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Four Lectures on DMRG in Quantum Chemistry

1 ’First-Generation’ Density Matrix Renormalization Group (DMRG)

in Quantum Chemistry

2 ’Second-Generation’ DMRG:

Matrix Product and Tensor Network States

Matrix Product Operators

3 Some (of our) Results of Quantum-Chemical DMRG Calculations

Very useful introductory reference:

U. Schollwöck, The density-matrix renormalization group in the age of

matrix product states, arXiv: 1008.3477v2
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Lecture 1

’First-Generation’ DMRG in Quantum Chemistry

1 Standard Configuration Interaction in Explicit Second Quantization

2 Dimension Reduction by Decimation

3 Elements of the DMRG Algorithm
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Non-Relativistic Many-Electron Hamiltonian

many-electron Hamiltonian in position space (Hartree atomic units)

Hel =

N∑
i

(
−1

2
∇2
i −

∑
I

ZI
riI

)
+

N∑
i<j

1

rij
(1)

with rij = |ri − rj | and N being the number of electrons.

eigenvalue equation: electronic Schrödinger equation

Hel Ψ
{RI}
el ({ri}) = Eel({RI}) Ψ

{RI}
el ({ri}) (2)

central in electronic structure theory: how to approximate Ψel ?
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Standard Procedure: Construction of Many-Electron Basis

Construct many-electron (determinantal) basis set {ΦI} from a given

(finite) one-electron (orbital) basis set φi

From the solution of the Roothaan–Hall equations, one obtains n

orbitals from n one-electron basis functions.

From the N orbitals with the lowest energy, the Hartree–Fock (HF)

Slater determinant is constructed.

The other determinants (configurations) are obtained by subsequent

substitution of orbitals in the HF Slater determinant Φ0:

{ΦI} → {Φa
i } → {Φab

ij } → {Φabc
ijk} (3)

Determinants are classified by number of ’excitations’ (=

substitutions in HF reference determinant) into virtual orbitals.
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Standard Full Configuration Interaction (FCI)

The number of possible determinants is determined by the number of

virtual orbitals n−N .

Including all possible excited Slater determinants for a finite or infinite

one-electron basis set leads to the so-called full CI approach.

Number of Slater determinants nSD for N spin orbitals chosen from a

set of n spin orbitals (slang: N electrons in n spin orbitals):

nSD =

(
n

N

)
=

n!

N !(n−N)!
(4)

Example: There are ≈ 1012 different possibilities to distribute 21

electrons in 43 spin orbitals.

In physics FCI is called exact diagonalization.
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Truncated CI Wave Functions

Standard recipe to avoid the factorial scaling of the many-electron

basis-set size: truncate basis! Note: basis is pre-defined!

Assumption: Substitution hierarchy is a useful measure to generate a

systematically improvable basis set.

CIS: all singly-(S)-excited determinants are included:

ΨCIS
el = C0Φ0 +

∑
(ai)

C(ai)Φ
a
i (5)

CISD: all singly- and doubly-(D)-excited determinants are included:

ΨCISD
el = C0Φ0 +

∑
(ai)

C(ai)Φ
a
i +

∑
(ai)(bj)

C(ai,bj)Φ
ab
ij (6)

C0, C(ai), C(ai,bj) ∈ {CI} (7)

DMRG in Quantum Chemistry Markus Reiher 8 / 155



Determination of the CI Expansion Coefficients CI

The CI expansion coefficients CI determined by variational principle:

write down the expectation value for the energy

introduce the determinantal basis set

vary the energy in order to minimize it

Expectation value for the CI electronic energy:

ECI
el =

〈
ΨCI
el

∣∣Hel

∣∣ΨCI
el

〉〈
ΨCI
el

∣∣ΨCI
el

〉 (8)

Insert expansion of Slater determinants:

ECI
el =

∑
K,LC

∗
KCL 〈ΦK |Hel |ΦL〉∑

K,LC
∗
KCL 〈ΦK |ΦL〉

(9)
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The CI Eigenvalue Problem

Calculate all derivatives ∂ECI
el / ∂C

∗
K and set them equal to zero, which

yields the CI eigenvalue problem:

H ·C = C ·Eel (10)

Essential: H is constructed from matrix elements 〈ΦK |Hel |ΦL〉 in

the pre-defined determinantal basis {ΦK}

By solving the CI eigenvalue problem, ground and excited electronic states

of the system are obtained.

Eel is diagonal matrix with total energies of all electronic states that can

be expressed in basis given (M determinants yield M electronic states).
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Standard ’Technical’ Trick: Second Quantization

Operators and wave functions are expressed in terms of creation and

annihilation operators to implement the Slater–Condon rules for the

evaluation of matrix elements 〈ΦK |Hel |ΦL〉 directly into the formalism.

Hel in second quantization (i, j, k, l are spin orbital indices):

⇒ Hel =
∑
ij

〈φi|h(i) |φj〉 a†iaj

+
1

2

∑
ijkl

〈φi(1) 〈φk(2)| g(1, 2) |φl(2)〉φj(1)〉a†ia†jakal (11)

CI wave function in second quantization:

ΨFCI
el = C0Φ0 +

∑
(ai)

C(ai)a
†
aaiΦ0 +

∑
(ai)(bj)

C(ai,bj)a
†
baja

†
aaiΦ0 · · · (12)

DMRG in Quantum Chemistry Markus Reiher 11 / 155



CI Energy in Second Quantization

ECI
el =

〈
ΨCI
el

∣∣∣Hel ∣∣∣ΨCI
el

〉
(13)

=
n∑
ij

∑
KL

C∗KCLt
KL
ij︸ ︷︷ ︸

γij

〈φi(1)|h(1) |φj(1)〉︸ ︷︷ ︸
≡hij

+
1

2

n∑
ijkl

∑
KL

C∗KCLT
KL
ijkl︸ ︷︷ ︸

Γ
ijkl

〈φi(1) 〈φk(2)| g(1, 2) |φl(2)〉φj(1)〉︸ ︷︷ ︸
gijkl

(14)

=

n∑
ij

γijhij +
1

2

n∑
ijkl

Γijklgijkl (15)

tKLij or TKLijkl are matrix elements of determinantal basis functions over
pairs or quadruples of elementary operators a† and a.

γij are Γijkl are density matrix elements.
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Is there a better way to construct the finite-dimensional

determinantal basis set in order to avoid the factorial scaling?
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Coupled-Cluster — An Advanced CI-type Wave Function
Ansatz:

ΨCC
el = exp (T ) ΦHF

el (16)

Excitation operator:

T = T1 + T2 + T3 + · · · (17)

where

Tα =
∑

ab · · ·︸ ︷︷ ︸
α times

ij · · ·︸ ︷︷ ︸
α times

cluster-amplitudes︷︸︸︷
tab···ij··· · · · a†baja

†
aai︸ ︷︷ ︸

α pairs a†a

⇒ T1 =
∑
ai

tai a
†
aai (18)

Notation:

CCS (T = T1), CCSD (T = T1 + T2), CCSDT (T = T1 + T2 + T3) ,· · ·
Coupled-cluster improves on truncated CI, because certain (disconnected)

higher excited configurations (e.g., tai a
†
aait

bc
jka
†
caka

†
baj) are included.
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Is there a better way to construct the finite-dimensional

determinantal basis set in order to avoid the factorial scaling?

