Green's functions in N-body quantum mechanics A mathematical perspective

Eric CANCES

Ecole des Ponts and INRIA, Paris, France

Aussois, June 19th, 2015

- 1. Linear operators
- 2. Electronic Hamiltonians
- 3. One-body Green's function and self-energy
- 4. The dynamically screened Coulomb operator ${\cal W}$
- 5. Hedin's equations and the GW approximation

- A1. Fourier transform
- A2. Causal functions, Hilbert transform and Kramers-Kronig relations

1 - Linear operators

References:

- E.B. Davies, *Linear operators and their spectra*, Cambridge University Press 2007.
- B. Helffer, Spectral theory and its applications, Cambridge University Press 2013.
- M. Reed and B. Simon, *Modern methods in mathematical physics*, Vol. 1, 2nd edition, Academic Press 1980.

Notation: in this section, \mathcal{H} denotes a separable complex Hilbert space, $\langle\cdot|\cdot\rangle$ its scalar product, and $\|\cdot\|$ the associated norm.

The finite dimensional case $(\mathcal{H} = \mathbb{C}^d)$

The spectrum of a matrix $A \in \mathbb{C}^{d \times d}$ is the finite set

$$\sigma(A) = \left\{z \in \mathbb{C} \,|\, (z-A) \in \mathbb{C}^{d \times d} \text{ non-invertible} \right\}.$$

4

The finite dimensional case $(\mathcal{H} = \mathbb{C}^d)$

The spectrum of a matrix $A \in \mathbb{C}^{d \times d}$ is the finite set

$$\sigma(A) = \left\{ z \in \mathbb{C} \,|\, (z - A) \in \mathbb{C}^{d \times d} \text{ non-invertible} \right\}.$$

As \mathbb{C}^d is finite dimensional, (z-A) non-invertible $\Leftrightarrow (z-A)$ non-injective:

$$\sigma(A) = \{z \in \mathbb{C} \mid \exists \mathbf{x} \in \mathbb{C}^d \setminus \{0\} \text{ s.t. } A\mathbf{x} = z\mathbf{x}\} = \{\text{eigenvalues of } A\}.$$

4

The finite dimensional case $(\mathcal{H} = \mathbb{C}^d)$

The spectrum of a matrix $A \in \mathbb{C}^{d \times d}$ is the finite set

$$\sigma(A) = \{z \in \mathbb{C} \mid (z - A) \in \mathbb{C}^{d \times d} \text{ non-invertible} \}$$
.

As \mathbb{C}^d is finite dimensional, (z-A) non-invertible $\Leftrightarrow (z-A)$ non-injective:

$$\sigma(A) = \left\{ z \in \mathbb{C} \mid \exists \mathbf{x} \in \mathbb{C}^d \setminus \{0\} \text{ s.t. } A\mathbf{x} = z\mathbf{x} \right\} = \left\{ \text{eigenvalues of } A \right\}.$$

A matrix $A \in \mathbb{C}^{d \times d}$ is called hermitian if $A^* = A$ (i.e. $\overline{A_{ij}} = A_{ji}$, $\forall 1 \leq i, j \leq d$).

4

The finite dimensional case $(\mathcal{H} = \mathbb{C}^d)$

The spectrum of a matrix $A \in \mathbb{C}^{d \times d}$ is the finite set

$$\sigma(A) = \left\{ z \in \mathbb{C} \, | \, (z - A) \in \mathbb{C}^{d \times d} \text{ non-invertible} \right\}.$$

As \mathbb{C}^d is finite dimensional, (z-A) non-invertible $\Leftrightarrow (z-A)$ non-injective:

$$\sigma(A) = \left\{ z \in \mathbb{C} \mid \exists \mathbf{x} \in \mathbb{C}^d \setminus \{0\} \text{ s.t. } A\mathbf{x} = z\mathbf{x} \right\} = \left\{ \text{eigenvalues of } A \right\}.$$

A matrix $A \in \mathbb{C}^{d \times d}$ is called hermitian if $A^* = A$ (i.e. $\overline{A_{ij}} = A_{ji}$, $\forall 1 \leq i, j \leq d$).

Key properties of hermitian matrices:

• the spectrum of a hermitian matrix is real: $\sigma(A) \subset \mathbb{R}$;

The finite dimensional case $(\mathcal{H} = \mathbb{C}^d)$

The spectrum of a matrix $A \in \mathbb{C}^{d \times d}$ is the finite set

$$\sigma(A) = \{z \in \mathbb{C} \mid (z - A) \in \mathbb{C}^{d \times d} \text{ non-invertible} \}$$
.

