited states

DMRG in Quantum Chemistry



Other Options: Tensor Network States (TNS)

PINS Z HH AU @iy @ @ in)

11%2.. i j<i |I)

(68)

o ldea: Rewrite Cl coefficient tensor by reducing number of variational

parameters (still obtain qualitatively correct wave function).

e TNS originally proposed for simple Spin Hamiltonians:
e String-Bond States

N. Schuch, M. Wolf, F. Verstraete, J. |. Cirac, Phys. Rev. Lett. 2008 100 040501

e Entangled-Plaquette States

F. Mezzacapo, N. Schuch, M. Boninsegni, J. |. Cirac 2009 arXiv:0905.3898v3

o Correlator-Product States

H. J. Changlani, J. M. Kinder, C. J. Umrigar, G. K.-L. Chan, 2009 arXiv:0907.4646v1

DMRG in Quantum Chemistry Markus Reiher
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Complete-Graph Tensor Network States (CG-TNS)

First implementation of TNS for full quantum-chemical Hamiltonian

Considering all pairs of parameters f;;: CG-TNS

Parameters optimized with Monte Carlo techniques

First studied for methylene and ozone; S/T splitting in ozone:

Es—o/Eh Es—1/E, AE/kcalmol~!
HF —224.282 841 —224.357 167 46.6
CASCI  —224.384 301 —224.416 172 20.0
CG-TNS —224.381 648 —224.412 775 19.5

K. H. Marti, B. Bauer, M. Reiher, M. Troyer, F. Verstraete, New J. Phys. 12 2010 103008
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Optimization by Variational Quantum Monte Carlo

TNS Z HH I[Z]I[J] \I ZZW(I)‘D

i192... ANy 1 j<i ‘“22 in) I

E = (E()) = %Z W2(I)E(I) where Z =Y W?>(I)
I

B =3 D

@ The energy can be evaluated using importance sampling of the
configurations |I) according to the weight W?2(I).

A. W. Sandvik, G. Vidal, Phys. Rev. Lett. 2007 99 220602
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CG-TNS for Transition Metal Compounds

@ CG-TNS will be efficient if the molecular structure supports the ansatz
(clusters!)

@ Problem: One must avoid the explicit construction of all CSFs -

@ First feasibility test: tetraqua-cobalt v
K. H. Marti, M. Reiher, PCCP 13 (2011) 6750

7

-1676.566 252 E, -1685.278 226 Ey, -1685.278 549 Ey, -1685.278 641E,
Hartree—Fock CAS(9,9)-SCF CG-TNS
E.; / Hartree —1685.235 055 —1685.293 744 —1685.279 408
Var. Parameters 7056 684

tum Chemistry




Current Status

tree tensor network states (TTNS; Legeza, Chan, ...)

general problem: efficient optimization schemes required

most promising solution: utilize principles of the DMRG algorithm
(most efficiently exploited in an MPS/MPO framework)

we extended CG-TNS to 3-site correlators (explosion of parameters!)

A. Kovyrshin, M. Reiher, NJP 18 (2016) 113001

... however, it can only be made accurate and efficient if
entanglement-based correlator selection is introduced

A. Kovyrshin, M. Reiher, in preparation

unique features of (T)TNS: still to be demonstrated at an example

that cannot be solved by standard approaches
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Lectures 3 & 4: Applications

@ DMRG for Compact Strongly Correlated Molecules:
Transition Metal Complexes

@ Concepts of Quantum Information Theory for Electronic Structures

and Chemical Bonding
© Automated CAS choice enabled by DMRG

@ Challenge: Inclusion of Dynamic Correlation

@ vibrational DMRG (vDMRG)
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Density Matrix Renormalization Group: Principles

o New wavefunction parametrization:

) = colo) — |[U)=> MM ... M7|o)
e complete active space (CAS) partitioning and iterative sweeping:
Pl O LR D H

N - - - N -
'

~ Ve
left subsystem active sites right subsystem

@ In essence: dimension reduction by least-squares fitting
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Does DMRG Work for Compact Molecules?

@ Original 'opinion’ in the DMRG community:

Works only for pseudo-one-dimensional, non-compact systems!

@ Test for a mononuclear transition metal system CAS(10,10): CoH

m

Esinglet/Eh

Etriplet/Eh

AE /kJmol 1

64
76
91
109

—1381.952 054
—1381.952 063
—1381.952 070
—1381.952 073

—1381.995 106
—1381.995 109
—1381.995 110
—1381.995 110

113.03
113.02
113.00
112.99

CAS(10,10)
CASPT2(10,10)

—1381.952 074
—1382.189 527

—1381.995 110
—1382.241 333

112.99
130.57

DFT/BP86
DFT/B3LYP

—1383.504 019
—1383.202 267

—1383.585 212
—1383.279 574

213.1
203.0

original work to propose DMRG for compact, strongly correlated molecules:

K. Marti, I. Malkin Ondik, G. Moritz, M. Reiher, J. Chem. Phys 128 (2008) 014104
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'Fully-Relativistic’ Four-Component DMRG: TIH

ol T scowrcsrer | method e we  weme

- 4c-CSD @ © =192 < A L L

I e B 4c-DMRG(14,94)[512]  1.873 1411  26.64
081 4c-CCSD M=256 4c-CISD(14,94) 1.856 1462 23.11

. 4c-CISDTQ -0 4c-CISDTQ(14,94) 1871 1405 2011
2 0815 | — 4c-CCSDT 4c-MP2(14,94) 1.828 1546 47.27
E o | feoosome -0.625 4c-CCSD(14,94) 1.871 1405 19.36
£ 4c-CCSD(T)(14,94) 1873 1400 2352
® 0825 U -0.83 4c-CCSDT(14,94) 1.873 1398  22.28
083 H % 4c-DMRG[fixed M] 4c-CCSDT(Q)(14,94) 1.873 1397 21.01
-0.835 * 40-CCSDTQ 4c-CCSDTQ(14,94) 1873 1397 2224

—085 800 1000 1200] + 40-DMRG{=10""] CCsSD(T)® 1876 1385 n/a
| -0.84k My,=4500 CCsD(T)® 1.877 1376 n/a

= T  r— «  MRD-CI® 1870 1420  n/a
lteration step 1M x10° SO-MCQDPTY 1.876 1391 29.42

experiment® 1.872 1390.7 227

@ 4¢-DC CCSD(T) [14 electrons], Visscher et al. 2001.
S. Knecht, O. Legeza, M. Reiher, J. Chem. Phys 140 (2014) 041101 b 4c-DC-Gaunt CCSD(T) [36 electrons], Visscher et al.

2001.

© GRECP spin-orbit MRD-ClI, Titov et al. 2000.

4 model-core potential spin-orbit MCQDPT, Zeng et al.

