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Some preliminaries: Notion of random variable and stochastic process

Random variable

Definition

A random variable X is a variable subject to randomness. It can take on different
values, each of them with some given probability. The fundamental quantity is the
probability distribution of the random variable that gives all possible values with
corresponding probabilities to occur.

Discrete random variable: X ∈ {1, 2, ...,N}, N finite or not. The probability
distribution obeys

P(X = i) = Pi ≥ 0 and
N∑

i=1

Pi = 1 (1)

Continuous random variable (typically, X ⊆ Rd ). The probability distribution density
[or probability density function (PDF)] obeys

P(X = x) = P(x) ≥ 0 and

∫
dxP(x) = 1 (2)



The uniform distribution over (0, 1)

P(x) =

{
1, if x ∈ (0, 1),

0, if x /∈ (0, 1).
(3)

In practice, the uniform distribution is realized with Random Number Generators
(RNG). Most generators are based on the use of a deterministic algorithm
“mimicking” randomness as best as possible (pseudo-random generators). A common
one is the simple linear congruential generator

xn+1 = (axn + c) mod m (4)

where x0 is defined as the “seed” of the generator. Note that once the seed has been
chosen, the entire series of “random” numbers can be reproduced. A vast literature is
devoted to the problem of producing randomness as pure as possible (minimization of
correlations between pseudo-random numbers). A popular good quality-RNG has been
proposed by L’Ecuyer,[?] see appendix 60.



The gaussian distribution over (−∞,+∞)
As a consequence of the central-limit theorem, the gaussian distribution is ubiquitous
in real applications. The one-dimensional version is defined as

P(x) =
1

√
2πσ2

exp

[
−

(x − µ)2

2σ2

]
(5)

where µ is the mean of the distribution

µ = 〈X 〉 =

∫ +∞

−∞
dx x P(x) (6)

and σ2 its variance

σ2 = 〈(X − µ)2〉 =

∫ +∞

−∞
dx (x − µ)2 P(x) (7)

When µ = 0 and σ2 = 1, the distribution is known as the normal distribution.
Generalization to an arbitrary dimension d is as follows

P(x) =
1√

(2π)d detC
exp

−1

2

∑
i,j

(x− µ)i C
−1
ij (x− µ)j

 (8)

where µ is the mean vector
µi = 〈Xi 〉, (9)



andC the d × d covariant matrix defined as

Cij = 〈(x− µ)i (x− µ)j 〉 (10)

A simple and practical approach to sample the 1d-gaussian distribution is to use the
Box-Muller algorithm given by{

x =
√
−2 ln u1 cos(2πu2)

y =
√
−2 ln u1 sin(2πu2)

(11)

where u1, u2 are two uniform random numbers over (0,1). The two values x and y are
independent and gaussian distributed. The generalization to the d-dimensional case is
trivial after diagonalization of the covariant matrix and factorization of the probability
distribution using the eigenvectors of C



Stochastic process

General stochastic process

Stochastic process X (t) = Series of random variables indexed by a time t.

The fundamental quantities are the n-time probability distributions. In the continuous
case, it is written as

Pn(x1, t1; x2, t2; ...; xn, tn) (12)

with 0 ≤ t1 ≤ t2 ≤ ... ≤ tn, xi denoting the state, or configuration, of the system at
time ti [typically, x = (r1, r2, ..., rN ), N number of particles]. The interpretation of the
probability distribution density is as follows.

Pn(x1, t1; x2, t2; ...; xn, tn)dx1dx2...dxn (13)

is the probability of finding the system between x1 + dx1 at time t1, x2 + dx2 at time
t2, etc with ∫

dx1dx2...dxnPn(x1, t1; x2, t2; ...; xn, tn) = 1 (14)

By integrating the n-time distribution over all states at k first times, we can generate
(n − k)-time probability distribution densities

Pn−k (xk+1, tk+1; ...; xn, tn) =

∫
dx1...dxk Pn(x1, t1; x2, t2; ...; xn, tn) (15)



Let us now define the conditional probability densities as follows

Pk|(n−k)(x1, t1; ...; xk , tk |xk+1, tk+1; ...; xn, tn) =
Pn(x1, t1; ...; xk , tk ; xk+1, tk+1; ...; xn, tn)

Pk (x1, t1; ...; xk , tk )

(16)
With this definition

Pk|(n−k)(x1, t1; ...; xk , tk |xk+1, tk+1; ...; xn, tn)dxk+1dxk+2...dxn (17)

is the probability of finding the system between xk+1 + dxk+1 at time tk+1, ...,xn + dxn

at time tn knowing that the system was at x1 at time t1, x2 at time t2,...,xk at time tk .
Stochastic process are now classified according to the nature of their n-time
probability distributions.

Fully decorrelated process: The case of the branching process Fully decorrelated
process are the simplest stochastic process we can think of. They describe a time
series of independent random variables. The probability of being between xk+1 and
xk+1 + dxk+1 at time tk+1, knowing that we are at xk at time tk , is independent on xk

(and, then, on all previous states). In terms of conditional probability densities it is
written as (for all possible k)

Pk|1(x1, t1; x2, t2; ...; xk , tk |xk+1, tk+1) = P1(xk+1, tk+1) (18)

where P1(x, t) is the probability distribution at time t, namely

P1(x, t) =

∫
dx2...dxnPn(x, t; x2, t2; ...; xn, tn) (19)



Using Eqs.(16) and (18) the n-time probability distribution can be written as

Pn(x1, t1; x2, t2, ....) =
∏

k

P1(xk , tk ) (20)

Because of their simplicity and lack of time correlations such process are usually not
very useful for modelizing physical situations. As a simple example, we could use them
for describing the dynamics of a Brownian particle (pollen grain in water) when
observation times tk are separated by long time intervals (say, several minutes or
more). Another more interesting exemple is the so-called branching or birth-death
process as it is defined in DMC simulations.

Branching process.

We describe now the so-called ”branching” or ”birth-death” process as it is defined in
QMC. It will be used in the Diffusion Monte Carlo (DMC) algorithm presented below.
Note that it is actually a very particular case of more general branching process
introduced in mathematics.
Let us consider a weight w ≥ 0 (we will see that this weight will depend on electronic
configuration). The branching process is defined as

X = E(w + U) (21)

where U is the uniform random variable over (0,1) and E the integer part. X takes on
integer values. The probability of having n is denoted as

Pn = P(X = n) (22)



Now, it is clear that for a given w , only two values of n with non-zero probability are
possible: nc and nc + 1 where nc ≡ E(w). Now, we have

Pnc +1 = 1− (nc + 1− w) (23)

Pnc = nc + 1− w (24)

Of course, as it should be, Pnc +1 + Pnc +1 = 1. Let us compute the mean

n̄ = nc (nc + 1− w) + (nc + 1)(1− (nc + 1− w)) = w (25)

We thus have

〈X 〉 = w (26)



General Markov process
These are the key process used in the vast majority of stochastic simulations. The
probability of being between xk+1 and xk+1 + dxk+1 at time tk+1 is now dependent on
the previous configurations xk but not on the oldest ones xl<k . It is common to say
(in a loosely way) that for a Markov process, the future (at time tk+1) depends on the
present (time tk ) but not on the past (times tl<k ). More precisely, the Markov
hypothesis is written as

Pk|1(x1, t1; x2, t2, ....., xk , tk |xk+1, tk+1) = P1|1(xk , tk |xk+1, tk+1) (27)

The fundamental quantity P1|1(xk , tk |xk+1, tk+1) characterizing the Markov process is
called the transition kernel or transition probability density. In what follows we shall
use the convenient notation

P(xk , tk → xk+1, tk+1) = P1|1(xk , tk |xk+1, tk+1) (28)