As \mathbb{C}^d is finite dimensional, (z-A) non-invertible $\Leftrightarrow (z-A)$ non-injective:

$$\sigma(A) = \left\{ z \in \mathbb{C} \mid \exists \mathbf{x} \in \mathbb{C}^d \setminus \{0\} \text{ s.t. } A\mathbf{x} = z\mathbf{x} \right\} = \left\{ \text{eigenvalues of } A \right\}.$$

A matrix $A \in \mathbb{C}^{d \times d}$ is called hermitian if $A^* = A$ (i.e. $\overline{A_{ij}} = A_{ji}$, $\forall 1 \leq i, j \leq d$).

Key properties of hermitian matrices:

- the spectrum of a hermitian matrix is real: $\sigma(A) \subset \mathbb{R}$;
- ullet any hermitian matrix A can be diagonalized in an orthonormal basis:

$$A = \sum_{i=1}^{d} \lambda_i \mathbf{x}_i \mathbf{x}_i^*, \quad \lambda_i \in \sigma(A) \subset \mathbb{R}, \quad \mathbf{x}_i \in \mathbb{R}^d, \quad \mathbf{x}_i^* \mathbf{x}_j = \delta_{ij}, \quad A\mathbf{x}_i = \lambda_i \mathbf{x}_i;$$

The finite dimensional case $(\mathcal{H} = \mathbb{C}^d)$

The spectrum of a matrix $A \in \mathbb{C}^{d \times d}$ is the finite set

$$\sigma(A) = \{ z \in \mathbb{C} \mid (z - A) \in \mathbb{C}^{d \times d} \text{ non-invertible} \}$$
.

As \mathbb{C}^d is finite dimensional, (z-A) non-invertible $\Leftrightarrow (z-A)$ non-injective:

$$\sigma(A) = \left\{ z \in \mathbb{C} \mid \exists \mathbf{x} \in \mathbb{C}^d \setminus \{0\} \text{ s.t. } A\mathbf{x} = z\mathbf{x} \right\} = \left\{ \text{eigenvalues of } A \right\}.$$

A matrix $A \in \mathbb{C}^{d \times d}$ is called hermitian if $A^* = A$ (i.e. $\overline{A_{ij}} = A_{ji}$, $\forall 1 \leq i, j \leq d$).

Key properties of hermitian matrices:

- the spectrum of a hermitian matrix is real: $\sigma(A) \subset \mathbb{R}$;
- ullet any hermitian matrix A can be diagonalized in an orthonormal basis:

$$A = \sum_{i=1}^{d} \lambda_i \mathbf{x}_i \mathbf{x}_i^*, \quad \lambda_i \in \sigma(A) \subset \mathbb{R}, \quad \mathbf{x}_i \in \mathbb{R}^d, \quad \mathbf{x}_i^* \mathbf{x}_j = \delta_{ij}, \quad A\mathbf{x}_i = \lambda_i \mathbf{x}_i;$$

• there exists a functional calculus for hermitian matrices.

Functional calculus for hermitian matrices

Let A be a hermitian matrix of $\mathbb{C}^{d\times d}$ such that

$$A = \sum_{i=1}^{d} \lambda_i \mathbf{x}_i \mathbf{x}_i^*, \quad \lambda_i \in \sigma(A) \subset \mathbb{R}, \quad \mathbf{x}_i \in \mathbb{C}^d, \quad \mathbf{x}_i^* \mathbf{x}_j = \delta_{ij}, \quad A\mathbf{x}_i = \lambda_i \mathbf{x}_i.$$

Functional calculus for hermitian matrices

Let A be a hermitian matrix of $\mathbb{C}^{d\times d}$ such that

$$A = \sum_{i=1}^{d} \lambda_i \mathbf{x}_i \mathbf{x}_i^*, \quad \lambda_i \in \sigma(A) \subset \mathbb{R}, \quad \mathbf{x}_i \in \mathbb{C}^d, \quad \mathbf{x}_i^* \mathbf{x}_j = \delta_{ij}, \quad A\mathbf{x}_i = \lambda_i \mathbf{x}_i.$$

For any $f: \mathbb{R} \to \mathbb{C}$, the matrix

$$f(A) := \sum_{i=1}^{d} f(\lambda_i) \mathbf{x}_i \mathbf{x}_i^*$$

is independent of the choice of the spectral decomposition of A.

