ISPTC SUMMER SCHOOL JUNE 2017

HARTREE-FOCK THEORY

Vincent Robert: vrobert@unistra.fr

Bibliography:

• A. Szabo and N. S. Ostlund: Modern Quantum Chemistry.

• F. A. Cotton: Chemical Applications of Group Theory.

• J. C. Slater: Quantum Theory of Molecules and Solids.

Notation: orbitals are noted φ_a or for simplicity a.

1. Basis set orthogonalization

Consider a non-orthogonal basis set consisting of N functions $\{\varphi_i\}_{i=1,N}$.

- (a) Express the overlap matrix elements S_{ij} of **S**.
- (b) What are the properties of $\{S_{ij}\}$?
- (c) If $\mathbf{s} = \{s_{ij}\}$ is the diagonal matrix, what is the relation between the **S** and **s** matrices?
- (d) Löwdin orthogonalization: define and show that $X = S^{-1/2}$ is an orthogonalizing transformation matrix.

2. Slater rules - Hartree-Fock energy

Let us start with a $\{\varphi_i\}$ orthonormalized basis set and consider a N-electron Slater determinant $|\Psi\rangle = |\varphi_a\varphi_b\cdots|$. Let us recall that Ψ can be written as:

$$|\Psi\rangle = (N!)^{-1/2} \sum_{n=1}^{N!} (-1)^{\sigma(n)} \mathcal{P}_n[\varphi_a(1)\varphi_b(2) \cdots \varphi_c(N)]$$

where $\sigma(n)$ is the number of transpositions that generates the permutation \mathcal{P}_n . Let $|\Psi'\rangle = |\varphi'_a \varphi'_b \cdots \varphi'_c\rangle$ be another N-electron Slater determinant constructed on the same set of orbitals (for clarity though, the orbitals are primed).

- (a) Express $\langle \Psi | \Psi' \rangle$.
- (b) Show that $\langle \Psi | \Psi' \rangle = 0$ unless $| \Psi \rangle = | \Psi' \rangle$.

(c) Any one-electron operator $\hat{\mathcal{O}}_1$ can be written as:

$$\hat{\mathcal{O}}_1 = \sum_{i=1,N} \hat{h}(i)$$

Show that

$$\langle \Psi | \hat{\mathcal{O}}_1 | \Psi \rangle = \sum_a \langle a | h | a \rangle$$

(d) Let $|\Psi_a^r\rangle = |\varphi_r\varphi_b\cdots|$ be a single excitation on the reference Ψ . Use the second quantification to show that

$$\langle \Psi | \hat{\mathcal{O}}_1 | \Psi_a^r \rangle = \langle a | h | r \rangle$$

- (e) Show that $\langle \Psi | \hat{\mathcal{O}}_1 | \Psi_{ab}^{rs} \rangle = 0$, where $| \Psi_{ab}^{rs} \rangle = | \varphi_r \varphi_s \cdots |$ is a double-excitation.
- (f) Let $\hat{\mathcal{O}}_2$ be a two-electron operator. Show that

$$\langle \Psi | \hat{\mathcal{O}}_2 | \Psi \rangle = \frac{1}{2} \sum_a \sum_b [(aa, bb) - (ab, ba)]$$

3. Unitary transformation

Let us consider the impact of a unitary transformation on a Slater determinant.

- (a) Let $\{\varphi_i'\}$ be a set of spin-orbitals obtained from $\{\varphi_i\}$ by a unitary transformation **U**. Express φ_i' as a function of the $\{\varphi_i\}$ and the matrix elements of **U**.
- (b) If **A** is a square matrix the determinant of which represents the wave function $|\Psi_0\rangle$, express **A'** using the new spin-orbitals.
- (c) Show that $|\Psi_0'\rangle = e^{i\theta} |\Psi_0\rangle$.

4. Hartree-Fock equations

In the Hartree-Fock procedure, the wave function is written as a single determinant $\Psi = |\varphi_a \varphi_b \cdots|$. We will concentrate on the restricted Hartree-Fock procedure for an even number of electrons N, *i.e.* $N_{\alpha} = N_{\beta} = N/2$. The constraints on the orbitals call for Lagrange multipliers so that the occupied orbitals are varied independently. The Lagrangian thus reads

$$\mathcal{L} = \langle \Psi | \hat{\mathcal{H}} | \Psi \rangle - \sum_{a} \sum_{b} \epsilon_{ba} [\langle \varphi_{a} | \varphi_{b} \rangle - \delta_{ab}]$$

and one should impose $\delta \mathcal{L} = 0$ whatever $\delta \varphi_a$.

- (a) What properties the ϵ matrix should satisfy ?
- (b) Express $\delta \mathcal{L}$ using the matrix elements calculations rules.

- (c) Recast the Hartree-Fock equation, defining the Fock operator.
- (d) Using the previous elements to show that the Lagrange multipliers matrix can be brought into a diagonal form.

5. Brillouin and Koopmans theorems

Let us start with the canonical orbitals $\{\varphi_i\}$ defined along the Hartree-Fock procedure, with $\Psi_0 = |\varphi_a \bar{\varphi_a} \cdots|$.

- (a) Show that $\langle \Psi_a^r | \hat{\mathcal{H}} | \Psi_0 \rangle = 0$. This is Brillouin's theorem.
- (b) Use the definition of the eigen-values of the Fock operator to show the Koopmans theorem, say $IP = {}^{N-1}E {}^{N}E = -\epsilon_a$, where φ_a is an occupied orbitals.