2010.
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The CusOs-Torture Track

o Standard CASSCEF fails for large CASs relevant in polynuclear clusters

@ Example: two different isomers of dinuclear copper clusters

9
S

NS

C. J. Cramer, M. Wioch, P. Piecuch, C. Puzzarini, L. Gagliardi J. Phys. Chem. A 110 (2006) 1991

DMRG in Quantum Chemistry



Energies of Isomeric Dinuclear Copper Clusters

@ CASSCEF fails since large CASs needed for clusters

K. Marti, I. Malkin Ondik, G. Moritz, M. Reiher, JCP 128 (2008) 014104

@ results with new code and including noise:
44 active orbitals, 26 electrons, basis set: Cu ECP10MDF, O ANO-Sm, charge: +2

K. Marti, M. Reiher, Z. Phys. Chem. 224 (2010) 583

-
O

Sesed

030

m Ebisoxo/En Eperozo/En AE/kJmol ™!
DMRG(m=32) —b41.440 272 —541.478 196 99.6
DMRG(m=44) | —541.446 006 —541.483 405 98.2
DMRG(m=64) —541.458 021 —541.497 468 103.6
DMRG(m=128) —b41.473 082 —541.514 702 109.3
RASPT2(24,28)° 119.66

@P, A. Malmqyist, et al. J. Chem. Phys 128 (2008) 204109

@ What is the fully converged DMRG result for this system?

— Large-scale DMRG: 149 kJ/mol Y. Kurashige, T. Yanai, J. Chem. Phys. 130 (2009) 234114 ...

DMRG in Quantum Chemistry
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Torture Track: [CupOq]**

Ref.,method Fhisoxo Eperoxo AE
'Standard’ methods
A),CASSCF(16,14) —541.50307 —541.50345 1
A),CASPT2(16,14) —542.06208  —542.06435 6
A),bs-B3LYP —544.19419 —544.27844 221
B),RASPT2(24,28) 120
Previously published DMRG energies
C),DMRG(26,44)[800] —541.46779  —541.49731 78
D),DMRG(26,44)[128] —541.47308 —541.51470 109
E),DMRG(32,62)[2400] —541.06839  —542.02514 149
F),DMRG(28,32)[2048]-SCF —541.76659 ~ —541.80719 107
F),DMRG(28,32)[2048]-SCF/CT 113
our latest DMRG results with QIT, without noise
G), DMRG(26,44)[256/1024/10~°]  —541.53853  —541.58114 112

A) C. J. Cramer et al., J. Phys. Chem. A 110 (2006) 1991; B) P. A. Malmqyist et al., J. Chem. Phys 128 (2008) 204109; C)
K. Marti, et al., J. Chem. Phys 128 (2008) 014104; D) K. Marti, M. Reiher, Z. Phys. Chem. 224 (20109 583; E) Y. Kurashige,
T. Yanai, J. Chem. Phys. 130 (2009) 234114; F) T. Yanai et al., J. Chem. Phys. 132 (2010) 024105; G) G. Barcza et al.,

Phys. Rev. A 83 (2011) 012508
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Analyzing DMRG and correlated wave functions

with concepts from quantum information theory
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Entanglement Measures from Grand Canonical RDMs

@ Measure for entanglement of states on orbital ¢ with those defined on
(orbital) environment: O. Legeza, J. Sélyom, Phys. Rev. B 2003, 68, 195116.

von-Neumann-type single-orbital entropy

4
s(1); = — Z Wi 1N We
a=1

(wq, 4 eigenvalues of 10-RDM of spatial orbital < — states defined on all other orbitals are traced out)

@ Entanglement of states on orbitals ¢ and j with those in environment:

von-Neumann-type two-orbital entropy

16
8(2)ij = — ) Waij Mwa
a=1

(waJ'j eigenvalues of 20-RDM of two spatial orbitals ¢ and j — sub-states defined on all other orbitals traced out)
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Entanglement Measures for Embedded Subsystems

@ 5(2);; contains also the 'on-site’ entropies for the two orbitals

= Subtract these contributions to obtain the 'inter-orbital entropy':
J. Rissler, R.M. Noack, S.R. White, Chem. Phys. 2006, 323, 519.

Mutual information

Iij 0.8 S(Q)ij - 8(1)1 - S(I)j

@ Advantage over natural occupation numbers:

more information,

better spread of measures for different electron-correlation classes,

system specificity by relating to largest entropy value
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Connection between n-particle RDM and 1- and 2-orbital RDM

Information exchange (entanglement) between two subsystems A and B
of a bipartite system ——— von Neumann entropy

g _ 4 1 p: density matrix of the
AlB = TUIB (pInp) combined system (A + B)

single-orbital entropy: A (single orbital), B (all other orbitals)

A

0. Legeza, J. Solyom, ,,Optimizing the density-matrix renormalization group using quantum information entropy®,

Phys. Rev. B 2003, 68, 195116.

0. Legeza, J. Solyom, ,, Quantum data compression, quantum information generation, and the density-matrix
renormalization-group method “, Phys. Rev. B 2004, 70, 205118.

J. Rissler, R. M. Noack, S. R. White, ,Measuring orbital interaction using quantum information theory”, Chem. Phys. 2006, 323, 519.
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Connection between n-particle RDM and 1- and 2-orbital RDM

single-orbital entropy: A (single orbital), B (all other orbitals)

D o g 8 o*

local states on single orbital (A): states on all other orbitals (B):

{la)y =40, 10141 thy {Im)}

one-orbital reduced density matrix (1o-RDM):

4
0(A) = (n|(aB)(Tla’)n) — sa(1) =~ p{%(A) In p{(A)
a=1

pa,a’
n

4
sa(l)=— Zwa,A Inwa,4
a=1

J. Rissler, R. M. Noack, S.R. White, Chem. Phys. 2006, 323, 519.
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Connection between n-particle RDM and 1- and 2-orbital RDM

elements of the spin-dependent 1-RDM: YAA = (‘I’|GLGA' |‘I’>

elements of the spin-dependent 2-RDM:  I'g or o pr = (\I/|aLaf4,aAuaAm [T
0
0
0

0 0 0 T'azaa

A indicates o spin, A indicates 3 spin

1—vaa—vaa+Tai4a4 0 0 $
Lo 0 vaa-Taaaa 0
4 0 0 vai—Tadaa %

* diagonal because of particle and spin symmetries

* similar expressions connect the 20-RDM with elements of the 1,2,3- and 4-RDM

K. Boguswaski, P. Tecmer, Int. J. Quantum Chem. 2015, 115, 1289.
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What does the single-orbital entropy measure?