Functional calculus for hermitian matrices

Let A be a hermitian matrix of $\mathbb{C}^{d\times d}$ such that

$$A = \sum_{i=1}^{d} \lambda_i \mathbf{x}_i \mathbf{x}_i^*, \quad \lambda_i \in \sigma(A) \subset \mathbb{R}, \quad \mathbf{x}_i \in \mathbb{C}^d, \quad \mathbf{x}_i^* \mathbf{x}_j = \delta_{ij}, \quad A\mathbf{x}_i = \lambda_i \mathbf{x}_i.$$

For any $f: \mathbb{R} \to \mathbb{C}$, the matrix

$$f(A) := \sum_{i=1}^{d} f(\lambda_i) \mathbf{x}_i \mathbf{x}_i^*$$

is independent of the choice of the spectral decomposition of A.

Functional calculus can be extended to self-adjoint operators in Hilbert spaces.

Functional calculus is extremely useful in quantum physics, e.g. to define

- ullet the propagator e^{-itH} associated with a Hamiltonian H;
- the density matrix $\frac{1}{1+e^{(H-\varepsilon_{\rm F})/(k_{\rm B}T)}}$ of a fermionic system at temperature T and chemical potential (Fermi level) $\varepsilon_{\rm F}$.

Definition-Theorem (bounded linear operator). A bounded operator on $\mathcal H$ is a linear map $A:\mathcal H\to\mathcal H$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

Definition-Theorem (bounded linear operator). A bounded operator on $\mathcal H$ is a linear map $A:\mathcal H\to\mathcal H$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Definition-Theorem (bounded linear operator). A bounded operator on $\mathcal H$ is a linear map $A:\mathcal H\to\mathcal H$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Remark. A bounded linear operator is uniquely defined by the values of the sesquilinear form $\mathcal{H} \times \mathcal{H} \ni (u,v) \mapsto \langle u|Av \rangle \in \mathbb{C}$.

Definition-Theorem (bounded linear operator). A bounded operator on $\mathcal H$ is a linear map $A:\mathcal H\to\mathcal H$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Remark. A bounded linear operator is uniquely defined by the values of the sesquilinear form $\mathcal{H} \times \mathcal{H} \ni (u,v) \mapsto \langle u|Av \rangle \in \mathbb{C}$.

Definition-Theorem (adjoint of a bounded linear operator). Let $A \in \mathcal{B}(\mathcal{H})$. The operator $A^* \in \mathcal{B}(\mathcal{H})$ defined by

$$\forall (u, v) \in \mathcal{H} \times \mathcal{H}, \quad \langle u | A^* v \rangle = \langle A u | v \rangle,$$

is called the adjoint of A.

Definition-Theorem (bounded linear operator). A bounded operator on \mathcal{H} is a linear map $A: \mathcal{H} \to \mathcal{H}$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Remark. A bounded linear operator is uniquely defined by the values of the sesquilinear form $\mathcal{H} \times \mathcal{H} \ni (u,v) \mapsto \langle u|Av \rangle \in \mathbb{C}$.

Definition-Theorem (adjoint of a bounded linear operator). Let $A \in \mathcal{B}(\mathcal{H})$. The operator $A^* \in \mathcal{B}(\mathcal{H})$ defined by

$$\forall (u, v) \in \mathcal{H} \times \mathcal{H}, \quad \langle u | A^* v \rangle = \langle A u | v \rangle,$$

is called the adjoint of A. The operator A is called self-adjoint if $A^* = A$.

Definition-Theorem (bounded linear operator). A bounded operator on \mathcal{H} is a linear map $A: \mathcal{H} \to \mathcal{H}$ such that

$$||A|| := \sup_{u \in \mathcal{H} \setminus \{0\}} \frac{||Au||}{||u||} < \infty.$$

The set $\mathcal{B}(\mathcal{H})$ of the bounded operators on \mathcal{H} is a non-commutative algebra and $\|\cdot\|$ is a norm on $\mathcal{B}(\mathcal{H})$.

Remark. A bounded linear operator is uniquely defined by the values of the sesquilinear form $\mathcal{H} \times \mathcal{H} \ni (u,v) \mapsto \langle u|Av \rangle \in \mathbb{C}$.