It is easy to check that the n-time probability density can now be written as

Pn(x1, t1; ...; xn, tn) = P1(x1, t1)

n−1∏
k=1

P(xk , tk → xk+1, tk+1). (29)

From Eqs.(15) and (16) we have∫
dxk+1P(xk , tk → xk+1, tk+1) = 1 (30)



In practice, most of the Markov process used in simulations are invariant under a time
shift, they are said to be homogeneous. In that case

P(xk , tk → xk+1, tk+1) = P(xk → xk+1, tk+1 − tk ) (31)

For simplicity, the time interval will be denoted as t and the transition probability as
P(x→ y, t). Because of the time-shift invariance, the one-body density P1(x) is now
independent on time. Let us derive the equation obeyed by P1(x). We have

P(x→ y, t) =
P2(x; y, t)

P1(x)
(32)

Mutiplying the equation by P1(x) and integrating over x we get∫
dxP1(x)P(x→ y, t) =

∫
dxP2(x; y, t) = P1(y). (33)

Following a popular tradition, we shall denote, here and in what follows, the
stationary distribution density as π

π(x) = P1(x) (34)

The equation obeyed by π is thus

∫
dxπ(x)P(x→ y, t) = π(y)

Starting from the distribution π(x) and applying the transition kernel to all x leads to
configurations y also distributed according to π. It clearly illustrates the interpretation
of π as the stationary distribution of the stochastic process.



Let us now adopt an alternative point of view. As already mentioned, the transition
probability density characterizes the Markov process. Considered as the kernel of a
linear operator, the properties of its eigensolutions can be studied. A first remark is
that the transition probability is in general not symmetric, P(x→ y, t) 6= P(y→ x, t).
As a consequence, it is necessary to distinguish between left- and right-eigenvectors
and, in addition, the eigenvalues are not necessarily real. However, because
P(x→ y, t) ≥ 0 and

∫
dyP(x→ y, t) = 1 it can be shown that the modulus of all

eigenvalues ≤ 1 and that the left-eigenstate associated with the maximal eigenvalue
λ = 1 is positive everywhere (Krein-Rutman theorem, a generalization of the
Perron-Frobenius theorem to operators [kr] The integral equation∫

dxπ(x)P(x→ y, t) = π(y) (35)

is thus recovered where π(x) ≥ 0 is the maximal eigenvector of the transition kernel
which defines the stationary distribution of the stochastic process.



In the preceding section we have derived an integral equation allowing to compute the
stationary density π when the transition kernel is known. Let us now consider the
problem of the computation of the kernel itself. The fundamental equation for
P(x→ y, t) is a simple consequence of the Markov hypothesis. It is obtained by
observing that if we introduce an arbitrary intermediate time u ∈ (0, t) and consider
the probability of going from x to y in a time t we must have

P(x→ y, t) =

∫
dzP(x→ z, u)P(z→ y, t − u) (36)

It is known under the name of Chapman-Kolmogorov equation. A much more
interesting form is its local form relating time and space derivatives.



Let us derive such an equation in the one-dimensional case. The generalization to an arbitrary dimension is elementary. The following
derivation follows closely that of [coffey] Let h(x) be an arbitrary smooth function and consider the time derivative of the transition
probability. We can write∫

dyh(y)
∂P(x → y, t)

∂t
=

∫
dyh(y) lim

∆t→0

P(x → y, t + ∆t) − P(x → y, t)

∆t

Applying the Chapman-Kolmogorov equation we have∫
dyh(y)

∂P(x → y, t)

∂t
= lim

∆t→0

1

∆t

[ ∫
dyh(y)

∫
dzP(x → z, t)P(z → y,∆τ) −

∫
dyh(y)P(x → y, t)

]
Changing the name of the dummy variable y into z in the last integral of the RHS and using

∫
dyP(z → y,∆t) = 1 then∫

dyh(y)
∂P(x → y, t)

∂t
= lim

∆t→0

1

∆t

[ ∫
dzP(x → z, t)

∫
dyP(z → y,∆τ)[h(y) − h(z)]

]
Now, we introduce a Taylor expansion of h(y) around z:

h(y) = h(z) +
∞∑

n=1

h(n)(z)
(y − z)n

n!

and defining the “jump moments”

D(n)(z) =
1

n!
lim

∆t→0

∫
dy(y − z)nP(z → y,∆τ)

we get ∫
dyh(y)

∂P(x → y, t)

∂t
=

∫
dzP(x → z, t)

∞∑
n=1

D(n)(z)h(n)(z)

Integrating by parts n times we get∫
dzh(z)

[ ∂P(x → z, t)

∂t
−
∞∑

n=1

(
−

∂

∂z

)n [D(n)(z)P(x → z, t)]
]

= 0

and finally this integral being valid for any h the equation for the transition probability can be written as

∂P(x → y, t)

∂t
=
∞∑

n=1

(
−

∂

∂y

)n [D(n)(y)P(x → y, t)] (37)



In its general d-dimensional version it writes

∂P(x→ y, t)

∂t
=
∞∑

n=1

(−1)n
∑

j1...jn

∂n

∂yj1 · · · ∂yjn

[
D

(n)
j1,...,jn

(y)P(x→ y, t)
]
. (38)

This equation is known under the name of Kramers-Moyal expansion (of the master
equation). Here, the “jump moments” are defined as

D
(n)
j1,...,jm

(y) =
1

n!
lim

∆t→0

1

∆t

〈 n∏
µ=1

[Yjµ (t + ∆t)− Yjµ (t)]

〉∣∣∣∣∣∣
Yk (t)=yk

. (39)

This equation is known under the name of Kramers-Moyal expansion. Let us now
discuss the Markovian process at the heart of QMC approaches presented below.

Markovian process at work in QMC

• Free diffusion or brownian process.
The free diffusion process is invariant by space translation and thus, D(1) = 0. It is

defined by a constant diagonal diffusion matrix D
(2)
ij = 1

2
and D(n>2) = 0

In one dimension the Kramers-Moyal expansion is written as

∂P(x → y , t)

∂t
=

1

2

∂2

∂y2
P(x → y , t) (40)



with initial condition, P(x → y , t = 0) = δ(x − y) This equation is known under the
name of free diffusion (or heat) equation. By using a Fourier transform the gaussian
solution of this equation is easily obtained. We have

p(x → y , t) =
1
√

2πt
e−

(y−x)2

2t (41)

In d dimensions the solution is a product of independent one-dimensional gaussian
distributions for each coordinate

p(x→ y, t) =
d∏

i=1

1
√

2πt
e−

(yi−xi )2

2t =
1

√
2πt

d
e−

(y−x)2

2t (42)

Using the gaussian transition probability density, brownian trajectories can be

generated step-by-step. From Eq.(42) it is seen that the quantities (yi−xi )√
t

are

independent and normally distributed. y can thus be obtained from x by drawing a
gaussian number for each coordinate

(yi − xi )√
t

= ηi i = 1, d (43)

where η is a normal random vector. The previous expression can be rewritten as

yi = xi +
√

tηi i = 1, d (44)

This last equation is the simplest example of a discretized form of the so-called
Stochastic Differential Equation (SDE) associated with a diffusion process.