The single-orbital entropy measures the deviation from a pure state defined on

a subsystem (orbital) due to the interaction with states defined on the environment
(all other orbitals)!

pure states defined on subsystem (orbital)

— 4+ <+ N

For a single determinant, the orbital state is pure —> no single-orbital entropy

In configuration interaction, several configurations contribute to the total wave function
and lead to a deviation from a pure single-orbital state.

subsystem interacts environment
(orbital) with (all other orbitals)

R e e ®

This is in complete analogy to the thermodynamical definition of entropy.
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Entanglement Measures

dioxygen ‘A,

deviation from a pure state a (—, -1—, +, -H-)

is measured by single-orbital entropy

4
si(1) = — Z Wa,i INWe 4
a=1

Wa,i : eigenvalue of the reduced one-orbital density matrix
for orbital i

proportional

o circle area analogously for two orbitals: two-orbital entropy

16
5ij(2) = = ) Wayij Inwa,ij
a=1

Wa,ij : eigenvalue of the reduced two-orbital density matrix
for orbitals i, j

mutual information

1
proportionalto 117 = 3 [8i(1) +85(1) — si;(2)] (1 — &)

C.J. Stein, M. Reiher, Chimia 2017, 4, 170. thickness
arXiv: 1702.00450 of connecting lines

Markus Reiher 87 / 155




Orbital entanglement and locality of electron correlation
* localized i/ t* interaction is an example of local electron correlation
¢ conjugated it/ it* orbitals should delocalize the correlation to some extent

—> Can this be analyzed with orbital entanglement measures?

buta-1,3-diene penta-1,4-diene

* planar * additional CH, unit prevents
planarity
* conjugated m-system * 2 separate n-systems
(4 electrons in 4 orbitals) (4 electrons in 4 orbitals)

C. J. Stein, M. Reiher, to be published.
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Generation of different types of orbitals
1. CAS(4,4)SCF calculation in Molcas 8
—> delocalized orbitals with a n/m* active space
2. Pipek-Mezey localization in 4 orbital active space
—> completely localized orbitals (2p,-like atomic orbitals)
3. a) Pipek-Mezey localization for 2 occupied active orbitals
and

b) Cholesky localization followed by another Pipek-Mezey localization for the
2 unoccupied active orbitals

——— split-localized orbitals (rt/ t* pairs)

C. J. Stein, M. Reiher, to be published.

DMRG in Quantum Chemistry Markus Reiher

89 / 155



Three types of orbitals for buta-1,3-diene

delocalized split-localized
* " r' T[*‘\( : 5'
converged DMRG-CI energy: converged DMRG-CI energy:
-155.0812146 Hartree -155.0812146 Hartree

-

C. J. Stein, M. Reiher, to be published.

completely localized

converged DMRG-CI energy:
-155.0812146 Hartree

DMRG in Quantum Chemistry



Three types of orbitals for penta-1,4-diene
delocalized split-localized

%% e
% % " e

converged DMRG-CI energy: converged DMRG-CI energy:
-194.1332521 Hartree -194.1332521 Hartree

completely localized

> S <&

converged DMRG-CI energy:
-194.1332521 Hartree

C. J. Stein, M. Reiher, to be published.
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Entanglement for delocalized orbitals
from a converged DMRG-CI calculation with 4 electrons in 4 orbitals

buta-1,3-diene penta-1,4-diene

Zy1)=0.22 Zy1)=0.22

* almost indistinguishable entanglement pattern for both molecules

* all orbitals equally entangled
C. J. Stein, M. Reiher, to be published.
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Entanglement for split-localized orbitals
from a converged DMRG-CI calculation with 4 electrons in 4 orbitals

buta-1,3-diene penta-1,4-diene

Zs(l) =0.16 Zs(l) =0.13

* strongest mutual information for paired /it * orbitals

* conjugation is reflected in entanglement between neighboring pairs (buta-1,3-diene)
C. J. Stein, M. Reiher, to be published.
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Entanglement for completely localized orbitals

from a converged DMRG-CI calculation with 4 electrons in 4 orbitals

buta-1,3-diene penta-1,4-diene

Zy1)=0.94 Zy1)=0.94

* huge single-orbital entropies

¢ strongest mutual information between AOs forming the rtand it * orbitals
* penta-1,4-diene: no “inter-pair” mutual information —— no conjugation
C. J. Stein, M. Reiher, to be published.
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Entanglement Measures can Monitor
Bond Breaking/Formation Processes: Dinitrogen

4

Energy

i M} ; I ; = 3(s(2);; — s(1); — 5(1);) (1 — 8;5)

K. Boguslawski, P. Tecmer, G. Barcza, O. Legeza, M. Reiher, J. Chem. Theory Comput. 9 2013

2959-2973 [arxiv: 1303.7207]
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Bond Breaking in Dinitrogen at 1.12 Angstrém
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Orbital index
Mutual information Single orbital entropy

(a) duy = 1.12A

40

Part of entanglement is already encoded in molecular orbitals changing with the structure !

Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.
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Bond Breaking in Dinitrogen at 1.69 Angstrom

0.8 1 ”
o ‘g "
L 07 Pt ot i
3 b ) | | | | #25: e
a4 By
0.6 ]
$: %8 %
o 05
> By = . | | . | | Progiy
o n oA, L I S
I
el 03| | [ [
----- = LE Lo Lo
o I - F#10/#16: 2p,
01| [ [
ol e L™ g |t st s .”
0 10 20 a0 a0
Orbital index #£2: 2p,
Mutual information Single orbital entropy

(b) du = 1.694

Part of entanglement is already encoded in molecular orbitals changing with the structure !

Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.
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Bond Breaking in Dinitrogen at 2.22 Angstrém

; 1 N0
* By > . 12 | T T T ]
a By 3 5 #25: 2ps-
a B, ' O e | | = | | |
o By I | | | | P
o e L 23 @0
3 F ! #33/#39: 2p.-
e h ® oe ! | | | |
-=-u! | | | | | " ‘ Q g
----- 1‘2: - | ‘ ‘ l ! #10/#16: 2,
| 3
02 | | . | | i Pr
o
ol 16t £ b a0 | warimul ool ppnimal . ”
2By 21 0 10 2 30 40 -
Orbital index #2: 2p,
Mutual information Single orbital entropy

(d) dun = 2.224

Part of entanglement is already encoded in molecular orbitals changing with the structure !

Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.

Markus Reiher 98 / 155




Bond Breaking in Dinitrogen at 3.18 Angstrom

° A 14 ‘ . ' ' '
e A R R T b
o By 12 #25: 2pae
a By | | | | |
o By 1
5 %8 e
4 —08
o = #33/#39: 2p,.
) 06 | | | | |
-= =10
—= 1072 04 ‘ ‘ | ‘ ! ‘ ‘ 0 o
— b ! Co H10/416: 2p
o2y | | o | |
Roin s sty smst e Lot ook @0
0 10 20 30 40
Orbital index #2: 2pa
Mutual information Single orbital entropy

(£) dyn = 3.175A

Part of entanglement is already encoded in molecular orbitals changing with the structure !

Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.
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Entanglement relates to Electron Correlation

07 o 7o ] @ Three groups of orbitals
I [
o8 I = large single orbital entropy
05} Lo . . .
RERE = medium single orbital entropy
804’ (] [ ) R R
EZ RN = tiny single orbital entropy
03 L9 _ _ )
0al oot | e Configurations belonging to the
- Qri 111
ol i ® ] third block have small C; =
19900, . .
0 ] I I o IaTninl /\OO O Important for dynamlc
0 5 10 15 20 25 30 .
Orbital index correlation
K. Boguslawski, P. Tecmer, O. Legeza, M. Reiher,
J. Phys. Chem. Lett. 2012, 3, 3129. @ Note: more structure than in
2 spectrum of 1e-RDM
e /o
N @ 4 point charges in zy-plane at dpe = 1.133 A
‘ K @ Natural orbital basis: CAS(11,14)SCF/cc-pVTZ
e % @ DMRG(13,29) with DBSS (mymin = 128, mumax — 1024)
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How to cope with the active space selection

problem ?