Definition-Theorem (adjoint of a bounded linear operator). Let $A \in \mathcal{B}(\mathcal{H})$. The operator $A^* \in \mathcal{B}(\mathcal{H})$ defined by

$$\forall (u, v) \in \mathcal{H} \times \mathcal{H}, \quad \langle u | A^* v \rangle = \langle A u | v \rangle,$$

is called the adjoint of A. The operator A is called self-adjoint if $A^* = A$.

Endowed with its norm $\|\cdot\|$ and the * operation, $\mathcal{B}(\mathcal{H})$ is a C*-algebra.

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A:D(A)\to\mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A.

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A:D(A)\to\mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A:D(A)\to\mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A_1 and A_2 be operators on \mathcal{H} . A_2 is called an extension of A_1 if $D(A_1) \subset D(A_2)$ and if $\forall u \in D(A_1)$, $A_2u = A_1u$.

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A:D(A)\to\mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A_1 and A_2 be operators on \mathcal{H} . A_2 is called an extension of A_1 if $D(A_1) \subset D(A_2)$ and if $\forall u \in D(A_1)$, $A_2u = A_1u$.

Definition (unbounded linear operator). An operator A on \mathcal{H} which does not possess a bounded extension is called an unbounded operator on \mathcal{H} .

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A:D(A)\to\mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A_1 and A_2 be operators on \mathcal{H} . A_2 is called an extension of A_1 if $D(A_1) \subset D(A_2)$ and if $\forall u \in D(A_1)$, $A_2u = A_1u$.

Definition (unbounded linear operator). An operator A on \mathcal{H} which does not possess a bounded extension is called an unbounded operator on \mathcal{H} .

Definition (symmetric operator). A linear operator A on $\mathcal H$ with dense domain D(A) is called symmetric if

$$\forall (u, v) \in D(A) \times D(A), \quad \langle Au|v \rangle = \langle u|Av \rangle.$$

Definition (linear operator). A linear operator on \mathcal{H} is a linear map $A:D(A)\to\mathcal{H}$, where D(A) is a subspace of \mathcal{H} called the domain of A. Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let A_1 and A_2 be operators on \mathcal{H} . A_2 is called an extension of A_1 if $D(A_1) \subset D(A_2)$ and if $\forall u \in D(A_1)$, $A_2u = A_1u$.

Definition (unbounded linear operator). An operator A on \mathcal{H} which does not possess a bounded extension is called an unbounded operator on \mathcal{H} .

Definition (symmetric operator). A linear operator A on $\mathcal H$ with dense domain D(A) is called symmetric if

$$\forall (u, v) \in D(A) \times D(A), \quad \langle Au|v \rangle = \langle u|Av \rangle.$$

Symmetric operators are not very interesting. Only self-adjoint operators represent physical observables and have nice mathematical properties:

- real spectrum;
- spectral decomposition and functional calculus.

Definition (adjoint of a linear operator with dense domain). Let A be a linear operator on $\mathcal H$ with dense domain D(A), and $D(A^*)$ the vector space defined as

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \ \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on \mathcal{H} , with domain $D(A^*)$, defined by

$$\forall v \in D(A^*), \quad A^*v = w_v,$$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A.

Definition (adjoint of a linear operator with dense domain). Let A be a linear operator on $\mathcal H$ with dense domain D(A), and $D(A^*)$ the vector space defined as

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \ \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on \mathcal{H} , with domain $D(A^*)$, defined by

$$\forall v \in D(A^*), \quad A^*v = w_v,$$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A. (This definition agrees with the one on Slide 6 for bounded operators.)

Definition (adjoint of a linear operator with dense domain). Let A be a linear operator on \mathcal{H} with dense domain D(A), and $D(A^*)$ the vector space defined as

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \ \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on \mathcal{H} , with domain $D(A^*)$, defined by

$$\forall v \in D(A^*), \quad A^*v = w_v,$$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A. (This definition agrees with the one on Slide 6 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain is called self-adjoint if $A^* = A$ (that is if A symmetric and $D(A^*) = D(A)$).

Definition (adjoint of a linear operator with dense domain). Let A be a linear operator on $\mathcal H$ with dense domain D(A), and $D(A^*)$ the vector space defined as

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \ \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on \mathcal{H} , with domain $D(A^*)$, defined by

$$\forall v \in D(A^*), \quad A^*v = w_v,$$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A. (This definition agrees with the one on Slide 6 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain is called self-adjoint if $A^* = A$ (that is if A symmetric and $D(A^*) = D(A)$).