Let’s investigate FCI from a different perspective:
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Many-Electron Hamiltonian in Second Quantization

many-electron Hamiltonian in second quantization

Hel =
∑
i,j
σ

hija
†
iσajσ +

1

2

∑
i,j,k,l
σ,σ′

Vijkla
†
iσa
†
jσ′akσ′alσ (19)

with σ ∈ {α, β} and the creators and annihilators aiσ and a†iσ, resp.

with one-electron integrals hij

hij =

∫
φ∗i (r)

(
−1

2
∇2 −

∑
I

ZI
rI

)
φj(r) d3r (20)

and two-electron integrals Vijkl

Vijkl =

∫ ∫
φ∗i (r1)φ∗j (r2)φk(r2)φl(r1)

r12
d3r1d

3r2 (21)

with spatial orbitals φi (i, j, k, l now spatial orbital indices).
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Full CI in (Explicit) Second Quantization

Elementary operators: a†iσ and aiσ

Hamiltonian matrix is now constructed from the matrix representation

for the elementary operators by direct products

By contrast to standard procedure, instead of evaluating the

action of the elementary operators on the determinantal basis

functions, we set-up a matrix representation of the elementary

operators and construct a matrix representation of the

Hamiltonian DIRECTLY.

This Hamiltonian matrix can then be diagonalized.
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Elementary operators in (Explicit) Second Quantization

a†iσ and aiσ operate on spin orbital with two states: occ. and unocc.

|0〉iσ =

(
1

0

)
and |1〉iσ =

(
0

1

)
(22)

Corresponding matrix representation of elementary operators:

a†iσ|0〉iσ = |1〉iσ ⇐⇒
(

0 0

1 0

)(
1

0

)
=

(
0

1

)
(23)

a†iσ|1〉iσ = 0 ⇐⇒
(

0 0

1 0

)(
0

1

)
=

(
0

0

)
(24)

aiσ|0〉iσ = 0 ⇐⇒
(

0 1

0 0

)(
1

0

)
=

(
0

0

)
(25)

aiσ|1〉iσ = |0〉iσ ⇐⇒
(

0 1

0 0

)(
0

1

)
=

(
1

0

)
(26)
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Matrices for Hamiltonian in (Explicit) Second Quantization

Dimension of elementary operators defined for orbital space of n spin

orbitals with 2 states each: 2n ⇒ dimension of the Hamiltonian is 2n

(NB: for spatial orbitals we have 4n where 4 is the number of states per orbital [empty, up, down, doubly occupied])

2n-dimensional elementary operator: (the spin index has been omitted for the sake of clarity)

a
†
i =

(
1 0

0 −1

)
1

⊗ · · · ⊗
(

1 0

0 −1

)
i−1︸ ︷︷ ︸

matrix structure needed for anticommutation

cf. Jordan–Wigner transformation

⊗
(

0 0

1 0

)
i

⊗
(

1 0

0 1

)
i+1

⊗· · ·⊗
(

1 0

0 1

)
n

Then, 2n × 2n-matrix of term of the one-electron part of Hamiltonian reads:
hija

†
iaj =

hij

( 1 0

0 −1

)
1

⊗ · · · ⊗
(

1 0

0 −1

)
i−1

⊗
(

0 0

1 0

)
i

⊗
(

1 0

0 1

)
i+1

⊗ · · · ⊗
(

1 0

0 1

)
n



×

( 1 0

0 −1

)
1

⊗ · · · ⊗
(

1 0

0 −1

)
j−1

⊗
(

0 1

0 0

)
j

⊗
(

1 0

0 1

)
j+1

⊗ · · · ⊗
(

1 0

0 1

)
n


Similar expression for the two-electron part, but product of four

2n-dimensional elementary matrices
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Nothing has been gained yet!

Even worse: Huge matrices have been generated which contain

mostly zeros and need to be multiplied and added.
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Nothing has been gained yet!

Even worse: Huge matrices have been generated which contain

mostly zeros and need to be multiplied and added.

Need to find a way to reduce the dimension !
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What is the best reduced many-particle basis?

First attempt: Wilson’s renormalization group
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Wilson’s Renormalization Group: Dimension Reduction

1 Choose a number of orbitals l whose many-electron Hamiltonian H
(l)
el

can still be constructed and exactly diagonalized.

2 Diagonalize H
(l)
el of dimension 2l (or 4l for spatial orbitals) and select

m lowest-energy eigenvectors out of the 2l eigenvectors.

3 Reduce the dimension of H
(l)
el from 2l to m by transformation with

the rectangular m× 2l matrix of m eigenvectors of H
(l)
el .

4 Construct H
(l+1)
el from H

(l)
el and H

(1)
el defined for an orbital taken

from the n− l remaining orbitals.

5 Continue with 2) until l + 1 = n.
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Issues with Wilson’s Renormalization Group

H
(l)
el requires exact diagonalization (or a subspace iteration technique

like Lanczos, which produces a large portion of the low-energy

eigenvectors) and thus its dimension 2l is limited and l must therefore

be rather small

No guarantee that reduced basis is optimum choice in some sense.

No information from those n− l remaining orbitals, which have not

been considered at the lth iteration step, is taken into account in the

construction of H
(l)
el (particularly bad, when l is small)
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What is the best reduced many-particle basis in terms of a

least-squares fit?

Second attempt: White’s DMRG

— transform with eigenvectors of a reduced density matrix

S. R. White, Phys. Rev. Lett. 1992 69 2863; Phys. Rev. B 1993 48 10345
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The (two-site) DMRG Algorithm: Terminology

arrange all spatial orbitals as a one-dimensional lattice

lattice consists of sites
site︷︸︸︷• • • • · · · •︸ ︷︷ ︸

lattice

(27)

the sites of solid state physics are the orbitals in quantum chemistry

divide lattice into system block, two single sites, environment block

• • • · · · • • • • • • · · · •
system environment

(active (explicitly (complementary

subsystem) treated subsystem)

subsystem)

the joined systems (=CAS) are called the ’superblock’
DMRG in Quantum Chemistry Markus Reiher 26 / 155



The DMRG Algorithm: Initialization

Construct many-particle states explicitly on active subsystem

→ actually: find matrix representation of elementary operators defined

on this subsystem

NB: For a total(!) system of N electrons, many-particle states with 0

to a maximum of N electrons need to be considered

Hence, active subsystem can comprise only few orbitals (too many

sites prohibitive because of factorial scaling of states)

Find a way to increase the number of orbitals (blocking), while

keeping the number of basis states on the active subsystem constant

(decimation)
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The DMRG Algorithm: Blocking

enlarge the system (and environment) by one site (’blocking’)
old system︷ ︸︸ ︷

•︸ ︷︷ ︸
new system

new states are tensor products of those on old system + those on new site

calculate operators of new system as direct product of operators defined for

old system and new site

Dimension of operators on old system: m; Dim. of ops. on single site: 4

⇒ Dimension of operators defined on new system: 4m
 =
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Construction & Diagonalization of Total Hamiltonian

consider system and environment each enlarged by one of the explicitly

treated sites (dimension for both: 4m)

any electronic state defined on the total orbital space (superblock) can be

written as a tensor product over system |i〉 and environment |j〉 basis states

ΨDMRG
el =

∑
ij

ψij |i〉 ⊗ |j〉 (28)

corresponding superblock Hamiltonian Hsuperblock is calculated as a sum of

all elementary operator products defined on enlarged system and enlarged

environment (dimension: 4m× 4m = 16m2)

NB: realize that in the first set of iterations (sweep), in which the active

subsystem grows orbital by orbital, guessing of a reduced number of states

on the environment is required (warm-up)

diagonalize Hsuperblock to obtain CI-type coefficients ψij (scaling:

(16m2)3 ≈ m6 for large m → subspace methods: Davidson’s diagonalizer)
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Construction & Diagonalization of Reduced Density Matrix

The DMRG CI-type coefficients ψij carry two indices as they are

explicitly obtained for the i-th system and the j-th environment basis

state.