• Drifted diffusion or drifted Brownian motion. As we shall see later, QMC methods
are based on a more general version of the free Brownian motion where a drift part is
introduced to enhance the Monte Carlo convergence (importance sampling). In this
case, both D(1) and D(2) are non-vanishing. The first jump moment is known as the
drift vector

b(x) = D(1)(x) (45)

In this case, the equation of evolution (KM expansion) is known as the Fokker-Planck
equation. It is written as

∂P(x→ y, t)

∂t
=

1

2
∇2

y P(x→ y, t)−∇y [b(y)P(x→ y, t)] (46)

In the case of a constant drift vector b this equation can still be solved using a Fourier
transform, we get

P(x→ y, t) =
1

√
2πt

d
e−

(y−x−b t)2

2t (47)

Stochastic trajectories are generated using the discretized SDE

yi = xi + bi (x1, ..., xd )t +
√

tηi i = 1 to d (48)



In the case of a general drift b(x), no analytical solution exists. However, it is still
possible to generate trajectories by using a small enough time-step τ instead of an
arbitrary time t as above. For that, we need to introduce a short-time approximation
of the transition probability. When the time-step is sufficiently small, the variation of
position is small and at leading order the drift vector can be considered as constant.
The transition probability density is thus approximated as

P(x→ y, τ) =
1

√
2πt

d
exp−

(y − x− b(x)τ)2

2τ
(49)

This qualitative statement can be made more rigorous by looking at the small
time-step limit of the exact solution of the Fokker-Planck equation, Eq.(46). Having a
short-time gaussian expression for the transition probability, stochastic trajectories can
be generated according to

yi = xi + bi (x)τ +
√
τηi i = 1, d (50)

Note that the equations for each component are now coupled through the drift vector.

The stationary density π of the process can be obtained by solving ∂P(x→y,t)
∂t

= 0 that
is

1

2
∇2π −∇(bπ) = 0

It is easily seen that this equality is fulfilled when

b(x) =
1

2

∇π(x)

π(x)
(51)



Markov process with drift can thus be used to sample a given distribution π(x) (for

example, the Boltzmann distribution π(x) = e−βE(x)

Z
). For that, we choose a drift

vector according to Eq.(51) (here, b = −β
2
∇E(x)) and we generate trajectories using

the stochastic differential equation, Eq.(48). Note that with such a scheme a (small)
bias on the stationary distribution related to the use of a small but finite time-step is
present. In contrast, it is not the case with the Metropolis algorithm presented in the
next section.

• Other Markov process. There exist a great variety of Markovian process. Let us just
say a few words about two important examples.
i) The Lévy flight: A generalization of the browian motion allowing large moves
Probability distribution:

f (x ;µ, c) =

√
c

2π

e
− c

2(x−µ)

(x − µ)3/2

where x > µ, µ = location parameter, and c =scale parameter.
“Heavy-tailed” probability distribution (large values of x have non-negligible
probability to occur). Note that < x2 >=∞ (mean), < x2 >=∞ (variance)!!
Kramers-Moyal equation derived above

∂P(x → y , t)

∂t
=
∞∑

n=1

(
−

∂

∂y

)n
[D(n)(y)P(x → y , t)]



becomes here

∂P(x → y , t)

∂t
= −(−

∂α

∂yα
)[D(2)(y)P(x → y , t)]−

∂

∂y
[D(1)P(x → y , t)]

with fractional derivative (0 < α ≤ 2).
An intense activity aout the modelization of the paths followed by animals or humans
when searching for food, hunting, (or even searching for lost keys on the beach...) has
been developed. See, for example, the influential work by H. Eugene Stanley and
collaborators of 1999 (“Optimizing the success of random searches”[?]).

ii) The Poisson process: A simple example of discrete Markov process
Poisson process of intensity λ (λ > 0. Equation of evolution of discrete variable X

p(X = n)(t + ∆t)− p(X = n)(t)

∆t
= p(X = n − 1)(t)− p(X = n)(t)

when ∆t goes to zero, the probability distribution is given by

P(X = n, t) = e−λt (λt)n

n!
, n integer

• Stochastic process with memory effects (beyond Markov ones). Being almost never
used in realistic simulations, they will not discussed here.



The Metropolis algorithm

Sampling a general density in high dimension

The purpose of the Metropolis algorithm,[?][?] is to sample a general density π in
arbitrary dimension. Two remarkable features of the algorithm are that :

i) It can be used for (very) large-dimensional spaces and

ii) Only the ratio of probability densities π(x)
π(y)

are to be evaluated, not the probability

density π alone.

i.) The first property is remarkable and make in practice the Metropolis algorithm the
only practical choice for treating problemes in high dimensions. This is the reason why
the algorithm is so widely used and is in the list proposed in 2000 by Dongarra and
Sullivan of the “10 algorithms with the greatest influence on the development and
practice of science and engineering in the 20th century”[?] Note that applications
including dimensions as large as several thousands are routine, and much larger
dimensions can be successfully treated.

ii) The second important feature is that there is no need to know the normalization of
π. It is an important practical point since the normalization is usually a physically
relevant quantity (for example, the partition function in statistical physics) and is in
general not known.



The basic idea of the Metropolis algorithm is to generate by a step-by-step procedure
configurations in space distributed according to π. The fundamental quantity of the
algorithm is the trial transition probability density denoted here as PT (x→ y). The
algorithm is as follows.
m

METROPOLIS ALGORITHM

At each Monte Carlo step a new state xi+1 is generated from the current state xi

by a two-step procedure:
1) Draw a “trial” state denoted as xT using some trial transition probability
PT (x→ y)
2) Accept the trial state as the new state (xi+1 = xT ) or reject it (xi+1 = xi )
with probability q(xi , xT ) (0 ≤ q ≤ 1) given by

q = Min
[
1,
π(xT )PT (xT → xi )

π(xi )PT (xi → xT )

]
(52)



At this point, several remarks are in order.
• A necessary condition that the algorithm be valid (sample the density π) is that the
transition probability is ergodic. Ergodicity means that for any initial state x0 and final
state x, and any neighborhood of x (for example, neighborhood= set of all states y
such as ||x− y|| ≤ ε) there is a finite probability starting from x0 to reach the
neighborhood of x in a finite number of moves.
• If the ergodicity property is fulfilled, the Metropolis algorithm converges to π
independently on the choice of the trial transition probability and/or the initial
conditions x0. Such quantities only determines the rate of convergence of the Markov
chain towards π.
• To have a practical scheme, the trial transition density must be chosen easy to
sample (see, below).
• To accept a change with probability q means: Draw a uniform random number u
over (0,1), if u ≤ q the change is accepted, if not it is rejected.

For a derivation of the Metropolis algorithm in the discrete case, see appendix 62.



Computing multi-dimensional integrals with the Metropolis algorithm

Integrals as probabilistic averages

In a Monte Carlo calculation, the integrals to be computed are of the form

I (f ) =

∫
dxπ(x)f (x) (53)

where π is some probability density defined over Rd and f some integrand.
Note that the most general form for a d-dimensional integral (without π), namely
I =

∫
dxg(x), can always be rewritten under the form given in Eq.(53) by introducing

some arbitrary positive function g0 with

π =
g0∫

dxg0(x)

and
f =

g

π

However, to be able to do that, we need to know the normalization of the function g0

since it enters now the integrand f , a constraint which severely reduces the possible
choices for g0. In practice, a reasonable strategy is to search where g is maximal and
choose g0 as some gausian approximation around its maximum. However, this strategy
will work in high dimension only if f does not vary too much in region where π(= g0)
is large.



VERY IMPORTANT PHYSICAL REMARK

Actually, a fundamental point to realize is that for all physical problems defined in
(very) high dimension some density π is always present in the integrands, the density
giving the weight of the state (configuration) with respect to all other possible states.
In practice, this density is non-zero only for a very tiny fraction of all possible states,
such states corresponding to the so-called “physically accessible” states. If it would
not be the case, the situation would just be desesperate since sampling a huge number
of states with a limited number of Monte Carlo steps (say, up to about a few billions)
is not possible.