Case of bounded operators:

symmetric \Leftrightarrow self-adjoint.

Definition (adjoint of a linear operator with dense domain). Let A be a linear operator on \mathcal{H} with dense domain D(A), and $D(A^*)$ the vector space defined as

$$D(A^*) = \{ v \in \mathcal{H} \mid \exists w_v \in \mathcal{H} \text{ s.t. } \forall u \in D(A), \ \langle Au | v \rangle = \langle u | w_v \rangle \}.$$

The linear operator A^* on \mathcal{H} , with domain $D(A^*)$, defined by

$$\forall v \in D(A^*), \quad A^*v = w_v,$$

(if w_v exists, it is unique since D(A) is dense) is called the adjoint of A. (This definition agrees with the one on Slide 6 for bounded operators.)

Definition (self-adjoint operator). A linear operator A with dense domain is called self-adjoint if $A^* = A$ (that is if A symmetric and $D(A^*) = D(A)$).

Case of bounded operators:

symmetric \Leftrightarrow self-adjoint.

Case of unbounded operators:

symmetric (easy to check) $\stackrel{\Rightarrow}{\Leftarrow}$ self-adjoint (sometimes difficult to check)

Some unbounded self-adjoint operators arising in quantum mechanics

- \bullet position operator along the j axis:
 - $-\mathcal{H}=L^2(\mathbb{R}^d),$
 - $-D(\widehat{r}_j) = \left\{ u \in L^2(\mathbb{R}^d) \mid r_j u \in L^2(\mathbb{R}^d) \right\}, (\widehat{r}_j \phi)(\mathbf{r}) = r_j \phi(\mathbf{r});$
- \bullet momentum operator along the j axis:
 - $-\mathcal{H}=L^2(\mathbb{R}^d)$,
 - $-D(\widehat{p}_j) = \left\{ u \in L^2(\mathbb{R}^d) \mid \partial_{r_j} u \in L^2(\mathbb{R}^d) \right\}, (\widehat{p}_j \phi)(\mathbf{r}) = -i \partial_{r_j} \phi(\mathbf{r});$
- kinetic energy operator:
 - $-\mathcal{H}=L^2(\mathbb{R}^d),$
 - $-D(T) = H^2(\mathbb{R}^d) := \{ u \in L^2(\mathbb{R}^d) \mid \Delta u \in L^2(\mathbb{R}^d) \}, T = -\frac{1}{2}\Delta;$
- Schrödinger operators in 3D: let $V \in L^2_{\mathrm{unif}}(\mathbb{R}^3,\mathbb{R})$ ($V(\mathbf{r}) = -\frac{Z}{|\mathbf{r}|}$ OK)
 - $-\mathcal{H}=L^2(\mathbb{R}^3),$
 - $-D(H) = H^2(\mathbb{R}^3), H = -\frac{1}{2}\Delta + V.$

Kernel of a linear operator on $L^2(\mathbb{R}^d)$

Let A be a linear operator on $L^2(\mathbb{R}^d)$ with domain D(A).

The kernel of A, if it exists, is the distribution $A(\mathbf{x}, \mathbf{x}')$ such that

$$\forall \phi \in D(A), \quad (A\phi)(\mathbf{x}) = " \int_{\mathbb{R}^d} A(\mathbf{x}, \mathbf{x}') \, \phi(\mathbf{x}') \, d\mathbf{x}' ".$$

Kernel of a linear operator on $L^2(\mathbb{R}^d)$

Let A be a linear operator on $L^2(\mathbb{R}^d)$ with domain D(A).

The kernel of A, if it exists, is the distribution $A(\mathbf{x}, \mathbf{x}')$ such that

$$\forall \phi \in D(A), \quad (A\phi)(\mathbf{x}) = \text{"} \int_{\mathbb{R}^d} A(\mathbf{x}, \mathbf{x}') \, \phi(\mathbf{x}') \, d\mathbf{x}' \, \text{"}.$$

Schwartz kernel theorem '66: all "well-behaved" operators have kernels.

Kernel of a linear operator on $L^2(\mathbb{R}^d)$

Let A be a linear operator on $L^2(\mathbb{R}^d)$ with domain D(A).