DMRG in Quantum Chemistry



How to choose an active space? — Insights

“... the choice of the active space actually used in more complex
systems is highly subjective and can lead to serious problems.*

R. D. Bach in The Chemistry of Peroxides, Z. Rappoport (Ed.), John Wiley & Sons, (2006) 4.

"CAS-based methods are another alternative, although the selection
of the active space is a tremendous challenge. "

Y. Shao, L. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld et al., Phys. Chem. Chem. Phys., 8, (2006) 3172-3191.

“Choosing the “correct” active space for a specific application is by
no means trivial; often the practitioner must “experiment” with
different choices in order to assess adequacy and convergence
behavior. While every chemical system poses its own challenges,
certain rules of thumb apply.”

P. A. Malmquist, K. Pierloot, A. R. M. Shahi, C. J. Cramer, L. Gagliardi, J. Chem. Phys., 128, (2008) 204109.
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How to choose an active space?” — Recipes
e B. O. Roos (1989)

The Complete Active Space Self-Consistent Field Method and Its Applications in Electronic Structure Calculations; in

Ab Initio Methods in Quantum Chemistry, K.P. Lawley (Ed.), John Wiley & Sons Ltd., 399-446.

- most active orbitals should appear paired (one highly occupied and

one corresponding almost empty orbital)
- conjugated and aromatic bonds should be included in the CAS

- both the bonding and antibonding orbitals of a bond that is broken

have to be included

- orbitals describing C-H bonds are not to be included in active space

@ ... more rules in later papers by the Lund group
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How to choose an active space?” — Recipes

e M. W. Schmidt, M. S. Gordon (1998)
The Construction and Interpretation of MCSCF Wavefunctions; Annu. Rev. Phys.

Chem. 49, 233-266.

- choice of active space is based on generalized valence bond diagrams

e K. Pierloot (2003)
The CASPT2 Method in Inorganic Electronic Spectroscopy: from lonic Transition
Metal Complexes to Covalent Actinide Complexes; Mol. Phys. 101, 2083-2094.

- description of double-shell effect and its importance for CASPT2
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How to choose an active space?” — Recipes

e A. Kerridge (2015)

The Complete-Active-Space Self-Consistent-Field Approach and Its Application to
Molecular Complexes of the f-Elements; in Computational Methods in Lanthanide
and Actinide Chemistry M. Dolg (Ed.), John Wiley & Sons Ltd., 138-139.

- 4f-, 5d- and 6s-orbitals of lanthanides should be included
- 5f-, 6d- and 7s-orbitals of actinides should be included
- for highly charged complexes, 5 f-orbitals only

e F. Krausbeck, D. Mendive-Tapia, A. Thom, M. Bearpark (2014)

Choosing RASSCF Orbital Active Spaces for Multiple Electronic States; Comput.
Theor. Chem. 1040-1041, 14-19.

- active space for CASSCF and RASSCF calculations is chosen

according to natural occupation numbers derived from averaged SCF
density matrix obtained from calculations for different electronic states
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How to choose an active space?” — Recipes

e J. M. Bofill, P. Pulay (1989)
J. Chem. Phys. 90, 3637-3646.
- unrestricted Hartree-Fock natural orbitals (UNOs) are used as
starting orbitals for CASSCF calculations
- orbitals with occupation numbers between 0.02 and 1.98 are

selected for the active space

- the idea has been explored further by comparison to DMRG results:

S. Keller, K. Boguslawski, T. Janowski, M. Reiher, P. Pulay (2015)
J. Chem. Phys. 142, 244104.
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Can one choose the CAS in an automated way?
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Exploit Two Advantages of DMRG for the CAS choice

@ DMRG is iterative
@ DMRG can handle large CAS sizes

— ... toward an automated CAS determination

requires selection criterion: entanglement entropy measures!

DMRG in Quantum Chemistry



Automated CAS selection? Black-box CASSCF?

. reduce the human time by automatizing
manual selection (if manual selection fails, the

automated protocol will have a problem, too)
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Partially converged entanglement information is sufficient

~ HF orbitals, m = 2000 ,
8 sweeps b 16 sweeps
CI-DEAS guess 4 CI-DEAS guess

°% - HF orbitals, m = 200
E 16 sweeps
- CI-DEAS guess
LA

E =-2665.877397 Ey E = -2665.878045 Ey




Automated Orbital Selection Algorithm

generate initial orbitals
recommended: CASSCF with small CAS or DMRG-SCF

Flowchart for the
l Automated Selection of
initial DMRG calculation with a large CAS Active Orbital Spaces
—1 5 around the Fermi level
recommended settings: CI-DEAS guess, m = 500, 8 sweeps .
| recipe
i
/ calculate measures -
—_— consistency test 1. partially converged DMRG
Do entanglement measures of the : 7
l final calculation agree qualitatively calculation with a large number
r:o/ {ES‘ with those of the initial calculation? of active orbitals
gl i generate threshold diagrams
case select CAS anyway H se Gz 7 i
| [z. identify “important” orbitals ]
Can orbitals with NO
sj(1) < 1-2 % max. s,(1)‘_M\
condjstency belexciidedy include orbitals kept in the first, n :
«Lz\ lua ves  cleary denifizble piteau atlow thresholds 3. conv‘frge the falc‘:'lat'on with
only “important” orbitals
nifiat i < 1
@ Is it feasible to converge a YES converge i \

calculation with this CAS size? wi

v CASSCF or DMRG-SCF
|No B

STOP: unfeasible for DMRG

Stein, C. J., Reiher, M. JCTC, 2016, 12, 1760.
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Entanglement based multi-configurational diagnostic Z,,
Need for a consistent, formalism-inherent threshold descriptor

Design criteria

well-defined limits

(0 = no static correlation,

1 = max. static correlation);
note: maximum entropy

f: [sPex(1)] = i[—i(%lni)]:Lln4

i=1 i=1 a=1

obtained from a qualitatively
correct wave function

( <> MC measures from SC

wave functions, e.g. T; diagnostic)

intensive, not extensive

Definition and constramts
2 = ln4 Z si(1)

e [’<L, where L is restricted to most
entangled orbitals selected
according to our automated active
orbital selection schemelll;
otherwise: lim Z,4) =0

L' 00

* maximum entropy can only be
achieved if all possible
occupations can be realised with
equal weight, which requires one
electron per spatial orbital
CAS(N,L’=N)

C. J. Stein, M. Reiher, Mol. Phys. 2017, doi: 10.1080/00268976.2017.1288934; arXiv:1609.02617v2 (2016)
[1] C. ). Stein, M. Reiher, JCTC 2016, 12, 1760.
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Behavior of Z,;, upon bond stretching
1.00 T
0.90 |-
0.80
0.70
0.60
0.50 F-———f-—mmm oo -
0.40 CAS(2,2)
0.30
0.20 {
0.10 ¢

CAS(6,9)
CAS(4,4) ]

Zy)

¢ — O3 (sym. stretch)
CqH, (CC stretch)
m— H,

0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
r—r,/ A

* multi-configurational character increases with bond stretching

* symmetry in H; reduces maximum to Z;;m# = 0.5
(Po,or{A) is 2-dimensional for gerade ground-state symmetry;
— max. entropy: L In 2 = 2 In 2, but Z;) defined for general case)