Coming back to the definition of I (f ), Eq.(53), it can be interpreted as the
probabilistic mean of f with respect to π writting

I (f ) = 〈f 〉

and the integral can be expressed as the average of f over an infinite number of
configurations sampled with the Metropolis algorithm (ergodic property)

I (f ) = lim
K→+∞

1

K

K∑
i=1

f (xi ). (54)

Of course, in practical simulations, a large but finite number of points is used. The
integral is thus written as

IK (f ) = I (f ) + ε(K) (55)

where IK (f ) is the Monte Carlo value obtained with K configurations,

IK (f ) =
1

K

K∑
i=1

f (xi ) (56)

and ε(K) some residual statistal error. This error is discussed in the next section.



Optimizing the sampling.

As seen, in the Metropolis algorithm the configurations are changed using the the trial
transition probability density. Although the values of the integrals do not depend on
the transition density, it determines the quality of the sampling and thus the rate of
convergence to the density π and then to the exact values for the integrals.

• A first natural choice is the “historical” one made by Metropolis and collaborators in
their original work where PT (x→ y) is taken to be a uniform transition density in
some small region around x. Mathematically, it is written as

PT (x→ y) =

{
1

∆d , if y ∈ [xi − ∆
2
, xi + ∆

2
]d

0, otherwise
(57)

where ∆ is some positive constant defining the magnitude of the proposed trial move
around the current position. The acceptance probability q, as defined in Eq.(52), is
given by

q(x, y) = Min
[
1,
π(x)

π(y)

]
(58)



To make the simulation converge rapidly, it is desirable to take large values of ∆,
leading to a better sampling of the configuration space. Unfortunately, when using
large values of ∆ the trial configuration, which is chosen randomly and far from the
physically-accpetable state x, has almost no chance to be accepted. On the opposite
case where ∆ is chosen very small, the trial configuration is almost systematically
accepted since q ' 1. However, the new state is now very close of x and the sampling
of the configuration space is very inefficient.
In actual simulations, some estimator allowing to determine the optimal value of ∆ is
introduced. A standard solution consists in defining the average acceptance probability
η = 〈q〉 as

η =
# of accepted moves

# of moves
(59)

and to adjust ∆ so that the acceptation ratio is about one half.



•Optimal choice. The optimal choice of PT consists in drawing trial configurations
according to π(y), independently on the current position x, that is,
PT (x→ y) = π(y). In that case, successive drawings are independent, large moves in
the configuration space can be done and the acceptance probability is equal to one:

q(x, y) =
π(y)PT (y→ x)

π(x)PT (x→ y)
=
π(y)π(x)

π(x)π(y)
= 1

Unfortunately, there is no efficient algorithm known to draw directly a general density
in a high-dimensional case. Actually, it is the very reason why the Metropolis
algorithm has been introduced!
• Trial transition density of the Fokker-Planck equation To go beyond the standard
uniform transition density, it is very desirable to include some information about the
shape of the distribution π to be sampled. Indeed, instead of making “blind moves” in
random directions as in the historical algorithm it is much better to propose moves
into directions where π increases significantly and avoiding moves toward region where
π decreases stiffly.
This can be beautifully realized with the transition probability density of the drifted
random walk introduced above, Eq.(49). It is the transition probability used when
Variational Monte Carlo (VMC) calculations for electronic structure, see the next
section.



• Statistical error.
The Metropolis algorithm is a simple and efficient algorithm for generating states
distributed according to an arbitrary density. However, the price to pay for such a
simplicity is the fact that the successive states produced are correlated. Accordingly,
some care is needed when estimating the statistical error associated with the
arithmetic averages computed. First of all, it is important to check that we are not in
the transient regime associated with the initial configuration used. Second we have to
estimate the correlation time of the Markov chain.
Let f (x) a quantity whose expectation value is to be computed, I (f ) =

∫
dxπ(x)f (x)

A unbiased estimator of the expectation value is the arithmetic sum

f̄n =
1

n

n∑
i=1

f (xi ) (60)

where n is a finite number of configurations drawn with the Metropolis algorithm.
Note that f̄n is a random variable and that its value depends on the series of random
numbers used to generate the successive states of the sum. Unbiased means here that
if the finite sum is computed an infinite number of times with different random
realizations, then

〈f̄n〉 =
1

n

n∑
i=1

〈f (xi )〉 = I (f ) (61)



Due to the central limit theorem valid for Markov process, we know that for
sufficiently large n the distribution of the random variable f̄n becomes gaussian

P(f̄ ) =
1√

2πσ2
n

e
− (f̄n−〈fn〉)2

2σ2
n

where
σ2

n = 〈f̄n
2〉 − 〈f̄n〉2 (62)

Now, a practical way to compute the error bar is to realize a certain number of
independent calculations of f̄n and to estimate the variance of the distribution P(f̄ ).

Let Nb the number of independent calculations, we denote f̄n
k

k = 1,Nb, the values
obtained for each calculation. Unbiased estimates of the mean and variance are

〈f̄n〉 =
1

Nb

Nb∑
k=1

f̄n
k

and

σ2
n =

1

Nb − 1

Nb∑
k=1

(f̄n
k − 〈f̄n〉)

2



An estimate of the statistical error δf on the estimate of I (f ) is then δf =

√
σ2

n√
Nb

, that

is

δf =
1√

Nb(Nb − 1)

√√√√ Nb∑
k=1

(f̄n
k − 〈f̄n〉)

2
(63)

In practical calculations, the Nb calculations are never fully independent and some
correlation are introduced. Such correlations can be explicited as follows. By inserting
(61) into (62) we get

σ2 =
1

n
[c0 + 2

n−1∑
i=1

(1−
i

n
)ci ]

where
ci = 〈fk fk+i 〉 − 〈fk 〉〈fk+i 〉

(time translation implies independence on k). Calculation of the ci can be performed
by estimating the various correlators from the Nb realizations. Formula (63) can be
easily generalized using such correlators. For a discussion of such aspects, see for
example [?].



Computing the quantum-mechanical properties associated with some trial
wavefunction: The Variational Monte Carlo (VMC) method

The basic idea

• Consider a trial wavefunction ΨT (in our applications: [x = (r1, ..., rN ), N number of
particles (electrons)] chosen to be a good representation of the unknown wavefunction

• Use the Metropolis algorithm for sampling the quantum-mechanical probability
density associated with ΨT , namely

π(x) =
|ΨT (x)|2∫
dx|ΨT (x)|2

• Compute properties as probabilistic averages over sampled configurations.
In the case of the energy, the variational energy Ev is obtained as

Ev =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

=

∫
dx|ΨT |2 HΨT

ΨT∫
dx|ΨT |2

that is

Ev =

∫
dxπ(x)EL(x)

where EL(x) is the so-called local energy.

EL(x) =
HΨT

ΨT



The probabilistic average is then evaluated as follows

Evar = 〈EL〉 = lim
K→∞

1

K

K∑
i=1

EL(xi )

where xi denotes the configurations drawn with the Metropolis algorithm.
Other properties can be computed in a similar way

〈ΨT |O|ΨT 〉
〈ΨT |ΨT 〉

=

∫
dxO(x)π(x) = lim

K→∞

1

K

K∑
i=1

O(xi )

The trial transition probability density is chosen to be the short-time drifted gaussian
transition probability density, Eq.(49)
Zero-variance property for the energy. As seen above, the statistical error on
probabilistic averages is proportional to the square root of the variance of the
integrand, that is here, of the local energy. Now, the “closest” the trial wave function
is of the exact solution, the smaller the fluctuations of EL are. In the limit of an exact
wavefunction, fluctuations vanish. This property is referred to as the zero-variance
property.
Zero-variance property for general observables O. Using the Hellman-Feynman
theorem expressing 〈O〉 as the derivative of the energy with respect to the magnitude
of the operator considered as an external field and using the ZV property for the
energy, it is possible to construct new estimators for O having also a zero-variace
property. For more details, see [?, ?].