The reduced density matrix ρs/e (RDM) for the system can be

obtained by tracing out all (sub)states j from the environment:

ρ
s/e
ii′ =

∑
j∈{e}

ψijψi′j (29)

This matrix ρ
s/e
ii′ is of dimension 4m

m eigenvectors of ρs/e can be used for the dimension reduction of all

elementary operators from 4m back to the original dimension m
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Understanding Relation of RDM to Least-Squares Fitting

We have the following bases at our disposal:

system: {|i〉; i = 1, . . . ,ms}
environment: {|j〉; j = 1, . . . ,me}

In the product basis (bipartition) we express a pure state of the

superblock (total system; real coefficients assumed):

Ψel =
∑
ij

ψij |i〉 ⊗ |j〉 (30)

Now search for m < ms orthogonal, linear-independent system states

{|u〉;u = 1, . . . ,m}
into which we expand the approximate state

Ψ̃′el =
∑
uj

cuj |u〉 ⊗ |j〉 (31)
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RDM, SVD, and Least-Squares Fitting

We wish Ψel ≈ Ψ̃′el by requiring that

S′ =
∣∣∣Ψel − Ψ̃′el

∣∣∣2 = min (32)

Introduce a similar reduced-dimensional basis on the environment:

{|v〉; v = 1, . . . ,m} with 〈j|v〉 = cvj and
∑

j |cvj |2 = 1

such that the approximate state takes the simple form

Ψ̃el =
∑
k

ck|uk〉 ⊗ |vk〉 (33)

(Schmidt decomposition)

With Uik = 〈i|uk〉 and Vjk = 〈j|vk〉 we have for the squared norm

S =
∑
ij

[
ψij −

∑
k

ckUikVjk

]2

(34)
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RDM, SVD, and Least-Squares Fitting

Here, we recognize the similarity to the least-squares fitting

problem in linear algebra!

Hence, we may use singular value decomposition (SVD) of a

rectangular matrix to minimize S → factorize ψ = (ψij):

ψ = U ·D · V T (35)

The matrix U = (Uik) is orthogonal and of dimension ms ×ms.

The matrix V = (Vjk) is column-orthogonal and of dimension

me ×ms.

D is an ms-dimensional diagonal matrix and contains the singular

values of ψ (assume ms ≤ me, otherwise consider ψT ).
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RDM, SVD, and Least-Squares Fitting

The m largest diagonal elements of D are the desired coefficients ck

and the corresponding column vectors of U and V are the desired

|uk〉 and |vk〉.
But how can one make the connection to the RDM?

Consider the von Neumann density operator for the superblock

ρ̂ = |Ψel〉〈Ψel|
(30)
=
∑
ii′jj′

ψijψi′j′ |i〉〈i′| ⊗ |j〉〈j′| (36)

reduced density operator from tracing out the enviroment states

ρ̂s = Treρ̂ =
∑
j′′

∑
ii′jj′

ψijψi′j′ |i〉〈i′|〈j′′|j〉〈j′|j′′〉 (37)

=
∑
ii′j

ψijψi′j |i〉〈i′| (38)
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RDM, SVD, and Least-Squares Fitting

The RDM is then obtained as

ρs = ψ · ψT with (ρs)ii′ =
∑
j

ψijψi′j (39)

for which we can insert the SVD

ρs = ψ · ψT (35)
= (UDV T ) · (V DUT ) = U ·D2 · UT (40)

Hence, U diagonalizes ρs and thus its eigenvalues D2
ii are related to

the coefficients ck of the Schmidt decomposition !

Thus, instead of calculating the SVD, one can diagonalize ρs to

obtain the ck =
√
D2
kk from the m highest eigenvalues of D2 and the

corresponding eigenvectors |uk〉.
I.e., the larger the eigenvalue D2

ii, the better represents |ui〉 the

system part of the superblock state
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RDM, SVD, and Least-Squares Fitting

Accuracy of approximation can be measured by the truncation error ε

ε = 1−
m∑
k=1

D2
kk (41)

Ö. Legeza, J. Röder, B. A. Hess, Phys. Rev. B 67 (2003) 125114

This transfers to the accuracy of an observable O as follows

|〈O〉Ψel − 〈O〉Ψ̃el | = |Tr(Oρs)− Tr(Oρ̃s)| =
∣∣∣∣∣

ms∑
i=m+1

OiiD
2
ii

∣∣∣∣∣
≤

ms∑
i=m+1

|Oii|D2
ii ≤ max

i>m
|Oii|

ms∑
i=m+1

D2
ii

= max
i>m
|Oii|ε (42)

J. Röder, PhD Thesis, University of Erlangen, 2003
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Pictorially: Diagonalization of the RDM

reduced density matrix is diagonalized → 4m eigenpairs

U =
4m× 4m
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Pictorially: Diagonalization of the RDM

reduced density matrix is diagonalized → 4m eigenpairs

U =

O

choose the m eigenvectors with the highest eigenvalues

keep m variable to always adjust to the optimum number of relevant

eigenvectors (Ö. Legeza: dynamic block-state selection DBSS)

selected eigenvectors transform the many-particle basis of the (enlarged)

system to a reduced basis
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Pictorially: Renormalization of Operators

transformation by selected eigenvectors yields new many-particle basis of the

system (optimum reduced m-dimensional basis in a least-squares sense)

operators are now transformed to the new basis, i.e. renormalized:

.

.

=

OT ãnew O = anew (43)

columns of the transformation matrix O consist of the selected eigenvectors

dimension of the operators is reduced from 4m to m
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Features of the DMRG Algorithm

DMRG is a CAS approach!

DMRG iterations increase AS orbital by orbital until the environment is

completely absorbed into the system.

Then, the iteration direction is reversed to optimize the environment

representation.

This defines a ’linear’ algorithm, and explains why the orbital ordering can

be important (convergence to local minima possible!).

G. Moritz, B. A. Hess, M. Reiher, J. Chem. Phys. 2005 122 024107

It was thought that DMRG is therefore only beneficial for

pseudo-one-dimensional molecules.

DMRG state is a superposition of FCI-type basis states.

An FCI/CAS solution can be converged; but the basis cannot be completely

known in terms of CSFs if DMRG shall be efficient
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DMRG Convergence for Complicated Electronic Structures

If DMRG calculations shall be competitive, these issues must be addressed:

dynamic correlation effects need to be included
see work of G. K.-L. Chan et al., T. Yanai & Y. Kurashige et al. on multi-reference perturbation theory;

problem: requires up to 4-body reduced density matrices! (see also last lecture)

efficient warm-up sweep (environment guess)

see work of Ö. Legeza et al. (CI-DEAS and entanglement measures for orbital ordering)

number of renormalized states m should be as small as possible

orbital ordering:

crucial to avoid convergence to local energy minima in case of small m

(especially, if no RDM noise or perturbation are considered)

G. Moritz, B. A. Hess, M. Reiher, J. Chem. Phys. 2005 122 024107

environment states: in principle, the better the approximation of

environment states the faster convergence should be

G. Moritz, M. Reiher, J. Chem. Phys. 2006 124 034103

DMRG analysis: decomposition of DMRG states in Slater determinant basis

G. Moritz, M. Reiher, J. Chem. Phys. 2007 126 244109
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Determining Factors of DMRG Convergence

1 (Choice of the one-electron basis set for the representation of the

molecular orbitals)

2 Size of the active space (CAS)

3 Choice of the type of molecular orbitals

(HF, NO’s, localized orbitals, ..., DMRG-SCF)

4 Environment-state guess in the first sweep

(CI-DEAS by Ö. Legeza or noise/perturbation added to RDM)

5 Ordering of orbitals (exploit entanglement measures, see below)

6 Number of renormalized subsystem states m (= bond dimension, see

later); extrapolate (run at least 3 calcs with varying m)

⇒ All of these parameters must be reported for DMRG results !