The kernel of A, if it exists, is the distribution $A(\mathbf{x}, \mathbf{x}')$ such that

$$\forall \phi \in D(A), \quad (A\phi)(\mathbf{x}) = \text{"} \int_{\mathbb{R}^d} A(\mathbf{x}, \mathbf{x}') \, \phi(\mathbf{x}') \, d\mathbf{x}' \, \text{"}.$$

Schwartz kernel theorem '66: all "well-behaved" operators have kernels.

Green's function of a linear operator on $L^2(\mathbb{R}^d)$

If A is invertible, the kernel $G(\mathbf{x}, \mathbf{x}')$ of A^{-1} , if it exists, is called the Green's function of A. The solution u to the equation Au = f then is

$$u(\mathbf{x}) = \text{''} \int_{\mathbb{R}^d} G(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') d\mathbf{x}' \text{''} \quad \text{for a.a. } \mathbf{x} \in \mathbb{R}^d.$$

Kernel of a linear operator on $L^2(\mathbb{R}^d)$

Let A be a linear operator on $L^2(\mathbb{R}^d)$ with domain D(A).

The kernel of A, if it exists, is the distribution $A(\mathbf{x}, \mathbf{x}')$ such that

$$\forall \phi \in D(A), \quad (A\phi)(\mathbf{x}) = " \int_{\mathbb{R}^d} A(\mathbf{x}, \mathbf{x}') \, \phi(\mathbf{x}') \, d\mathbf{x}' \, ".$$

Schwartz kernel theorem '66: all "well-behaved" operators have kernels.

Green's function of a linear operator on $L^2(\mathbb{R}^d)$

If A is invertible, the kernel $G(\mathbf{x}, \mathbf{x}')$ of A^{-1} , if it exists, is called the Green's function of A. The solution u to the equation Au = f then is

$$u(\mathbf{x}) = \text{''} \int_{\mathbb{R}^d} G(\mathbf{x}, \mathbf{x}') f(\mathbf{x}') d\mathbf{x}' \text{''} \quad \text{for a.a. } \mathbf{x} \in \mathbb{R}^d.$$

Remark: the Green's functions used in many-body perturbation theory are related to, but are not exactly, this kind of Green's functions.

Definition-Theorem (spectrum of a linear operator). Let A be a closed¹ linear operator on \mathcal{H} .

• The open set $\rho(A)=\{z\in\mathbb{C}\mid (z-A):D(A)\to\mathcal{H} \text{ invertible}\}$ is called the resolvent set of A.

 $^{^{1} \}text{ The operator } A \text{ is called closed if its graph } \Gamma(A) := \{(u,Au), \ u \in D(A)\} \text{ is a closed subspace of } \mathcal{H} \times \mathcal{H}.$

Definition-Theorem (spectrum of a linear operator). Let A be a closed¹ linear operator on \mathcal{H} .

• The open set $\rho(A)=\{z\in\mathbb{C}\mid (z-A):D(A)\to\mathcal{H} \text{ invertible}\}$ is called the resolvent set of A. The analytic function

$$\rho(A) \ni z \mapsto R_z(A) := (z - A)^{-1} \in \mathcal{B}(\mathcal{H})$$

is called the resolvent of A. It holds $R_z(A)-R_{z'}(A)=(z'-z)R_z(A)R_{z'}(A)$.

 $^{^1}$ The operator A is called closed if its graph $\Gamma(A):=\{(u,Au),\,u\in D(A)\}$ is a closed subspace of $\mathcal{H}\times\mathcal{H}$.

Definition-Theorem (spectrum of a linear operator). Let A be a closed linear operator on \mathcal{H} .

• The open set $\rho(A)=\{z\in\mathbb{C}\mid (z-A):D(A)\to\mathcal{H} \text{ invertible}\}$ is called the resolvent set of A. The analytic function

$$\rho(A) \ni z \mapsto R_z(A) := (z - A)^{-1} \in \mathcal{B}(\mathcal{H})$$

is called the resolvent of A. It holds $R_z(A)-R_{z'}(A)=(z'-z)R_z(A)R_{z'}(A)$.

ullet The closed set $\sigma(A)=\mathbb{C}\setminus
ho(A)$ is called the spectrum of A.

 $^{^{1} \}text{ The operator } A \text{ is called closed if its graph } \Gamma(A) := \{(u,Au), \ u \in D(A)\} \text{ is a closed subspace of } \mathcal{H} \times \mathcal{H}.$

Definition-Theorem (spectrum of a linear operator). Let A be a closed linear operator on \mathcal{H} .