C. ). Stein, M. Reiher, Mol. Phys. 2017, doi: 10.1080/00268976.2017.1288934
arXiv:1609.02617v2 (2016)
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Size independence of Z;,

* Zy determines multi-configurational character without artefacts from system size

R A il

methane propane pentane heptane nonane
(NL=N)  (8,8) (20,20) (32,32) (44,44) (56,56)
Zyy) 0.04 0.03 0.03 0.03 0.03

* polyacenes: multi-configurational character constant,
previous results (Chan, Mazziotti, Carter, Yanai, Lischka, Head-Gordon,...):
diradical character increases with increasing system size

=l =

benzene naphtalene anthracene tetracene pentacene
(N,L’=N) (6,6) (10,10) (14,14) (18,18) (22,22)
Zy) 0.21 0.23 0.24 0.25 0.24

C. J. Stein, M. Reiher, Mol. Phys. 2017, doi: 10.1080/00268976.2017.1288934; arXiv:1609.02617v2 (2016)
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Basis set dependence of Z,
* choice of molecular orbital basis defines static correlation patterns

* example: H, in minimal basis with canonical HF orbitals and localized orbitals
(Pipek-Mezey localization yields VB basis in a minimal AO basis (STO-3G))

Hartree—Fock localised

0u® @ ° @ same molecule,
Hl H2

H H,
! 2 same structure,

79 ( e o ) @ L4 only different MO basis!
H; H, H, H,
L™ = log (1)) W™ = 47181 (1)) + [1sma (1)
+ [1sm1 (1) Ism2 (1))
single determinant is a + [1sm1 (4) 1sma (1))]

ood approximation
& PP single determinant is insufficient:

multi-configurational problem!
C. J. Stein, M. Reiher, Mol. Phys. 2017, doi: 10.1080/00268976.2017.1288934; arXiv:1609.02617v2 (2016)
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Basis set dependence of Z;
1.0 (=9— T T T T

— = Hartree Fock
L \ localised

08 q =

—— Hartree Fock

— localised

0.0

0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
r/A

* choice of basis can create multi-configurational character
* H,*: only one electron — constant entropy
* H,: localized basis —> no symmetry constraint — max. entropy L In 4

C. ). Stein, M. Reiher, Mol. Phys. 2017, doi: 10.1080/00268976.2017.1288934; arXiv:1609.02617v2 (2016)




Additional remarks on Z,

Z,q) parallels other multi-configurational diagnostics
(T1-diagnostic[1], D1-diagnostic[2], HF exchange based diagnostics[3], NOON based diagnostics [4] ...)

* typical classification:
0 < Zy1) < 0.1  single-configuration

0.1 € Zy1) < 0.2 intermediate range
(multi-configurational methods are a safe choice)

0.2 < Zyq) <1  pronounced multi-configurational character

* is evaluated without additional cost in our automated
active orbital space selection protocoll®

» guide for the selection of the electronic structure method

C. J. Stein, M. Reiher, Mol. Phys. 2017, doi: 10.1080/00268976.2017.1288934; arXiv:1609.02617v2 (2016)
[1] T. J. Lee, P. R. Taylor, Int. J. Quantum Chem. 1989, 36, 199.

[2] C. L. Janssen, |. M. B. Nielsen, CPL 1998, 290, 423.

[3] U. R. Fogueri, S. Kozuch, A. Karton, J. M. L. Martin, Theor. Chem. Acc. 2012, 132, 1291.

[4] O. Tishchenko, J. Zheng, D. G. Truhlar, JCTC 2008, 4, 1208.

[5] C. ). Stein, M. Reiher, JCTC 2016, 12, 1760.
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Graphical User Interface

e0e result_tetracene.h5 QCMaquis result file
File Diagrams

define plateau:

Automated Selection
manual selection
threshold selection:
18 orbitals selected

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,
16,17,18

ece Reaction Coordinate Editor

Log File

SCF orbitals




Black Box DMRG Calculations

linitial orbitals (e.g. SCF, CASSCF with small CAS)

DMRG calculation )
QCMaquis

orbital entanglement

A
| DMRG-SCF
v

orbital optimization -
— >

lfina[ calculation including dynamical correlation

m Chemistry




Same CAS selection for different types of orbitals

HF orbitals split-localized orbitals

T T T T T 25 T T T
single-orbital entropy * single-orbital entropy
20 | + mutual information 5 20 formation

CAS from literature

15 . 15
.
ol U SR casao10) | ol e casgon) ]
ces
5r N 5

number of selected orbitals
number of selected orbitals

0 L L L L L L L
0 10 20 30 40 5 60 70 80 90 100

threshold in percent of largest element
CAS(10,10)-SCF orbitals

25 25
n 1 n
2 single-orbital entropy | -2
£ =
2 £
5 5
o o
2 S5 1
o 9 .
2 2
© F]
K Sl oo o e o - CAS010) ]
o o
b 2 :
£ € 5 MR I AP
H 2 .o
0

0 10 20 30 40 50 60 70 8 90 100
threshold in percent of largest element threshold in percent of largest element

@ the same CAS is automatically selected for all orbital bases




Subtle correlation effects are automatically captured

| sm18 DMRG-SCF orbitals 7 % )
N m = 1000, 20 sweeps !
. HF guess i

.. DMRG-SCF orbitals
.m = 1000, 20 sweeps.-® g

. HF guess s
St I g
e

&

13 12

25 25
TE * single-orbital entropy 73 ...-.“. * single-orbital entropy
52 52
5 5 seee,
] -
g5 215 e
S, g
3 essseseseee 8
& 3 o
210 sessceescsesesssecssseseseses 210 o,
S S .
5 5 .
5 5 “esess
2 voe] 2

0 0

0 10 20 30 40 S50 60 70 80 90 100 0 10 20 30 40 50 60 70 8 90 100

threshold in percent of largest element threshold in percent of largest element

@ correlation effects attributed to the covalency of the bonds are automatically
accounted for

um Chemistry




The CusO3" Torture Track

70
I o --- CR-CCSD(TQ),
60 ¢ -~ CAS(16,14)-SCF
T sl o0 —— DMRG(48,36)[500]-SCF
g ® — DMRG(32,28)[1000]-SCF#DMRG (48,36)[500]-SCF
= 40t =
L b
~ 30
P L
5 20
]
o 10
=
-10
20 \ \ I \
bis(p-ox0) 20 40 60 80 PEroxo

@ Coupled cluster and CASSCF data from c. J. Cramer et al., JPC A (2006), 110, 1991.

@ discrepancy to coupled-cluster result can be explained by (still) missing

dynamical correlation  c. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760-1771.
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Automated Orbital Selection Along Reaction Coordinates

Ecassor [ En

Ecasscr / En

AFgaspr / keal mol™t

-233.00
-233.05
-233.10
-233.15
-233.20
-233.25
-233.00
-233.05
-233.10
-233.15
-233.20
-233.25
-233.30
100.0
80.0
60.0
40.0
20.0
0.0
-20.0
-40.0
-60.0

"4.00

o e——0—<€7 7

© —— CASPT2#CAS(6,6)SCF
0 —— CASPT2#CAS(10,10)SCF

e

..