The trial wavefunction

In QMC there is a great freedom in choosing the functional form of the trial
wavefunction (no computation of one- or bi-electronic integrals, just first and second
derivatives of ΨT ). A great variety of functional forms has thus been considered.

Spin-free formalism In constrast with most electronic structure methods where spin
variables are introduced, in QMC the trial wavefunctions are spin-free, that is they
depend only on the space coordinates of the electrons, x = (r1, ..., rN ). This is possible
since the Schrödinger equation to be solved is spin-variable independent. For a
discussion of the use of a spin-free formalism in quantum chemistry, see for
example[?]. Without entering into the details, let us just say that the matrix elements
of a fully symmetric and spin-free operator between two determinants |I 〉 and |J〉 can
be obtained as

〈DI |O|DJ〉x,σ = 〈Dα
I Dβ

I |O|D
α
J Dβ

J 〉x (64)

where Dσ (σ = α, β) are space-only determinants built from the space orbitals
corresponding to spin σ. The subscript over brackets indicates the variables of
integration used.



To give an example, the following spin-space determinants describing a set of doubly
occupied orbitals ∣∣∣∣∣∣∣∣∣∣∣

φ1(r1)α φ1(r2)α · · · φ1(rN )α
φ1(r1)β φ1(r2)β · · · φ1(rN )β

...
...

. . .
...

φN/2(r1)α φN/2(r2)α · · · φN/2(rN )α
φN/2(r1)β φN/2(r2)β · · · φN/2(rN )β

∣∣∣∣∣∣∣∣∣∣∣
has the same averages over spin-free operators as the pure space product of
determinants∣∣∣∣∣∣∣∣

φ1(r1) . . . φ1(rN/2)
...

...
...

φN/2(r1) . . . φN/2(rN/2)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

φ1(rN/2+1) . . . φ1(rN )
...

...
...

φN/2(rN/2+1) . . . φN/2(rN )

∣∣∣∣∣∣∣∣ (65)

where α-electrons have been arbitrarily chosen to have particle labels {1, ...,N/2} and
β-electrons particle labels {N/2 + 1, ...,N}



Different types of wavefunction used

• Multi-determinant Slater-Jastrow. The most popular form is the multi-determinant
Slater Jastrow form written as

ΨT = eJ(r1,...,rN )
Ndet∑
k=1

ck Detk ({Φαi })Detk ({Φβi }), (66)

where {Φσi }(σ = α, β) is a set of molecular orbitals and eJ is the Jastrow factor. The
role of the Jastrow factor is to impose the exact behavior of the wavefunction in the
[rij → 0]-limit (electron-electron cusp condition) and, also, to incorporate some
two-body (electron-electron and electron-nucleus) and three-body
(electron-electron-nucleus) correlations (to describe the best as possible the shape of
the Coulomb hole[?]). Many different forms for the Jastrow factor have been
introduced. Typically,

J =
∑
i<j

u(rij ) +
∑

i

∑
α

v(riα) +
∑
i<j

∑
α

w(rij , riα, rjα)

where rij = |ri − Rα|, and riα = |ri − Rα|. Various forms for the functions u,v , and w
have been tested. For example, the minimal Padé form for u

u(rij ) =
arij

1 + brij
.



• Use of a backflow term. In trial wavefunctions including backflow, the electron
coordinate ri is replaced by a quasi-particle (dressed) coordinate
r̄i = ri +

∑
j 6=i η(rij )(ri − rj ) and is introduced in Slater forms. Physically, this

backflow displacement is supposed to reproduce the characteristic “flow pattern”
where the quantum fluid is pushed out of the way in front of a moving particle and
fills in the space behind it. For more details, see Ref.[?]

• Resonating VB form and geminal forms. Let Φ be the pairing function (geminal)
which takes into account the correlation between two electrons with opposite spin. If
the system is unpolarized and the state is a spin singlet, the antisymmetrized geminal
product (AGP) wavefunction is

ΨAGP (r1, . . . , rN ) = Â[Φ(r↑1 , r
↓
2 )Φ(r↑3 , r

↓
4 ) · · ·Φ(r↑N−1, r

↓
N )], (67)

where Â is an operator that antisymmetrizes the product in the square brackets and
the geminal is a singlet:

Φ(r↑, r↓) = φ(r↑, r↓)
1
√

2
(| ↑↓〉 − | ↓↑〉) , (68)

implying that φ(r, r′) is symmetric under a permutation of its variables. Given this
conditions, one can prove that the spatial part of the ΨAGP can be written in a very
compact form:

ΨAGP (r1, . . . , rN ) = det(Aij ), (69)

where Aij is a N
2
× N

2
matrix defined as:

Aij = φ(r↑i , r
↓
j ). (70)

For more details, see Ref.[?]



• Perturbatively selected Configuration Interaction expansion. In quantum chemistry
Configuration Interaction (CI) expansions are widely used. They allow a systematic
improvement of the wavefunction through increase of the number of determinants and
of the basis set used. In QMC the use of CI expansions is problematic due to the very
large number of determinants. Indeed, at each Monte Carlo iteration -and there can
be as many as one billion of such elementary steps- the first and second derivatives
(Laplacian) must be computed for the current electronic configuration. However,
despite these drawbacks, CI expansions have nevertheless been recently employed in
QMC. It is possible only because 1) the CI expansion is reduced by a suitable selection
of the most important determinants[?, ?] 2) efficient techniques have been developed
to make the CI expansion computable in a reasonable time.[?, ?, ?]. Some applications
can be found in Ref.[?],[?].

• Valence Bond trial wavefunction. The use of Valance Bond (VB) wavefunctions is
very attractive in quantum chemistry. Indeed, VB forms give a simple and very
appealing interpretation of the electronic structure in terms of Lewis pairs (bound
pairs, lone pair, etc. ). Unfortunately, from a technical point of view VB
wavefunctions are made of non-orthogonal determinants, a point which dramatically
increases the computational effort (passing from a standard N3 law to a N! law). A
number of QMC works using VB wavefunctions have been presented, see Ref.[?, ?, ?]

• Multi-Jastrow form The so-called Multi-Jastrow is obtained by replacing the global
Jastrow form into local Jastrows attached to one-particle molecular orbitals. Using
such local forms allows to describe the electron-electron correlation in a more specific
way (electron correlation is different into a 1s orbitals, 3d orbitals, polarizable lone
pairs, etc.) See [?].

• etc. (any home-made approximate wavefunction can be easily used in QMC).