• The open set $\rho(A) = \{z \in \mathbb{C} \mid (z - A) : D(A) \to \mathcal{H} \text{ invertible} \}$ is called the resolvent set of A. The analytic function

$$\rho(A) \ni z \mapsto R_z(A) := (z - A)^{-1} \in \mathcal{B}(\mathcal{H})$$

is called the resolvent of A. It holds $R_z(A)-R_{z'}(A)=(z'-z)R_z(A)R_{z'}(A)$.

- ullet The closed set $\sigma(A)=\mathbb{C}\setminus
 ho(A)$ is called the spectrum of A.
- If A is self-adjoint, then $\sigma(A) \subset \mathbb{R}$

 $^{^{1} \}text{ The operator } A \text{ is called closed if its graph } \Gamma(A) := \{(u,Au), \ u \in D(A)\} \text{ is a closed subspace of } \mathcal{H} \times \mathcal{H}.$

Definition-Theorem (spectrum of a linear operator). Let A be a closed¹ linear operator on \mathcal{H} .

• The open set $\rho(A)=\{z\in\mathbb{C}\mid (z-A):D(A)\to\mathcal{H} \text{ invertible}\}$ is called the resolvent set of A. The analytic function

$$\rho(A) \ni z \mapsto R_z(A) := (z - A)^{-1} \in \mathcal{B}(\mathcal{H})$$

is called the resolvent of A. It holds $R_z(A) - R_{z'}(A) = (z'-z)R_z(A)R_{z'}(A)$.

- The closed set $\sigma(A) = \mathbb{C} \setminus \rho(A)$ is called the spectrum of A.
- If A is self-adjoint, then $\sigma(A) \subset \mathbb{R}$ and it holds $\sigma(A) = \sigma_p(A) \cup \sigma_c(A)$, where $\sigma_p(A)$ and $\sigma_c(A)$ are respectively the point spectrum and the continuous spectrum of A defined as

$$\sigma_{\mathrm{p}}(A) \ = \ \{z \in \mathbb{C} \mid (z-A) \ : \ D(A) \to \mathcal{H} \ \text{non-injective}\} = \{\text{eigenvalues of} \ A\}$$

$$\sigma_{\mathrm{c}}(A) = \overline{\{z \in \mathbb{C} \mid (z - A) : D(A) \to \mathcal{H} \text{ injective but non surjective}\}}.$$

 $^{^{1} \}text{ The operator } A \text{ is called closed if its graph } \Gamma(A) := \{(u,Au), \ u \in D(A)\} \text{ is a closed subspace of } \mathcal{H} \times \mathcal{H}.$

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let H be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$.

[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let H be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$.

[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let $\mathcal{H}_p = \overline{\operatorname{Span}\left\{ \operatorname{eigenvectors\ of}\ H \right\}}$ and $\mathcal{H}_c = \mathcal{H}_p^{\perp}$.

[Ex.: for the Hamiltonian of the hydrogen atom, $\dim(\mathcal{H}_p) = \dim(\mathcal{H}_c) = \infty$.]

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let H be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$.

[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let $\mathcal{H}_p = \overline{\operatorname{Span}\left\{\text{eigenvectors of }H\right\}}$ and $\mathcal{H}_c = \mathcal{H}_p^{\perp}$.

[Ex.: for the Hamiltonian of the hydrogen atom, $\dim(\mathcal{H}_p) = \dim(\mathcal{H}_c) = \infty$.]

Let χ_{B_R} be the characteristic function of the ball $B_R = \{\mathbf{r} \in \mathbb{R}^d \mid |\mathbf{r}| < R\}$.

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let H be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$.

[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let $\mathcal{H}_p = \overline{\operatorname{\mathbf{Span}}\left\{ \operatorname{\mathbf{eigenvectors}} \ \operatorname{\mathbf{of}} \ H
ight\}} \ \operatorname{\mathbf{and}} \ \mathcal{H}_c = \mathcal{H}_p^\perp.$

[Ex.: for the Hamiltonian of the hydrogen atom, $\dim(\mathcal{H}_p) = \dim(\mathcal{H}_c) = \infty$.]

Let χ_{B_R} be the characteristic function of the ball $B_R = \{\mathbf{r} \in \mathbb{R}^d \mid |\mathbf{r}| < R\}$.