3.75

3.50

3.25

3.00

275 250 225
roc, /A

2.00

C. J. Stein, M. Reiher, Chimia 2017, 4, 170.; arXiv: 1702.00450

Diels-Alder reaction

* Cs symmetric reaction
coordinate (DFT structures)

« direction in which active
space is selected plays a role

« this effect is completely
leveled out by inclusion of
dynamical correlation

» additional orbitals in middle
panel indicate a second
process
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Need dynamic correlation for quantitative reference data!
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Metallocene Double Dissociation Energies

20
B V(Cp),
15 F O Mn(Cp),
B Fe(Cp),
10 M Ni(Cp),

Error (kcal/mol)

0
S T
-10
RASPT2 CASPT2 CASPT2 CCSD(T)-F12b
(18 orb.) (18 orb.) (auto)

@ Double dissociation energies are around 600 kcal/mol!

C. J. Stein, V. von Burg, M. Reiher, J. Chem. Theory Comput, under review [arXiv: 1605.07020]
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An Issue of CASPT2: The IPEA Shift

o IPEA = 0.50 au
27 . ® IPEA=0.25au

__ 10 6.4 o |IPEA =0.00 au

3 Tﬁ.o

E 8

>

S 6t l I g

3

; ar 10.4 1

EREYS 71 i

3 14.3 IS.6
N; 5 ]
A ! ]
-6

(8.8) (8,10) (12,10) (12,12) (14,16) (14,18)
Ferrocene CAS

The range of results produced by a modified IPEA shift is comparable to
that of a variable CAS size (indicated by horizontal lines)

C. J. Stein, V. von Burg, M. Reiher, J. Chem. Theory Comput, under review [arXiv: 1605.07020]
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DMRG-NEVPT2: Singlet—Triplet Gap of Methylene

E(a'Ay)-E(X3By) in kcal/mol

CAS(6,6) CAS(6,12) CAS(6,20)

CASSCF 10.53 5.71 9.93
CASSCF/CASPT2 11.87 10.56 10.26
DMRG-SCF 10.53 5.71 9.93
DMRG-SCF/NEVPT2 11.71 9.13 10.17

S. Knecht, E. D. Hedegérd, S. Keller, A. Kovyrshin, Y. Ma, A. Muolo, C. J. Stein,

M. Reiher, Chimia 2016, 70, 244 [arXiv: 1512.09267]

DMRG-NEVPT2: No approximations for 3- and 4-body RDMs

DFT PBE: 16.03 PBEO0: 17.72

FCl: C. D. Sherrill et al., J. Chem. Phys. 1998,

DMRG in Quantum Chemistry Markus Reiher 127 / 155



How to Improve on Dramatic Requirements of Resources?

@ cumulant approximation for 3- and 4-particle reduced density matrix
in NEVPT2 or CASPT2 b. zgid, D. Ghosh, E. Neuscamman, G. K.-L. Chan, J. Chem. Phys., 2009,
130, 194107. & Y. Kurashige, J. Chalupsky, T. N. Lan, T. Yanai, J. Chem. Phys., 2014, 141, 174111.

- with correct diagonal elements
- only 4-RDM is approximated

@ projection of strongly contracted perturber functions onto a

renormalized Hilbert SPACE M. Roemelt, S. Guo, G. K.-L. Chan, J. Chem. Phys., 2016, 144, 204113.

@ alternative approach: minimizing the Hylleraas functional in the space

of matrix product states s. sharma, G. K-L. Chan, J. Chem. Phys, 2014, 141, 111101.

@ Improve efficiency for integral and RDM evaluation

L. Freitag, S. Knecht, C. Angeli, M. Reiher, J. Chem. Theory Comput. 2016, under review [arXiv: 1608.02006]; C. J.

Stein, S. Knecht, M. Reiher, in preparation
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NEVPT2 for large systems

@ Exact four-particle RDM: no cumulant approximations
e very expensive but doable for active spaces of ~~ 22 orbitals
@ Large molecules: Cholesky decomposition for two-electron integrals

o allows for systems with > 1000 basis functions

— CD-DMRG-NEVPT2

L. Freitag, S. Knecht, C. Angeli, M. Reiher, JCTC (2016) under review (arXiv:1608.02006)
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Spin states of a cobalt tropocoronand complex

[Co(TC-n,n)(NO)]
@ n = 4-6 — diamagnetic

@ n = 3 — paramagnetic or diamagnetic?

Before Ref. 5: paramagnetic

Ref. 5: diamagnetic (from DFT and

new experimental results)

calls for an additional investigation!

L. Freitag, S. Knecht, C. Angeli, M. Reiher, JCTC (2016) under review (arXiv:1608.02006)
5Hopmann et al., Inorg. Chem. 2015, 54, 7362
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[Co(TC-3,3)(NO)] — spin state energetics

CD-DMRG-NEVPT2[512] (22,22)/ANO-RCC-VTZP (1147 basis functions)

So-T; gap of [Co(TC-3,3)(NO)] in eV:
SC-NEVPT2 DMRG-SCF OLYP5 PW91°® B3LYP-D3°

1.52 1.67 1.03 1.09 0.45

@ SC-NEVPT2 confirms the singlet ground state prediction of DFT
@ DFT energies significantly lower — OLYP and PWO91 energies closest
@ SC-NEVPT?2 not far off from DMRG-SCF

o dynamic correlation well covered in large (22,22) active space?

L. Freitag, S. Knecht, C. Angeli, M. Reiher, JCTC (2016) under review (arXiv:1608.02006)
5Hopmann et al., Inorg. Chem. 2015, 54, 7362
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Dynamic Correlation through (short-range) DFT
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Dynamic correlation through short-range DFT

Decomposition into active and inactive system
Ecpas-ci = Ei+ Ea

where

1
he 2 Z(hij  f5) Dl + Vin = Z(hu + fi) + Van

3

ij
1 A
Ea = Z fqleﬁv + 5 Z guvmyPuvmy
uv

uvTy

with

f; ;Iaq = hpq + Z (29quk - gpqu)
k

and

pars = (Pp(11)0r (r2)|(1, 2)[0g(71)Ps(12))
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Dynamic correlation through short-range DFT

Introduce the range separation into the electron—electron interaction
9(1,2) = g""(1,2) + g (1,2)

with

- erf(plrs — 72|)
R

A 1 —erf(p|ry — 7a|)
e

Then, the energy can be set up as

EEREL = B + Ej + Eg[p] + Estlp]

DMRG in Quantum Chemistry



Regularizing effect of srDFT on small CAS: Water

¥ X
T et i .
S ok
Punnt un !t

OdiNa

39diS-OdINa

10 Bt
Prupn’ Punnt

1.843 & (R:) 2765 a0 3.687 a,
E. D. Hedegard, S. Knecht, J. S. Kielberg, H. J. A. Jensen, and M. Reiher, J. Chem. Phys. 142 2015 224108
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DMRG—-srDFT for the WCCR10 test set