Computing the exact ground-state energy: The Diffusion Monte Carlo
(DMC) method

Diffusion Monte Carlo Let us start with the time-dependent Schrödinger equation
(atomic units)

i
∂Ψ(x, t)

∂t
= −

1

2
∇2Ψ(x, t) + (V (x)− ET )Ψ(x, t)

where ET is some arbitrary reference energy. Let us make the transformation to
imaginary time (Wick’s rotation)

t → −it

∂Ψ(x, t)

∂t
=

1

2
∇2Ψ(x, t)− (V (x)− ET )Ψ(x, t) (71)

Important: As far as time-independent properties are considered, this transformation
has no consequences. In particular, the eigensolutions of the Hamiltonian are not
modified.
Let us note ΨT (x) a (time-independent) trial wavefunction and introduce a “mixed”
density

f (x, t) ≡ ΨT (x)Ψ(x, t) (72)



Multiplying each side of Eq.(81) by ΨT , we get

∂f (x, t)

∂t
=

1

2
ΨT (x)∇2[

f (x, t)

ΨT (x)
]− (V (x)− ET )f (x, t)

With simple algebra we get

1

2
ΨT∇2[

f

ΨT
] =

1

2
∇2f − b∇f −

1

2

∇2ΨT

ΨT
+ b2f

where the drift vector is given by

b =
∇ΨT

ΨT
(73)

Remarking that

EL =
HΨT

ΨT
= −

1

2

∇2ΨT

ΨT
+ V

finally, we have

∂f (x, t)

∂t
=

1

2
∇2f (x, t)−∇[b(x)f (x, t)]− (EL(x)− ET )f (x, t) (74)

or
∂f (x, t)

∂t
=
(
L− (EL − ET )

)
f (x, t)

where L is the Fokker-Planck operator

L =
1

2
∇2 −∇[b.] (75)



Eq.(74) determining the evolution of the mixed density f can be considered as the
fundamental equation of diffusion Monte Carlo.
The time evolution of the density results from two coupled contributions:
(1) A first term describing a diffusion process associated with a constant diffusion

D = 1
2

and a drift term, b = ∇ΨT
ΨT

. Note that the stationary density is given by

π = Ψ2
T .

(2) A potential part given by the local energy. Considered alone, the equation of
evolution is

∂f (x, t)

∂t
= −(EL(x)− ET )f (x, t)

whose solution is
f (x, t) = f (x, t = 0)e−t(EL(x)−ET )

This part describes a so-called birth-death process or branching process. At point x
the density increases/decreases in time according to the variation of the local energy
around the trial energy. Denoting τ the small time-step used in the simulation we have

f (x, t + τ) = w(x, τ)f (x, t) (76)

where the weight w is defined as

w(x, τ) = e−τ(EL(x)−ET )



Diffusion Monte Carlo combines both process. The resulting stationary distribution
can be obtained by writing

L− (EL − ET ) = 0

It is easy to check that π fulfilling this equation is given by

πDMC = ΨT Φ0 (77)

where Φ0 is the unknown exact ground-state and ET has ben taken equal to E0.
An unbiased estimator of the ground-state energy is the expectation value of the local
energy over the stationary distribution Indeed, because the operator H is a hermitian
(self-adjoint) operator we can write

E0 =

∫
Φ0HΨT∫
Φ0ΨT

=

∫
Φ0ΨT

HΨT
ΨT∫

Φ0ΨT

and then

E0 =

∫
dxπDMC (x)EL(x) (78)



A schematic DMC algorithm is thus

• Start from a population of walkers (a set of configurations xk
i with k = 1,Nw )

• Move independently each walker according to Eq.(79)
• For each walker compute the branching weight w . From w build an integer whose
expectation value gives w , for example m = E(w + u), u random number and
E=integer part.
• Remove (m = 0) or duplicate reach walker a certain number of times (m ≥ 0). In
average, this step reproduces the evolution of the density as given in Eq.(76)
• Modify the reference energy ET to keep the number of walkers approximately
constant (population control step).
• Add contribution of the new walkers to each average (for the energy, Eq.(78)) and
iterate.



Population control step. As seen the number of walkers can varied in time. The total
number of walkers at time t is given by

M(t) =

∫
dxf (x, t)

and its time variation by
dM(t)

dt
=

∫
dx
∂f (x, t)

∂t

In the case where only the diffusion part is considered, we have

dM(t)

dt
=

∫
dxLf (x, t) = 0

The norm of the density is conserved and the number of walkers can be kept constant.
It is no longer the case when adding the branching term

dM(t)

dt
= −

∫
dx(EL(x)− ET )f (x, t) = −

M(t)∑
k=1

(EL(k)− ET )

Since nothing prevents the population to increase or decrease indefinitely a population
control step must be introduced. A standard solution consists in modifying smoothly
the reference energy such that to keep in average the population constant.

ET (t + τ) = ET (t) +
K

τ
ln[

M(t + τ)

M(t)
]



DMC for fermions: The sign problem and the fixed-node approximation

As just presented the DMC algorithm is exact only if the trial wavefunction ΨT never
vanishes (at finite distances), say ΨT > 0. It can be directly employed for quantum
systems with no Fermi constraints (bosonic systems, quantum oscillators, ensemble of
distinguishable particles, etc.). Indeed, in such cases the ground-state eigenfunction
Φ0 is nodeless (say, positive).

Unfortunately, for fermionic systems such an eigenstate is physically forbidden by the
Pauli exclusion principle [wigner], and the fermionic ground-state has now a sign.

Let us see what happens if the DMC algorithm is used as it is.
Let us recall that the walkers are moved move according to

yi = xi + bi (x)τ +
√
τηi i = 1, 3N (79)

with

b(x) =
∇ΨT (x)

ΨT (x)
(80)

• The values of x where ΨT vanishes are called the zeros (or nodes) of ΨT . It can be
shown that the nodes of the exact wavefunctions are a variety of dimension (3N − 1)
(the nodes “cut” the configuration space). It is the same for the trial wavefunctions
used.



• Nodal pockets are the subdomains of constant sign for the wavefunction

• The union of nodal pockets is the entire configuration space

• The nodes of ΨT are infinitely repulsive barriers for the walkers, and thus each
walker is trapped for ever into the nodal pocket where it starts from.

• The nodes of ΨT being not exact, the Schrödinger equation is solved with the
approximation that the solution vanishes wherever ΨT vanishes. It is the fixed-node
approximation. We can easily show the variational property

E FN
0 ≥ E0

Alternative point of view
The basic idea of DMC is to transform the (imaginary) time-dependent Schrödinger
equation

∂Ψ(x, t)

∂t
= −(H − ET )Ψ(x, t) (81)

into a generalized diffusion equation by introducing a mixed density f as

f (x, t) ≡ ΨT (x)Ψ(x, t) (82)



It can be viewed as applying a similarity transformation to the SE so that

∂f (x, t)

∂t
= L∗f (x, t)

with

L∗ = L− (EL − ET ) = ΨT (H − ET )
1

ΨT

The eigensolutions of L∗ and ΨT (H − ET ) 1
ΨT

are related via

L∗ui = −(Ei − ET )ui

with ui = ΨT Φi .
If ΨT vanishes, some new boundary conditions depending on ΨT are put on the
operator L∗. The energy obtained by simulating L∗ is now the ground-state energy of
the Hamiltonian with these new boundary-conditions which are not exact,this is the
fixed-node approximation.



Mathematical digression For fermions the functional space of wave functions is divided into two orthogonal spaces

L2(RdN ) = B ⊕ F (83)

where F is the vector space of “fermionic” wavefunctions defined as follows:

Ψ ∈ F if and only if Ψ[σ(x)] = sgn(σ)Ψ[(x)] (84)

where σ ranges in some permutation subgroup of the symmetric group SN leaving invariant some 2-subsets
partition of {1, ...,N} (corresponding to “spin up” or “spin down” electrons). In particular, all totally
skew-symmetric functions are in this case. B, the vector space of “bosonic” wavefunctions, is then simply the
orthogonal of F . In particular, all totally symmetric functions are in B.
The Pauli principle can then be summarized by saying that the “fermionic” eigensolutions of H physically
admissible are those obtained by restricting the Hamiltonian to the vector space F . In particular, the totally
symmetric nodeless lowest eigenstate of H is forbidden for fermions (the so-called “bosonic” ground-state).
Note that in contrast with standard presentations of the Pauli exclusion principle, no spin coordinates have been
introduced here. Actually, at the non-relativistic level such coordinates are not needed, see e.g.[wigner,matsen].
However, they are of common use since within a spin-space representation the Pauli exclusion principle is
particularly simple to express. The eigenstates are written as a combination of space and spin functions and only
those that are totally antisymmetric under the exchange of space-spin coordinates of any pair of particles are
physically allowed. In a spin-free (space-only) formalism as used here, the spatial wavefunctions Ψ(x) just need to
be antisymmetric under permutations within two subsets of particles that can be formally associated with spin “up”
and “down” particles.
Because the Schrödinger Hamiltonian is spin-independent and the diffusion processes introduced are defined in a
pure space representation, the use of spin coordinates is not adapted and is thus avoided in QMC.