S. Keller, M. Reiher, Chimia 68 2014 200-203 [arXiv: 1401.5497]
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Lecture 2

’Second-Generation’ DMRG:

Matrix Product and Tensor Network States

1 New Parametrization of the Electronic Wave Function:

Tensor Network States (TNS)

2 Matrix Product States (MPSs) and Matrix Product Operators

(MPOs)
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How to Efficiently Represent (Electronic) Quantum States?

Tensor-product construction of the N -particle Hilbert space from

1-particle Hilbert spaces

Ψel =
∑

i1i2···in

Ci1i2···in |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 (44)

Dimension inreases exponentially with system size (4n for spatial

orbitals). Ci1i2···in (=CI) is element of the coefficient tensor

In principle, it should be sufficient to parameterize a manifold of

states such that there exists a large overlap with the exact state.

F. Verstraete, Adv. Phys. 2008 57 143; quantum chemistry has always relied on this!

How to reduce the complexity of Ψel by a class of variational wave

functions that capture the physics of the Hamiltonian?
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Parameterization of the Wave Function

Ψel =
∑

i1i2···iL

Ci1i2···in |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 (45)

Configuration Interaction ansatz

|CI〉 =
(

1 +
∑
µ

Cµτ̂µ

)
|HF〉 (46)

Coupled Cluster ansatz

|CC〉 =
(∏

µ

[1 + tµτ̂µ]
)
|HF〉 (47)

Restricted sum over basis states with a certain substitution pattern

generated by ’excitation’ operator τ̂µ

→ yields a pre-defined (!) many-particle basis set

numerous specialized selection/restriction protocols
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Instead of standard CI-type calculations by

diagonalization/projection

Ψel =
∑

i1i2···in

Ci1i2···in |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 (48)

construct CI coefficients from correlations among orbitals

Ψel =
∑

i1i2···in

Ci1i2···in |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 (49)

=⇒ tensor construction of expansion coefficients
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Some Early Tensor Network (TN) Approaches

... for spin Hamiltonians developed:

1-dimensional TN: Matrix Product States (MPS) / DMRG

S. R. White, Phys. Rev. Lett. 1992 69 2863

S. Römmer, S. Ostlund, Phys. Rev. Lett. 1995 75 3537

2-dimensional TN: Projected Entangled Pair States (PEPS)

F. Verstraete, M. M. Wolf, D. Perez-Garcia, J. I. Cirac PRL 2006 96 220601

higher-dimensional TN:

Multiscale Entanglement Renormalization Ansatz (MERA)

M. Aguado, G. Vidal, Phys. Chem. Rev. 2008 100 070404

DMRG in Quantum Chemistry Markus Reiher 47 / 155



MPS & DMRG

Structure of White’s DMRG wave function: Matrix Product States (MPS)

S. Römmer, S. Ostlund, Phys. Rev. Lett. 1995 75 3537

ΨMPS
el =

∑
i1i2···in

[
A[i1] · · ·A[in]

]
|i1 ⊗ i2 ⊗ · · · ⊗ in〉 (50)

DMRG algorithm defines a protocol for the iterative improvement of

the matrices Aij by using the reduced density matrix (RDM) for the

AS of the total system.

Transformation matrices A[i] represent the change of the many-electron

basis when adding to the active subsystem (AS) states on a single orbital

taken from the environment.

In the finite-CAS DMRG, the first and last matrices A[i1] and A[in], resp.,

are actually vectors (of length 4 for spatial orbitals).
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Reconstruction of CI coefficients

Reconstruct a CI-type wave function from the DMRG state, because

allows us to interpret/understand the states in the standard way,

makes DMRG calculations for different m values comparable,

allows us to study DMRG convergence in terms of determinants being

picked up.

MPS structure yields the CI coefficients:

C{n} =

ms∑
m

me∑
m′

ψmnl+1nl+2m′

(
A

[nl]
l . . . A

[n2]
2

)
m;n1

×
(
A

[nl+3]
l+3 . . . A

[nn−1]
n−1

)
m′;nn

(51)

CI coefficient calculated from renormalization matrices and DMRG-state

expansion coefficients ψmnl+1nl+2m′ (for active system of size l)

G. Moritz, M. Reiher, J. Chem. Phys. 126 2007 244109

K. Boguslawski, K. H. Marti, M. Reiher, J. Chem. Phys. 134 2011 224101
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Example: Transition Structure of Ozone
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G. Moritz, M. Reiher, J. Chem. Phys. 126 (2007) 244109

(see this reference also for a DMRG flow chart)
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G. Moritz, M. Reiher, J. Chem. Phys. 126 (2007) 244109

(see this reference also for a DMRG flow chart)
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SR-CAS Approach

Our 2007 scheme could only reconstruct FCI from DMRG wave functions for

which a FCI calculation was also possible.

Cure: Sampling-Reconstruction Complete-Active-Space algorithm:

Monte Carlo scheme for sampling configurations

Only the most important configurations are kept.

The accuracy is easily controlled by a completeness measure COM:

COM = 1−
∑

I∈{sample}
C2
I (52)

K. Boguslawski, K. H. Marti, M. Reiher, J. Chem. Phys. 134 (2011) 224101
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Derivation of MPS Structure of DMRG Wave Function

The CI coefficient tensor Ci1i2···in

Ψel =
∑

i1i2···in

Ci1i2···in |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉

≡
∑

i1i2···in

Ci1i2···in |i1, i2, . . . in〉 ≡
∑
I

CIΦI (53)

can be decomposed by sequential SVDs, which clarifies the MPS structure

of the DMRG wave function.

Consider a DMRG state function with the first orbital (from the left) in

the AS and (n− 1) orbitals in the environment,

ΨDMRG
el =

∑
i1,j

ψi1j |i1〉 ⊗ |j〉 with j = (i2 . . . in) (54)

Hence, the coefficient tensor Ci1i2···in is approximated by a matrix ψi1j.
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Derivation of MPS Structure of DMRG Wave Function

ψi1j is of dimension (m×mn−1) and can be subjected to an SVD

Ci1i2···in → ψi1j = ψi1(i2...in) =

r1∑
a1

Ui1a1 Da1a1 V
T
a1(i2...in)

≡
r1∑
a1

Ui1a1 Ca1i2...in (55)

with the rank r1 ≤ m. Now, change notation:

a) matrix U is written as a collection of row vectors Ai1 with entries

Ai1a1
= Ui1a1 .

b) coefficient tensor Ca1i2...in is re-ordered as a matrix ψ(a1i2)(i3...in) of

dimension (r1 ·m×mn−2)
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Derivation of MPS Structure of DMRG Wave Function

... so that we obtain for the original coefficient tensor

Ci1i2···in =

r1∑
a1

Ai1a1
ψ(a1i2)(i3...in) (56)

Next, the matrix ψ(a1i2)(i3...in) is subjected to another SVD

ψ(a1i2)(i3...in) =

r2∑
a2

U(a1i2)a2
Da2a2 V

T
a2(i3...in) (57)

≡
r2∑
a2

U(a1i2)a2
Ca2i3...in (58)

≡
r2∑
a2

Ai2a1a2
ψ(a2i3)(i4...in) (59)

where the last step is again just a change of notation ...
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Derivation of MPS Structure of DMRG Wave Function

... which, however, allows us to write the original tensor in compact form

Ci1i2···in =

r1∑
a1

r2∑
a2

Ai1a1
Ai2a1a2

ψ(a2i3)(i4...in) (60)

Now, the new matrix ψ(a2i3)(i4...in) of dimension (r2 ·m×mn−3) is

subjected to the next SVD.