N/ \N®— N/ \N®—
a “
[ >—cu—n —— [ >—oun
N N 7A
\ \
Calculated dissociation energies in kJ/mol
Method De (kJ/mol) Dg (kJ/mol)
DMRG[2000](30,22) 1735 165.1
DMRG[2000](20,18) 169.9 161.5
DMRG[2000](10,10) 1328 1243
DMRG[2000](30,22)-srPBE 2251 216.6
DMRG[2000](20,18)-srPBE 227.9 219.4
DMRG[2000](10,10)-srPBE 216.5 208.0
PBE 240.2 231.8
PBE (full complex/def2-TZVP) 257.5 249.0
PBE (full complex/def2-QZVPP from WCCR10) 247.5 239.0
Exp. (from WCCR10) 226.7 218.2

E. D. Hedegard, S. Knecht, J. S. Kielberg, H. J. A. Jensen, and M. Reiher, J. Chem. Phys. 142 2015 224108;
WCCR10: T. Weymuth, E. P. A. Couzijn, P. Chen, M. Reiher, J. Chem. Theory Comput. 10 2014 3092

tum Chemistry




DMRG for solving the nuclear Schrodinger equation?
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Ab initio calculation of vibrational energies

1. Expand the electronic energy in a set of coordinates q
(internal, Cartesian, normal ...):

ov 1 0%V
V(q) =Veq + Z (F) + a Z <m> qqiqj
i,J ©

o3V 1 otV
Gk + 5 —_——
N Z (aq,aq]aqk) %3k T gy Xk:l <3qi(9qj5q;gaql eq

2. Solve the nuclear Schrédinger equation with this potential:

HV) Uy, = BV,

DMRG in Quantum Chemistry

) 9i9;9kq1 + - - -
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Calculation of vibrational energies

Calculation of the potential requires choice of:

« electronic structure method (cost vs. accuracy)
« coordinates
« fitting procedure

Approximate solution of the nuclear Schrédinger equation:

« harmonic or anharmonic calculation
« perturbative approaches (VPT2 ...)
« variational approaches (VSCF, VCI ...)

coupled cluster coupled cluster coupled cluster / MP2 DFT DFT
+ corrections VCI VPT2 VPT2 harmonic

-
e

DMRG in Quantum Chemistry



How to reduce the computational effort?

Exact diagonalization unfeasible for molecules with more than ~ 8-10 atoms.

—> different techniques to reduce the computational effort:

basis pruning algorithms
(Carrington...)

contracted basis techniques

(Handy, Carrington...)

local mode approaches

(Jacob, Reiher, Steele, Christiansen ...)
reduced dimensionality schemes
(Allen, Barone, Bloino ...)

Tensor formats
(Carrington, Oseledets)

— Density Matrix Renormalization Group to optimize the
vibrational wave function (vDMRG)

DMRG in Quantum Chemistry Markus Reiher
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vDMRG - the wave function

Full configuration interaction wave function of the k-th vibrational state:

expansion coefficient occupation number vector (ONV)

1
_ (k) harmonic oscillator (HO) basis functions:
W= Y O oloneon) moric asailer (H

"17-~~"’1'f=0 (Nnax basis functions per mode L)

L’ vibrational basis functions Nenax
k
|,) = Z c lot,...,ou)
.,or,=0
Expressed as a matrix product state (MPS): Tensor Train format of
Rakhuba and Oseledets
maximum bond dimension (JCP (2016), 745, 124101)
vector Veitor is equivalent to MPS!

@) = Z Z MEMP. MP oy, ..., 01)
—_—

O15::050L G1,..-,0L-1

matrices
A. Baiardi, C.J. Stein, V. Barone, M. Reiher, JCTC (2017), submitted, arXiv: 1703.09313
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vDMRG - the wave function

Niax
|‘Ijk>— Z Z Mk)UlM k)o2 M(k)ol’|0'1, yUL>

ai,az” ar-1,1

. vibrational mode, site
m : maximum dimension of site matrix, determines fraction of Cl space recovered

Npyax © maximum quanta of excitation per mode, size of local basis
—> currently fixed for all modes; could be taken as mode-dependent variable

Characteristics of the MPS structure:

+ ordering of the modes (sites) is important (better description of local correlations):
faster convergence for strongly coupled modes next to another on the lattice

A. Baiardi, C.J. Stein, V. Barone, M. Reiher, JCTC (2017), submitted, arXiv: 1703.09313
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vDMRG - Watson Hamiltonian

Watson Hamiltonian in normal coordinates with electronic potential V:

H, vib

l\')lr—a

L
Z PL + ql §; = position operator
=t P; =momentum operator conjugate to ¢;

L
PPN 1 ~ s~ ~ D =third-order reduced force constant
+ 6 Z D;;1G;:4;qk + 2 Z P ;110:4;4r4 ik

i]-k,l iiki=1 @, = fourth-order reduced force constant
z,y,2 B™ =rotational constant
Z Z B¢ ( ) GiD;i G ¢i; = Coriolis coupling constant
z]kl 1 T

widely used Hamiltonian in many applications

extension to higher orders is straightforward (currently up to 6% order implemented)

J.K.G. Watson, Mol. Phys. (1968), 15, 479.
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vDMRG - Watson Hamiltonian

For the DMRG algorithm, a second-quantized Hamiltonian is required

. . . 1 /- A
translate G = L (bj + b,-) and pi= 7 (bf - bi)

V2
with 2nd quantized 132'|01, ey T4y ey 0L) = oy + 101, ..y 05+ 1, ., 0L)
creation and annihilation :
- 0ilo1y 05 — 1, . 0L), ifo; >0
operators defined as: bilo1, ..., 04, . 0L) = {g;Ll: 0 2

Final 2nd quantized Watson Hamiltonian:
L L
N .n 1 1 . . . . . .
L= NS B (o8 (5 +5.) (5+
Hyip = ;71 wi (bi bi + 2) t 5/ Z_J_Ekd Dijk (b, + bz) (bJ + ba) (b,c + blc)

+ % i D;in (l;f + Z;i) (A;r -HBJ.) (E; + j,k) (5l+ +5z)
ijkl=1
ca > Y (220 (b + ) (55 - ) (it + ) (5 - )

igkl=1 T

S. Hirata, M. R. Hermes, JCP (2014), 141, 184111.
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vDMRG - Watson Hamiltonian in MPO format

Express this Hamiltonian in Matrix Product Operator (MPO) format:

vector vector symbolic
‘1, representation
/
‘71701 Uzv” 0L,07, ’
W=>" > W WG Wy o) o +
oo’ by,...,br—1 L T ) —
matrices ONVs

As an example, we write the harmonic term on site j in MPO form
(not dependent on m):

unit matrices of
max. dimension N,.x

l
~ ala 1 - ~ ~ ~ ~
Hyarm (1) = w; (b;*bz-+§> —s Wham.() =wi - 1 ®---®bf -b;®---®1
I_'_l

matrix representation of

* extremely sparse matrix!
elementary operators

—> sparse, iterative eigensolvers (Jacobi-Davidson)
iterative procedure with decimation steps