Finally, the problem to solve in QMC is to design an efficient algorithm allowing to
converge to the ground-state fermionic eigenfunction (lowest eigenstate of H
restricted to vector space F ). Unfortunately, up to now it has not been possible to
define a computationally tractable (polynomial) algorithm implementing exactly such a
property for a general fermionic system. This problem -known under the name of “sign
problem” is of uttermost practical importance and is viewed as one of the most
important problems to be solved in computational many-body physics
[signproblem1,signproblem2,signproblem3,signproblem4]
ΨFN

0 denotes the Fixed-Node (FN) ground-state eigenfunction obtained by imposing
the nodal boundaries to ΨT . Due to its very construction the fixed-node solution has
the same sign as the trial wavefunction (ΨT (x)ΨFN

0 (x) ≥ 0). The fermionic problem

defined over the entire configuration space RdN is thus recast in a sum of independent
bosonic-type problems defined in each nodal volume cut by the nodes of the
approximate trial wavefunction. Instead of defining a unique Fokker-Planck operator
with a non-divergent drift vector over all space, a set of independent FP operators
restricted to each nodal cell domain is considered. Transposed into the original
Hamiltonian problem, it means that the Schrödinger equation is solved independently
in each nodal cell (mathematically, the N-body Schrödinger ground-state is computed
with additional Dirichlet boundary condition on the nodal set N where ΨF

T vanishes,

N = {x ∈ RdN : ΨF
T (x) = 0}. In the general case, the zeroes of the trial wavefunction

do not coincide with those of the unknown fermionic eigensolution and we are thus
left with a systematic bias, the fixed-node error.
At this point, several important theoretical and practical aspects of the fixed-node
approximation must be discussed.



Mathematical foundation of the fixed-node approach.

A mathematical analysis of the fixed-node approach and the justification of the
statements given above can be found in Cancès et al. [cances] and Rousset [rousset].
A convenient framework to analyze the fixed-node approach is to express it as a
variational problem in the functional space of anti(skew)-symmetric functions with
Dirichlet-type boundary conditions.

The tiling theorem. By solving the Schrödinger equation as a juxtaposition of
independent problems, there is no reason why ground-state energies computed
separately in each domain should be identical. The fixed-node energy is defined as the
minimum of such energies. Unfortunately, in QMC calculations for non-trivial systems,
the minimum found may depend on the initial conditions in the case where not all
nodal domains are sampled, a situation that may arise since the number and
localization of such domains in high dimension is in general not known. Hopefully, for
fermionic ground-states Ceperley [ceperley-nodes] has proved under physically
reasonable conditions the existence of a tiling theorem for the exact ground-state:
There is only one distinct kind of nodal regions. All others are related to it by
permutational symmetry (with same energy). Unfortunately, in practice we need that
ΨT satisfies the tiling property, not just the unknown ground-state. In actual
simulations, it is generally assumed that Hartree-Fock or Kohn-Sham-type
wavefunctions satisfy the tiling property. Results seem to validate such a statement.
However, some (mathematical) work is needed to clarify this point.



When ΨT is chosen to be positive and does not vanish (except at infinity) the DMC
algorithm just presented will converge to the stationary density corresponding to the
lowest (positive) eigenstate of H. For bosonic systems this latter state is the physical
ground-state and DMC is an exact method for solving the Schrödinger equation.

When we are dealing with fermions (electrons) the situation is different. The fermionic
ground-state is antisymmetric and has a non-constant sign. The algorithm presented
can also be used using a fermionic ΨT (for example, a Hartree-Fock determinant).
However, the ground-state properties obtained are no longer exact.
• Wherever ΨT vanishes, the drift vector diverges. The walkers are trapped for ever
within the nodal cells. The problem is recast into a set of independent bosonic
calculations in each nodal region.
• The nodes of ΨT are of two types: exchange nodes and other nodes. Exchange
nodes are (3N − 3)-dimensional, exact nodes (3N − 1)-dimensional. The nodes are
not known and there is a fixed-node bias.
• Fixed-node energy has a variational property

E FN
0 ≥ E0

the equality occuring when the nodes of ΨT are exact.
• A priori each simulation performed in each nodal cell leads to a different energy.
The DMC energy is the minimum of them. However, Ceperley has shown that there
exists a tiling property,[?].
• The nodes being a (3N − 1)-dimensional object, their structure is not trivial and to
decrease of fixed-node error in a systematic way is not a simple problem.



Trial wavefunction optimization

The problem

When accurate results are searched for, we need to reduce the two following errors:
(1) The statistical fluctuations related to the finite number of Monte Carlo steps
(2) The fixed-node bias related to the use of an approximate nodal hypersurface.

Both errors can be decreased by optimizing the parameters of the trial wavefunction.
Different criteria can be used to define the “quality” of a trial wavefunction. The two
most employed:
• Minimization of the variational energy

E(p) =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

where p denotes the set of parameters of ΨT (x, p)
• Minimization of the variance of the Hamiltonian

σ2(p) =
〈ΨT |[H − E(p)]2|ΨT 〉

〈ΨT |ΨT 〉



The correlated approach

The most natural idea to optimize the trial wavefunction is to minimize the total
energy evaluated for a finite number of configurations Nc drawn in a preliminary
Variational Monte Carlo step:

E(p) '
1

Nc

Nc∑
i=1

EL(xi )

In practice, such a idea is difficult to realize for two reasons:
(1) For a finite number of walkers E(p) is not bounded from below and the minimizer
can change parameters in a wird way so that to concentrate the wavefunction around
one or a few points having a very low local energy.
(2) The stationary distribution, Ψ2

T (x, p) depends on parameters p, and thus new
configurations must be redrawn at each change of parameters. The variational energy
being calculated for a finite number of points, the energy curve E(p) is then noisy and
it is a tricky situation for the minimizer.



Practical solution:
(1) When a not too large number of configurations is used (a few thousand’s) it is
much preferable to minimize the variance since it is a quantity bounded from below
(σ2 ≥ 0) for any finite number of configurations.
(2) To avoid the noisy character of E(p) or σ2(p) a fixed set of configurations can be
used and a correlated approach introduced[?]

σ2(p) =

1
Nc

∑Nc
i=1 wi (EL − E)2(xi , p)

1
Nc

∑Nc
i=1 wi

where Nc number of configurations and wi =
Ψ2

T (xi ,p)

Ψ2
T

(xi ,p0)
. The configurations are drawn

once for all according to Ψ2
T (xi , p0). In such conditions the energy curve is no longer

noisy and standard minimizers (for example, quasi-Newton) can be employed.
Note that σ2(p) is a reasonable estimate of

〈ΨT |(H − E)2|ΨT 〉
〈ΨT |ΨT 〉

only if the weights remain all close to one. It is thus important to quantify this aspect
in some way, for example by introducing

η =
1

Nc

(
∑

i wi )
2∑

i wi
2

When η is close to one, the number of configurations playing a role is close to Nc and
the estimation of the energy/variance is reasonable. In contrast, when only a few
configurations contribute, η is close to zero and a new set of reference points must
absolutely be drawn.