This ’game’ continues until we finally obtain

Ci1i2···in =
∑
a1...an

Ai1a1
Ai2a1a2

. . . Ain−1
an−2an−1

Ainan−1
(61)

= Ai1Ai2 · · ·Ain−1Ain (62)

where the sums are interpreted as matrix multiplications in the last step.

DMRG in Quantum Chemistry Markus Reiher 57 / 155



MPS Structure of Operators: MPOs

Consider occupation-number-vector basis states |σ〉 and |σ′〉.
The coefficients wσσ′ of a general operator

Ŵ =
∑
σ,σ′

wσσ′ |σ〉〈σ′|, (63)

may be encoded in matrix-product form

wσ,σ′ =
∑

i1,...,in−1

W
σ1σ′1
1i1

· · · W σlσ
′
l

il−1il
· · · W σnσ′n

in−11. (64)

Combining Eqs. (63) and (64), operator Ŵ reads

Ŵ =
∑
σσ′

∑
i1,...,in−1

W
σ1σ′1
1i1

· · ·W σlσ
′
l

il−1il
· · ·W σnσ′n

in−11 |σ〉〈σ′|. (65)

DMRG in Quantum Chemistry Markus Reiher 58 / 155



Simplify Eq. (65) by contraction over the local site indices σl, σ
′
l in σ,σ′:

Ŵ l
il−1il

=
∑
σl,σ

′
l

W
σlσ
′
l

il−1il
|σl〉〈σ′l|, (66)

so that Eq. (65) reads

Ŵ =
∑

i1,...,in−1̂

W 1
1i1 · · · Ŵ l

il−1il
· · · Ŵn

in−11. (67)

Motivation for this: Entries of the resulting Ŵ l
il−1il

matrices are the

elementary operators â†lσ and âlσ acting on a single site (=orbital)!

In this way, the local-site MPS concept, which denotes for site l the l-th

optimization step in a sweep, is transfered to operators (MPOs).
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Why write a new code? – Two variants of DMRG:

Traditional DMRG

|ψ〉 =∑
LR CLR|σL〉 ⊗ |σR〉

coefficients valid for one

bipartition into L and R

(need basis

transformations)

considered to be faster

for ground state

MPO-DMRG

|ψ〉 =∑
σM

σ1 Mσ2 · · · Mσn |σ〉

coefficients valid for whole

system

Easy and efficient

implementation of observables

(NB: Both variants will perform

similarly if implemented

properly)
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DMRG with Matrix Product States (MPS) and Matrix

Product Operators (MPO)

Our new MPO-based DMRG program: QCMaquis
Download: http://www.reiher.ethz.ch/software/maquis.html

|Ψ〉 =
∑
σ

cσ|σ〉 → |Ψ〉 =
∑
σ

∑
a1,...,an−1

Mσ1
1a1

Mσ2
a1a2
· · · Mσn

an−11 |σ〉

Ŵ =
∑
σ,σ′

wσσ′ |σ〉〈σ′| →

Ŵ =
∑
σσ′

∑
b1,...,bn−1

W
σ1σ′1
1b1

· · ·W σlσ
′
l

bl−1bl
· · ·W σnσ′n

bn−11 |σ〉〈σ′|

S. Keller, M. Dolfi, M. Troyer, M. Reiher, J. Chem. Phys. 143, 244118 (2015)
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MPS-MPO Operations: Expectation Values
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Spin Symmetry Adaptation: MPS and MPO Put Together

F
[a′]
i′j′(l + 1) =

∑
aijkss′

Wigner-9j
[
jsj′

aka′
is′i′

]
M

[s′]†

i′i W
[k]ss

′

aa′ F
[a]
ij (l)M

[s]
j′j

S. Keller, M. Reiher, J. Chem. Phys. 144, 134101 (2016)
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Other Options: Tensor Network States (TNS)

ΨTNS
el =

∑
i1i2...in

n∏
i

∏
j≤i

f
I[i]I[j]
ij |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉︸ ︷︷ ︸

|I〉

(68)

Idea: Rewrite CI coefficient tensor by reducing number of variational

parameters (still obtain qualitatively correct wave function).

TNS originally proposed for simple Spin Hamiltonians:

String-Bond States

N. Schuch, M. Wolf, F. Verstraete, J. I. Cirac, Phys. Rev. Lett. 2008 100 040501

Entangled-Plaquette States

F. Mezzacapo, N. Schuch, M. Boninsegni, J. I. Cirac 2009 arXiv:0905.3898v3

Correlator-Product States

H. J. Changlani, J. M. Kinder, C. J. Umrigar, G. K.-L. Chan, 2009 arXiv:0907.4646v1
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Complete-Graph Tensor Network States (CG-TNS)

First implementation of TNS for full quantum-chemical Hamiltonian

Considering all pairs of parameters fij : CG-TNS

Parameters optimized with Monte Carlo techniques

First studied for methylene and ozone; S/T splitting in ozone:

ES=0/Eh ES=1/Eh ∆E/kcalmol−1

HF −224.282 841 −224.357 167 46.6

CASCI −224.384 301 −224.416 172 20.0

CG-TNS −224.381 648 −224.412 775 19.5

K. H. Marti, B. Bauer, M. Reiher, M. Troyer, F. Verstraete, New J. Phys. 12 2010 103008
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Optimization by Variational Quantum Monte Carlo

ΨTNS
el =

∑
i1i2...iN

N∏
i

∏
j≤i

f
I[i]I[j]
ij |I〉︸︷︷︸

|i1i2...iN 〉

=
∑
I

W (I)|I〉

E = 〈E(I)〉 =
1

Z

∑
I

W 2(I)E(I) where Z =
∑
I

W 2(I)

E(I) =
∑
I′

W (I ′)

W (I)
〈I ′|H|I〉

The energy can be evaluated using importance sampling of the

configurations |I〉 according to the weight W 2(I).

A. W. Sandvik, G. Vidal, Phys. Rev. Lett. 2007 99 220602
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CG-TNS for Transition Metal Compounds

CG-TNS will be efficient if the molecular structure supports the ansatz

(clusters!)

Problem: One must avoid the explicit construction of all CSFs

First feasibility test: tetraqua-cobalt

K. H. Marti, M. Reiher, PCCP 13 (2011) 6750

E
h

E
h

E
h

E
h

−1676.566 252 −1685.278 226 −1685.278 549 −1685.278 641

Hartree–Fock CAS(9,9)-SCF CG-TNS

Eel / Hartree −1685.235 055 −1685.293 744 −1685.279 408

Var. Parameters 7056 684
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Current Status

tree tensor network states (TTNS; Legeza, Chan, ...)

general problem: efficient optimization schemes required

most promising solution: utilize principles of the DMRG algorithm

(most efficiently exploited in an MPS/MPO framework)

we extended CG-TNS to 3-site correlators (explosion of parameters!)