A. Baiardi, C.J. Stein, V. Barone, M. Reiher, JCTC (2017), submitted, arXiv: 1703.09313
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Proof of concept - CIO,

| Parameters of vDMRG|
Npax : size of local basis increases with anharmonicity
m: max. dimension of site matrices increases with anharmonic mode-coupling

increases with anharmonicity

number of sweeps

20 sweeps ensured
convergence for all states

X 2B, ground statel

* internally contracted MRCI+Q
on CAS (13,9) active spacell

+ adjusted cc-pVQZ basis set

* quartic fit in internal
coordinates

» direct tensor transformation to
S —— normal coordinates?
* up to sextic terms included

[1] K. A. Peterson, JCP (1998), 109, 8864.
[2] M. Sibaev, D. L. Crittenden, J. Comput. Chem. (2015), 36, 2200.
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Proof of concept - CIO,

Niax = 10 Niax = 12
assignment Ref.[1] m=2 m=5 m=10 m=5 m=10
ZPE 1264.5 1264.5 1264.5 1264.5 1264.5
vy 449.9 449.5 449.5 449.5 449.5 449.5
V1 940.7 940.7 940.7 940.7 940.7 940.5
V3 1105.5 1105.2 1105.2 1105.2 1105.2 1105.2
2vy + v, 2313.8 2318.4 23135 2313.6 2313.6 23137
vy + vy 2943.2 2947.9 2943.8 2943.2 2943.5 2943.7

Energies in cm; [1] K. A. Peterson, JCP (1998), 109, 8864.

« very low bond dimension m is sufficient to converge energies

» results are effectively converged w.r.t. basis set size for Ny = 10

« slightly larger m is required for higher excited states (here: combination bands)
A. Baiardi, C.J. Stein, V. Barone, M. Reiher, JCTC (2017), submitted, arXiv: 1703.09313
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Parameter dependence — CH;CN

« full quartic force-field from CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ
(D. Begue, P. Carbonniere, C. Pouchan, JPCA (2005), 109, 4611.)
* became a classic benchmark for several new variational methods
(A. Leclerc, P.S. Thomas, T. Carrington, Mol. Phys. (2016) doi:10.1080/00268976.2016.1249980 M. Rakhuba, .

Oseledets, JCP (2016), 145, 124101. G. Avila, T. Carrington, JCP (2011), 134, 054126. A. Leclerc, T. Carrington,
JCP (2014), 140, 174111. A. Leclerc, T. Carrington, CPL (2016), 644, 183.)

only force constants > 7 cm™ were reported by D. Begue et al.
—> study parameter dependence of energy convergence

convergence w.r.t. number of sweeps is simple to monitor

|

o =il
criterion:  Ecurr. sweep — Feurr. sweep - 10 < 0.001 cm

|

15 — 250 sweeps depending on state

A. Baiardi, C.J. Stein, V. Barone, M. Reiher, JCTC (2017), submitted, arXiv: 1703.09313
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Parameter dependence — CH;CN

Npax =9
T, 08 * reference calculation with vDMRG:
g Nax = 9, m = 100
~ 04 T
o
5 0o T .
g o0 oot oosootossiafel ot g 00t 00| * deviationsin most cases below 0.2 cm™
o]
04 ¢ . ) ) . .| * larger errors for strongly interacting states
0 5 10 15 20 25 30
total vibrational state * m = 20 takes only 15 % of the
i computational time of m = 100
om=20
L2 |6 m=150 Nmax =6 b
n 08 + m=100
§ )
~ 04 ¢
— .
8 > =
£ 00 leessitesss 00900’ salo.es®el20]] > | m=20 ?ufﬁCIent for
@ e sub cm™' accuracy
04 4
0 5 10 15 20 25 30
total vibrational state

A. Baiardi, C.J. Stein, V. Barone, M. Reiher, JCTC (2017), submitted, arXiv: 1703.09313

Markus Reiher 149 / 155



Higher-order expansion of the force field - C,H,

| electronic ground state |

« quartic CCSD(T) / pVQZ potential energy surface in internal coordinates
T. Delahaye, A. Nikitin, M. Rey, P. Szalay, V.G. Tyuterev, JCP (2014), 141, 104301.

« converted to a sextic potential in normal coordinates by a direct tensor
transformation (nonlinear transformation) A. Hoy, 1. Mills; G. Strey, Mol. Phys. (1972), 24, 1265.

+ calculations with and without Coriolis terms in the Hamiltonian

11035.0
————— 4th, Nyye=6

110300 < ath, Ny =8 * m = 10 gives converged results
_uosel % o Now™® (within 1cm-")
‘5.11020.0 th . .
¢ « 6" order expansion is necessary
~N11015.0; .

110100 : ¢ Nnax = 6 sufficient for low lying states

H005G 510 15 20 25 30 35 40
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Higher-order expansion of the force field - C,H,

no Coriolis Coriolis  no Coriolis

mode assignment m=10 m=20 m=10 Ref. [1] Exp. [2]
ZPVE 11016.14 11016.15 11021.39 11014.91

2 Vg 933.48 933.47 942.26 934.29 939.86

4 V4 1018.26 1018.26 1026.64 1024.94 1025.58

5 Ve 1227.08 1227.05 1229.68 1224.96 1225.41

6 V3 1343.46 1343.46 1344.25 1342.96 1343.31

1 V7 + V0 1787.02 1786.99 1781.17 1778.34 1781.01

Energies in cm™'. N,,,, is set to 6 and 10 sweeps were run in all calculations.

» again, small value of m sufficient for converged results

» vDMRG (approximate VCI) calculations feasible for medium size systems including terms
higher than quartic

* inclusion of Coriolis effects (last term in Watson Hamiltonian) in general improves the results

A. Baiardi, C.J. Stein, V. Barone, M. Reiher, JCTC (2017), submitted, arXiv: 1703.09313
[1] T. Delahaye, A. Nikitin, M. Rey, P. Szalay, V.G. Tyuterev, JCP (2014), 141, 104301.
[2] R. Georges, M. Bach, M. Herman, Mol. Phys. (1999), 97, 279.
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A large molecule - the SarGly+ dipeptide
* B3LYP/6-311+G(d,p) quartic force-field

» neglect quartic force constants with four
different indices and those < 1cm-

* harmonic treatment for all modes below

900 cm!
H
40.0| .
+ focus on fingerprint region 5300 : B
(~900 — 1700 cm™") g *
@ 20.0, . .
* 35 modes treated fully variationally °
10.0, .

« total of 3964 terms in the Hamiltonian 10

o o [53]

(1648 for sextic potential in C;H,) Harmonic 4
very fast sweep convergence
(in black rectangle: resonant states)
A. Baiardi, C.J. Stein, V. Barone, M. Reiher, JCTC (2017), submitted, arXiv: 1703.09313
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A large molecule — the SarGly+ dipeptide

1.0 T
--=- Experimental |
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A large molecule - the SarGly+* dipeptide

1.0
Experimental
— Harmonic

0.8/ — Anharmonic
[
©0.6
©
2
2
204 i )

0.2

0.0 i r e |iﬁi| | | H

’ 1100 1200 1300 1400 1500 1600

1000
Wavenumbers [cm™!]

* harmonic intensities

» approximately 5h per total vibrational state in current implementation

+ red shift and better agreement with experimental spectrum

A. Baiardi, C.J. Stein, V. Barone, M. Reiher, JCTC (2017), submitted, arXiv: 1703.09313
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