The linear method
The linear method has been recently introduced by Umrigar et al.[?] and is presently
one of the most efficient approach to optimize a large number of parameters (both
linear and non-linear).
The method is based on the minimization of the variational energy. Let us call Np the
number of parameters. The method consists in introducing a linear Taylor expansion
around the current parameters p0.

ΨT (x, p) = ΨT (x, p0) +

Np∑
i=1

(p− p0)i Ψi (85)

where the functions Ψi are defined as

Ψi =
∂ΨT (x, p0)

∂pi

Functions Ψi are now considered as a basis for the trial wavefunction and the energy is
minimized in this basis set. Remarking that the Ψi are not orthogonal, the problem to
solve is thus a generalized eigenvalue problem

H∆p = ES∆p (86)

where H and S are the Hamiltonian and overlap matrices, respectively.

Hij = 〈Ψi |H|Ψj 〉 and Sij = 〈Ψi |Ψj 〉



These quantities can be calculated in a VMC calculation using Ψ2
0 as stationary

distribution

Hij = 〈
Ψi

Ψ0

HΨj

Ψ0
〉Ψ2

0

and

Sij = 〈
Ψi

Ψ0

Ψj

Ψ0
〉Ψ2

0



A few numerical applications: Exploring atomic, molecular and solid-state
systems

Let us now present some (very) recent applications of QMC for a variety of systems.

• G2 benchmark

Benchmark sets are useful in electronic structure theory. They allow to compare the
results obtained by various methods against some reference data. The so-called G2 set
(actually G1 set) has been introduced by Curtiss and collaborators and has been
extensively used as benchmark in quantum chemistry. The benchmark consists in
comparing the (corrected) experimental values for the atomization energies of a set of
Nmol = 55 simple molecules with those obtained with the method to be evaluated.
The criterium used is the mean absolute deviation (MAD) defined as

MAD =
1

Nmol

Nmol∑
i=1

|E at
i − E at;expt

i |

where E at
i is the atomization energy of molecule i . The smaller the MAD is the better

the method reproduces the experimental values.



DFT and post-HF methods
- LDA: MAD ∼ 40 kcal/mol
- B3LYP and B3PW91: MAD ∼ 2.5 kcal/mol
- CCSDT/aug-cc-pVQZ MAD ∼ 2.8 kcal/mol
- CCSDT Complete Basis Set limit, MAD ∼ 1.3 kcal/mol

QMC
- Grossman (2002) HF nodes, use of pseudo-potientials, MAD ∼ 2.9 kcal/mol
- Nemec et al. (2010) HF nodes, all-electron, MAD ∼ 3.2 kcal/mol.
- Petruziello et al. (2012) MAD: 5z basis set ∼ 1.2 kcal/mol.

The best MAD obtained with QMC is comparable to that obtained with CCSDT in
the infinite basis set limit.

• Non-covalent interactions

See Table 1 of the paper of Dubecky et al. (2016) “Noncovalent Interactions by
Quantum Monte Carlo”.[?] A long list of references (in chronological order) presenting
QMC calculations of noncovalent interactions is given.

• Water nano-droplets Reference: [?]

• Barrier heights Krongchon et al. “Accurate barrier heights using diffusion Monte
Carlo” (2017)[?] Benchmark calculations of the barrier heights of 19
non-hydrogen-transfer chemical reactions.



• 3d-metal containing molecules

K. Doblhoff-Dier et al. “Diffusion Monte Carlo for Accurate Dissociation Energies of
3d Transition Metal Containing Molecules” (2016)[?]. Benchmark calculations of for
20 transition metal containing dimers. Set introduced by Truhlar et al. (2015)[?]

• H and He under very high pressure Reference: [?]

• Cuprates Reference: [?],[?],[?]

• Solids References: [?],[?]



APPENDIX: L’Ecuyer pseudo-random generator

The L’Ecuyer pseudo-random generator is a combined multiple recursive generator

zn = (xn − yn) mod m1

where xn and yn are
xn = (a1xn−1 + a2xn−2 + a3xn−3) mod m1

yn = (b1yn−1 + b2yn−2 + b3yn−3) mod m2

with coefficients
a1 = 0, a2 = 63308, a3 = −183326, b1 = 86098, b2 = 0, b3 = −539608, and moduli
m1 = 231 − 1 = 2147483647 and m2 = 2145483479.
The period is approximately 2185 (about 1056).



APPENDIX: Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is associated with a linear drift vector

b(x) = −kx

, where k some positive constant. The transition probability density is

P(x → y , t) =
1√

1− γ2
exp−

(y − γx)2√
1− γ2

where γ = e−kt .



APPENDIX: Derivation of the Metropolis algorithm in the discrete case

• Def. 1 Probability distribution πi ≥ 0 i=1,N and
∑

i πi = 1

• Def. 2 transition probability (or stochastic matrix) Pi→j :
i. Pi→j ≥ 0

ii.
N∑

j=1
Pi→j = 1 (independent on i)

• Def. 3 Ergodic transition probability
∀i0 ∀i there exist a non-zero probability that after a finite number of steps
starting from i0 we end at i .

• Def. 4 Stationary (or invariant) distribution π:∑
i

πi Pi→j = πj



Metropolis algorithm
Let PT

i→j being a trial ergodic transition probability, then Pi→j defined as follows

Pi→j = PT
i→jMin(1,Rij ) j 6= i

Pi→i = PT
i→i +

∑
k 6=i

PT
i→k (1−Min(1,Rik )) j = i

with Rij =
πj PT

j→i

πi PT
i→j

is an ergodic transition probability admitting πi as stationary distribution.
Proof:

• Pi→j is a transition probability

• Pi→j ≥ 0 obvious

•
N∑

j=1
Pi→j =

∑
j 6=i

Pi→j + Pi→i

=
∑
j 6=i

PT
i→j + PT

i→i

= 1

Stationary distribution
We have to show:

∑
i πi Pi→j = πj

For that we first show that {Pi→j ;πi} obeys detailed balance

πi Pi→j = πj Pj→i ∀(i , j)



Proof:

• i=j obvious

• i6=j: the ratio of the two sides of the previous equality is

πj Pj→i

πi Pi→j
=

RijMin(1,Rji )

Min(1,Rij )
.

Remarking that Rij = 1/Rji and distinguising between the two cases
corresponding to Rij ≥ 1 and Rij < 1, we easily verify that this ratio is equal to 1.

Finally, using the detailed balance relation we get∑
i

πi Pi→j =
∑

i

πj Pj→i = πj

thus, πi is the stationary distrbution.



APPENDIX: Convergence of the Metropolis algorithm

Let us precise the way the distribution converges to the stationary one.
Let f (k) be a distribution, that is a set of N positive real numbers. The application of
the stochastoc matrix to this distribution is written as

f
(k+1)

i =
∑

j

f
(k)

j Pj→i ≡ Pf
(k)

i

We have the following property

lim
n→∞

f
(n)

i ∼ Pnf
(0)

i = πi ∀f (0)

The different steps of the proof are as follows.

• Let us associate to Pi→j a symmetric real matrix defined as follows

Mij =
√
πi Pi→j

1
√
πj

Let us insist that the stochastic matrix is in general not symmetric.

• It is easy to check that
√
π is eigenstate of M with eigenvalue 1∑

j

Mij
√
πj =

√
πi



• We also see that

Pnf (0) =
√
πMn f (0)

√
π

• Let us now use the spectral decomposition of M. For large n, Mn becomes the
projector in the eigenspace associated with the largest eigenvalue. Due to its
particular structure, it can be shown that M has eigenvalues λi such that
0 ≤ |λi | ≤ 1 and in the case where π does not vanish, the associated eigenspace
is not degenerate. As a consequence

Pnf (0) = c π

where c is the overlap between the initial distribution f (0)/
√
π and the eigenstate√

π of matrix M.