A. Kovyrshin, M. Reiher, NJP 18 (2016) 113001

... however, it can only be made accurate and efficient if

entanglement-based correlator selection is introduced

A. Kovyrshin, M. Reiher, in preparation

unique features of (T)TNS: still to be demonstrated at an example

that cannot be solved by standard approaches
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Lectures 3 & 4: Applications

1 DMRG for Compact Strongly Correlated Molecules:

Transition Metal Complexes

2 Concepts of Quantum Information Theory for Electronic Structures

and Chemical Bonding

3 Automated CAS choice enabled by DMRG

4 Challenge: Inclusion of Dynamic Correlation

5 vibrational DMRG (vDMRG)
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Density Matrix Renormalization Group: Principles

New wavefunction parametrization:

|Ψ〉 =
∑
σ

cσ|σ〉 −→ |Ψ〉 =
∑
σ

Mσ1 Mσ2 · · · Mσn |σ〉

complete active space (CAS) partitioning and iterative sweeping:

In essence: dimension reduction by least-squares fitting
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Does DMRG Work for Compact Molecules?

Original ’opinion’ in the DMRG community:

Works only for pseudo-one-dimensional, non-compact systems!

Test for a mononuclear transition metal system CAS(10,10): CoH

m Esinglet/Eh Etriplet/Eh ∆E/kJmol−1

64 −1381.952 054 −1381.995 106 113.03

76 −1381.952 063 −1381.995 109 113.02

91 −1381.952 070 −1381.995 110 113.00

109 −1381.952 073 −1381.995 110 112.99

CAS(10,10) −1381.952 074 −1381.995 110 112.99

CASPT2(10,10) −1382.189 527 −1382.241 333 130.57

DFT/BP86 −1383.504 019 −1383.585 212 213.1

DFT/B3LYP −1383.202 267 −1383.279 574 203.0

original work to propose DMRG for compact, strongly correlated molecules:

K. Marti, I. Malkin Ondik, G. Moritz, M. Reiher, J. Chem. Phys 128 (2008) 014104
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’Fully-Relativistic’ Four-Component DMRG: TlH
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S. Knecht, Ö. Legeza, M. Reiher, J. Chem. Phys 140 (2014) 041101

method re ωe ωexe

Å 1
cm

1
cm

4c-DMRG(14,94)[512] 1.873 1411 26.64

4c-CISD(14,94) 1.856 1462 23.11

4c-CISDTQ(14,94) 1.871 1405 20.11

4c-MP2(14,94) 1.828 1546 47.27

4c-CCSD(14,94) 1.871 1405 19.36

4c-CCSD(T)(14,94) 1.873 1400 23.52

4c-CCSDT(14,94) 1.873 1398 22.28

4c-CCSDT(Q)(14,94) 1.873 1397 21.01

4c-CCSDTQ(14,94) 1.873 1397 22.24

CCSD(T)a 1.876 1385 n/a

CCSD(T)b 1.877 1376 n/a

MRD-CIc 1.870 1420 n/a

SO-MCQDPTd 1.876 1391 29.42

experimente 1.872 1390.7 22.7

a 4c-DC CCSD(T) [14 electrons], Visscher et al. 2001.
b 4c-DC-Gaunt CCSD(T) [36 electrons], Visscher et al.

2001.
c GRECP spin-orbit MRD-CI, Titov et al. 2000.
d model-core potential spin-orbit MCQDPT, Zeng et al.

2010.
e experimental data.
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The Cu2O2-Torture Track

Standard CASSCF fails for large CASs relevant in polynuclear clusters

Example: two different isomers of dinuclear copper clusters

C. J. Cramer, M. W loch, P. Piecuch, C. Puzzarini, L. Gagliardi J. Phys. Chem. A 110 (2006) 1991
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Energies of Isomeric Dinuclear Copper Clusters

CASSCF fails since large CASs needed for clusters

K. Marti, I. Malkin Ondik, G. Moritz, M. Reiher, JCP 128 (2008) 014104

results with new code and including noise:

44 active orbitals, 26 electrons, basis set: Cu ECP10MDF, O ANO-Sm, charge: +2

K. Marti, M. Reiher, Z. Phys. Chem. 224 (2010) 583

Cu

 O

 O

Cu

Cu

 O

 O

Cu

m Ebisoxo/Eh Eperoxo/Eh ∆E/kJmol−1

DMRG(m=32) −541.440 272 −541.478 196 99.6

DMRG(m=44) −541.446 006 −541.483 405 98.2

DMRG(m=64) −541.458 021 −541.497 468 103.6

DMRG(m=128) −541.473 082 −541.514 702 109.3

RASPT2(24,28)a 119.66

aP. Å. Malmqvist, et al. J. Chem. Phys 128 (2008) 204109

What is the fully converged DMRG result for this system?

→ Large-scale DMRG: 149 kJ/mol Y. Kurashige, T. Yanai, J. Chem. Phys. 130 (2009) 234114 ... Final answer ?
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Torture Track: [Cu2O2]2+

Ref.,method Ebisoxo Eperoxo ∆E

’Standard’ methods

A),CASSCF(16,14) −541.50307 −541.50345 1

A),CASPT2(16,14) −542.06208 −542.06435 6

A),bs-B3LYP −544.19419 −544.27844 221

B),RASPT2(24,28) 120

Previously published DMRG energies

C),DMRG(26,44)[800] −541.46779 −541.49731 78

D),DMRG(26,44)[128] −541.47308 −541.51470 109

E),DMRG(32,62)[2400] −541.96839 −542.02514 149

F),DMRG(28,32)[2048]-SCF −541.76659 −541.80719 107

F),DMRG(28,32)[2048]-SCF/CT 113

our latest DMRG results with QIT, without noise

G), DMRG(26,44)[256/1024/10−5] −541.53853 −541.58114 112

A) C. J. Cramer et al., J. Phys. Chem. A 110 (2006) 1991; B) P. A. Malmqvist et al., J. Chem. Phys 128 (2008) 204109; C)

K. Marti, et al., J. Chem. Phys 128 (2008) 014104; D) K. Marti, M. Reiher, Z. Phys. Chem. 224 (20109 583; E) Y. Kurashige,

T. Yanai, J. Chem. Phys. 130 (2009) 234114; F) T. Yanai et al., J. Chem. Phys. 132 (2010) 024105; G) G. Barcza et al.,

Phys. Rev. A 83 (2011) 012508
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Analyzing DMRG and correlated wave functions

with concepts from quantum information theory
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Entanglement Measures from Grand Canonical RDMs

Measure for entanglement of states on orbital i with those defined on

(orbital) environment: Ö. Legeza, J. Sólyom, Phys. Rev. B 2003, 68, 195116.

von-Neumann-type single-orbital entropy

s(1)i = −
4∑

α=1

ωα,i lnωα,i

(ωα,i eigenvalues of 1o-RDM of spatial orbital i — states defined on all other orbitals are traced out)

Entanglement of states on orbitals i and j with those in environment:

von-Neumann-type two-orbital entropy

s(2)ij = −
16∑
α=1

ωα,ij lnωα,ij

(ωα,ij eigenvalues of 2o-RDM of two spatial orbitals i and j — sub-states defined on all other orbitals traced out)
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Entanglement Measures for Embedded Subsystems

s(2)ij contains also the ’on-site’ entropies for the two orbitals

⇒ Subtract these contributions to obtain the ’inter-orbital entropy’:

J. Rissler, R.M. Noack, S.R. White, Chem. Phys. 2006, 323, 519.

Mutual information

Iij ∝ s(2)ij − s(1)i − s(1)j

Advantage over natural occupation numbers:

- more information,

- better spread of measures for different electron-correlation classes,

- system specificity by relating to largest entropy value
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Entanglement Measures
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Entanglement Measures can Monitor

Bond Breaking/Formation Processes: Dinitrogen

K. Boguslawski, P. Tecmer, G. Barcza, O. Legeza, M. Reiher, J. Chem. Theory Comput. 9 2013

2959–2973 [arxiv: 1303.7207]
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Bond Breaking in Dinitrogen at 1.12 Ångström

Part of entanglement is already encoded in molecular orbitals changing with the structure !

Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.
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Bond Breaking in Dinitrogen at 1.69 Ångström

Part of entanglement is already encoded in molecular orbitals changing with the structure !

Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.

DMRG in Quantum Chemistry Markus Reiher 97 / 155



Bond Breaking in Dinitrogen at 2.22 Ångström

Part of entanglement is already encoded in molecular orbitals changing with the structure !

Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.
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Bond Breaking in Dinitrogen at 3.18 Ångström

Part of entanglement is already encoded in molecular orbitals changing with the structure !

Atomic-like non-orthogonal basis fcts. exhibit large entanglement measures among each other.
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Entanglement relates to Electron Correlation
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K. Boguslawski, P. Tecmer, Ö. Legeza, M. Reiher,

J. Phys. Chem. Lett. 2012, 3, 3129.

Three groups of orbitals

⇒ large single orbital entropy

⇒ medium single orbital entropy

⇒ tiny single orbital entropy

Configurations belonging to the

third block have small CI ⇒
important for dynamic

correlation

Note: more structure than in

spectrum of 1e-RDM
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4 point charges in xy-plane at dpc = 1.133 Å

Natural orbital basis: CAS(11,14)SCF/cc-pVTZ

DMRG(13,29) with DBSS (mmin = 128,mmax = 1024)
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How to cope with the active space selection

problem ?
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How to choose an active space? — Insights

“... the choice of the active space actually used in more complex

systems is highly subjective and can lead to serious problems.“

R. D. Bach in The Chemistry of Peroxides, Z. Rappoport (Ed.), John Wiley & Sons, (2006) 4.

”CAS-based methods are another alternative, although the selection

of the active space is a tremendous challenge.“

Y. Shao, L. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld et al., Phys. Chem. Chem. Phys., 8, (2006) 3172–3191.

“Choosing the “correct” active space for a specific application is by

no means trivial; often the practitioner must “experiment” with

different choices in order to assess adequacy and convergence

behavior. While every chemical system poses its own challenges,

certain rules of thumb apply.”

P. Å. Malmqvist, K. Pierloot, A. R. M. Shahi, C. J. Cramer, L. Gagliardi, J. Chem. Phys., 128, (2008) 204109.
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How to choose an active space? — Recipes

B. O. Roos (1989)

The Complete Active Space Self-Consistent Field Method and Its Applications in Electronic Structure Calculations; in

Ab Initio Methods in Quantum Chemistry, K.P. Lawley (Ed.), John Wiley & Sons Ltd., 399–446.

- most active orbitals should appear paired (one highly occupied and

one corresponding almost empty orbital)

- conjugated and aromatic bonds should be included in the CAS

- both the bonding and antibonding orbitals of a bond that is broken

have to be included

- orbitals describing C-H bonds are not to be included in active space

... more rules in later papers by the Lund group
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How to choose an active space? — Recipes

M. W. Schmidt, M. S. Gordon (1998)
The Construction and Interpretation of MCSCF Wavefunctions; Annu. Rev. Phys.

Chem. 49, 233–266.

- choice of active space is based on generalized valence bond diagrams

K. Pierloot (2003)
The CASPT2 Method in Inorganic Electronic Spectroscopy: from Ionic Transition

Metal Complexes to Covalent Actinide Complexes; Mol. Phys. 101, 2083–2094.

- description of double-shell effect and its importance for CASPT2
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How to choose an active space? — Recipes

A. Kerridge (2015)
The Complete-Active-Space Self-Consistent-Field Approach and Its Application to

Molecular Complexes of the f-Elements; in Computational Methods in Lanthanide

and Actinide Chemistry M. Dolg (Ed.), John Wiley & Sons Ltd., 138–139.

- 4f -, 5d- and 6s-orbitals of lanthanides should be included

- 5f -, 6d- and 7s-orbitals of actinides should be included

- for highly charged complexes, 5f -orbitals only

F. Krausbeck, D. Mendive-Tapia, A. Thom, M. Bearpark (2014)
Choosing RASSCF Orbital Active Spaces for Multiple Electronic States; Comput.

Theor. Chem. 1040-1041, 14–19.

- active space for CASSCF and RASSCF calculations is chosen

according to natural occupation numbers derived from averaged SCF

density matrix obtained from calculations for different electronic states
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How to choose an active space? — Recipes

J. M. Bofill, P. Pulay (1989)
J. Chem. Phys. 90, 3637–3646.

- unrestricted Hartree-Fock natural orbitals (UNOs) are used as

starting orbitals for CASSCF calculations

- orbitals with occupation numbers between 0.02 and 1.98 are

selected for the active space

- the idea has been explored further by comparison to DMRG results:

S. Keller, K. Boguslawski, T. Janowski, M. Reiher, P. Pulay (2015)
J. Chem. Phys. 142, 244104.
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Can one choose the CAS in an automated way?
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Exploit Two Advantages of DMRG for the CAS choice

DMRG is iterative

DMRG can handle large CAS sizes

=⇒ ... toward an automated CAS determination

requires selection criterion: entanglement entropy measures!
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Automated CAS selection? Black-box CASSCF?

... reduce the human time by automatizing

manual selection (if manual selection fails, the

automated protocol will have a problem, too)
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Partially converged entanglement information is sufficient

C. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760–1771.
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Automated Orbital Selection Algorithm
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Graphical User Interface
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Black Box DMRG Calculations
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Same CAS selection for different types of orbitals

MnO4
-

HF orbitals

CAS(10,10)-SCF orbitals

split-localized orbitals

DMRG(38,25)[500]-SCF orbitals

the same CAS is automatically selected for all orbital bases

considered C. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760–1771.
DMRG in Quantum Chemistry Markus Reiher 120 / 155



Subtle correlation effects are automatically captured

DMRG-SCF orbitals
m = 1000, 20 sweeps

HF guess

CrF6
3- CrF6

correlation effects attributed to the covalency of the bonds are automatically

accounted for

C. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760–1771.
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The Cu2O2+
2 Torture Track

·
−
1

bis(µ-oxo) peroxo

F

CR-CCSD(TQ)L
CAS(16,14)-SCF
DMRG(48,36)[500]-SCF
DMRG(32,28)[1000]-SCF#DMRG(48,36)[500]-SCF

Coupled cluster and CASSCF data from C. J. Cramer et al., JPC A (2006), 110, 1991.

discrepancy to coupled-cluster result can be explained by (still) missing

dynamical correlation C. J. Stein, M. Reiher, J. Chem. Theory Comput, 2016, 12, 1760–1771.
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Automated Orbital Selection Along Reaction Coordinates
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Need dynamic correlation for quantitative reference data!
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Metallocene Double Dissociation Energies

Double dissociation energies are around 600 kcal/mol!

C. J. Stein, V. von Burg, M. Reiher, J. Chem. Theory Comput, under review [arXiv: 1605.07020]
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An Issue of CASPT2: The IPEA Shift

(12,12)

∆
∆
E

C
A
S
P
T
2

el

The range of results produced by a modified IPEA shift is comparable to

that of a variable CAS size (indicated by horizontal lines)

C. J. Stein, V. von Burg, M. Reiher, J. Chem. Theory Comput, under review [arXiv: 1605.07020]
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DMRG–NEVPT2: Singlet–Triplet Gap of Methylene

E(ã1A1)–E(X̃3B1) in kcal/mol

CAS(6,6) CAS(6,12) CAS(6,20)

CASSCF 10.53 5.71 9.93

CASSCF/CASPT2 11.87 10.56 10.26

DMRG-SCF 10.53 5.71 9.93

DMRG-SCF/NEVPT2 11.71 9.13 10.17

S. Knecht, E. D. Hedeg̊ard, S. Keller, A. Kovyrshin, Y. Ma, A. Muolo, C. J. Stein,

M. Reiher, Chimia 2016, 70, 244 [arXiv: 1512.09267]

DMRG–NEVPT2: No approximations for 3- and 4-body RDMs

DFT PBE: 16.03 PBE0: 17.72

Prev. work: FCI : 11.14 CCSDT : 9.0
FCI: C. D. Sherrill et al., J. Chem. Phys. 1998,

108, 1040

CCSDT: A. Perera et al., Theor. Chem. Acc. 2014, 133, 1514
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How to Improve on Dramatic Requirements of Resources?

cumulant approximation for 3- and 4-particle reduced density matrix

in NEVPT2 or CASPT2 D. Zgid, D. Ghosh, E. Neuscamman, G. K.-L. Chan, J. Chem. Phys., 2009,

130, 194107. & Y. Kurashige, J. Chalupský, T. N. Lan, T. Yanai, J. Chem. Phys., 2014, 141, 174111.

- with correct diagonal elements

- only 4-RDM is approximated

projection of strongly contracted perturber functions onto a

renormalized Hilbert space M. Roemelt, S. Guo, G. K.-L. Chan, J. Chem. Phys., 2016, 144, 204113.

alternative approach: minimizing the Hylleraas functional in the space

of matrix product states S. Sharma, G. K.-L. Chan, J. Chem. Phys., 2014, 141, 111101.

Improve efficiency for integral and RDM evaluation

L. Freitag, S. Knecht, C. Angeli, M. Reiher, J. Chem. Theory Comput. 2016, under review [arXiv: 1608.02006]; C. J.

Stein, S. Knecht, M. Reiher, in preparation
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NEVPT2 for large systems

Exact four-particle RDM: no cumulant approximations

very expensive but doable for active spaces of ≈ 22 orbitals

Large molecules: Cholesky decomposition for two-electron integrals

allows for systems with > 1000 basis functions

↪→ CD-DMRG-NEVPT2

L. Freitag, S. Knecht, C. Angeli, M. Reiher, JCTC (2016) under review (arXiv:1608.02006)
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Spin states of a cobalt tropocoronand complex

[Co(TC-3,3)(NO)]

N
(CH2)n −

N

N
(CH2)n

−
N

TC-n,n

[Co(TC-n,n)(NO)]

n = 4-6 – diamagnetic

n = 3 – paramagnetic or diamagnetic?

Before Ref. 5: paramagnetic

Ref. 5: diamagnetic (from DFT and

new experimental results)

calls for an additional investigation!

L. Freitag, S. Knecht, C. Angeli, M. Reiher, JCTC (2016) under review (arXiv:1608.02006)
5

Hopmann et al., Inorg. Chem. 2015, 54, 7362
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[Co(TC-3,3)(NO)] – spin state energetics

CD-DMRG-NEVPT2[512] (22,22)/ANO-RCC-VTZP (1147 basis functions)

S0-T1 gap of [Co(TC-3,3)(NO)] in eV:

SC-NEVPT2 DMRG-SCF OLYP5 PW915 B3LYP-D35

1.52 1.67 1.03 1.09 0.45

SC-NEVPT2 confirms the singlet ground state prediction of DFT

DFT energies significantly lower – OLYP and PW91 energies closest

SC-NEVPT2 not far off from DMRG-SCF

dynamic correlation well covered in large (22,22) active space?

L. Freitag, S. Knecht, C. Angeli, M. Reiher, JCTC (2016) under review (arXiv:1608.02006)
5

Hopmann et al., Inorg. Chem. 2015, 54, 7362
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Dynamic Correlation through (short-range) DFT
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Dynamic correlation through short-range DFT
Decomposition into active and inactive system

ECAS-CI = EI + EA

where

EI =
1

2

∑
ij

(
hij + f I

ij

)
DI
ij + Vnn =

∑
i

(
hii + f I

ii

)
+ Vnn

EA =
∑
uv

f I
uvD

A
uv +

1

2

∑
uvxy

guvxyP
A
uvxy

with

f I
pq = hpq +

∑
k

(
2gpqkk − gpkqk

)
and

gpqrs = 〈φp(r1)φr(r2)|ĝ(1, 2)|φq(r1)φs(r2)〉
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Dynamic correlation through short-range DFT

Introduce the range separation into the electron–electron interaction

ĝ(1, 2) = ĝµ,lr(1, 2) + ĝµ,sr(1, 2)

with

ĝµ,lr(1, 2) =
erf(µ|r1 − r2|)
|r1 − r2|

ĝµ,sr(1, 2) =
1− erf(µ|r1 − r2|)

|r1 − r2|

Then, the energy can be set up as

EsrDFT
CAS-CI = E lr

I + E lr
A + Esr

H [ρ] + Esr
xc[ρ]
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Regularizing effect of srDFT on small CAS: Water

E. D. Hedeg̊ard, S. Knecht, J. S. Kielberg, H. J. A. Jensen, and M. Reiher, J. Chem. Phys. 142 2015 224108
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DMRG–srDFT for the WCCR10 test set

N

N
Cu N

N

N

N
Cu N

N

7Å

Calculated dissociation energies in kJ/mol

Method De (kJ/mol) D0 (kJ/mol)

DMRG[2000](30,22) 173.5 165.1

DMRG[2000](20,18) 169.9 161.5

DMRG[2000](10,10) 132.8 124.3

DMRG[2000](30,22)-srPBE 225.1 216.6

DMRG[2000](20,18)-srPBE 227.9 219.4

DMRG[2000](10,10)-srPBE 216.5 208.0

PBE 240.2 231.8

PBE (full complex/def2-TZVP) 257.5 249.0

PBE (full complex/def2-QZVPP from WCCR10) 247.5 239.0

Exp. (from WCCR10) 226.7 218.2

E. D. Hedeg̊ard, S. Knecht, J. S. Kielberg, H. J. A. Jensen, and M. Reiher, J. Chem. Phys. 142 2015 224108;
WCCR10: T. Weymuth, E. P. A. Couzijn, P. Chen, M. Reiher, J. Chem. Theory Comput. 10 2014 3092
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DMRG for solving the nuclear Schrödinger equation?
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