Then

$$(\phi_0 \in \mathcal{H}_p) \Leftrightarrow \forall \varepsilon > 0, \ \exists R > 0, \ \forall t \ge 0, \ \left\| (1 - \chi_{B_R}) e^{-itH} \phi_0 \right\|_{L^2}^2 \le \varepsilon;$$

$$(\phi_0 \in \mathcal{H}_c) \Leftrightarrow \forall R > 0, \lim_{T \to +\infty} \frac{1}{T} \int_0^T \|\chi_{B_R} e^{-itH} \phi_0\|_{L^2}^2 dt = 0.$$

Theorem (RAGE, Ruelle '69, Amrein and Georgescu '73, Enss '78).

Let H be a locally compact self-adjoint operator on $L^2(\mathbb{R}^d)$.

[Ex.: the Hamiltonian of the hydrogen atom satisfies these assumptions.]

Let $\mathcal{H}_p = \overline{\operatorname{\mathbf{Span}}\left\{ \operatorname{\mathbf{eigenvectors}} \ \operatorname{\mathbf{of}} \ H \right\}} \ \operatorname{\mathbf{and}} \ \mathcal{H}_c = \mathcal{H}_p^\perp.$

[Ex.: for the Hamiltonian of the hydrogen atom, $\dim(\mathcal{H}_p) = \dim(\mathcal{H}_c) = \infty$.]

Let χ_{B_R} be the characteristic function of the ball $B_R = \{\mathbf{r} \in \mathbb{R}^d \mid |\mathbf{r}| < R\}$.

Then

$$(\phi_0 \in \mathcal{H}_p) \Leftrightarrow \forall \varepsilon > 0, \ \exists R > 0, \ \forall t \ge 0, \ \left\| (1 - \chi_{B_R}) e^{-itH} \phi_0 \right\|_{L^2}^2 \le \varepsilon;$$

$$(\phi_0 \in \mathcal{H}_c) \Leftrightarrow \forall R > 0, \lim_{T \to +\infty} \frac{1}{T} \int_0^T \|\chi_{B_R} e^{-itH} \phi_0\|_{L^2}^2 dt = 0.$$

 \mathcal{H}_{p} : set of bound states, \mathcal{H}_{c} : set of diffusive states

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n\in\mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A = \sum_{n \in \mathbb{N}} \lambda_n |e_n\rangle \langle e_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle e_m|e_n\rangle = \delta_{mn}.$$

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n\in\mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A=\sum_{n\in\mathbb{N}}\lambda_n|e_n\rangle\langle e_n|,\quad \lambda_n\in\mathbb{R},\quad \langle e_m|e_n\rangle=\delta_{mn}.$$
 Then,

• the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n\in\mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A=\sum_{n\in\mathbb{N}}\lambda_n|e_n
angle\langle e_n|,\quad \lambda_n\in\mathbb{R},\quad \langle e_m|e_n
angle=\delta_{mn}.$$

Then,

- the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;
- $D(A) = \{|u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |\lambda_n|^2) |u_n|^2 < \infty \}$;

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n\in\mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A = \sum_{n \in \mathbb{N}} \lambda_n |e_n\rangle \langle e_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle e_m|e_n\rangle = \delta_{mn}.$$

Then,

- the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;
- $D(A) = \{|u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |\lambda_n|^2) |u_n|^2 < \infty\rangle\};$
- ullet $\sigma_{\mathrm{p}}(A)=\{\lambda_n\}_{n\in\mathbb{N}}$ and $\sigma_{\mathrm{c}}(A)=\{ ext{accumulation points of }\{\lambda_n\}_{n\in\mathbb{N}}\}\setminus\sigma_{\mathrm{p}}(A);$

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n\in\mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A = \sum_{n \in \mathbb{N}} \lambda_n |e_n\rangle \langle e_n|, \quad \lambda_n \in \mathbb{R}, \quad \langle e_m|e_n\rangle = \delta_{mn}.$$

Then,

- the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;
- $D(A) = \{|u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |\lambda_n|^2) |u_n|^2 < \infty\rangle\};$
- ullet $\sigma_{\mathrm{p}}(A)=\{\lambda_n\}_{n\in\mathbb{N}}$ and $\sigma_{\mathrm{c}}(A)=\{$ accumulation points of $\{\lambda_n\}_{n\in\mathbb{N}}\}\setminus\sigma_{\mathrm{p}}(A)$;
- $\mathcal{H}_p = \mathcal{H}$ and $\mathcal{H}_c = \{0\}$ (no diffusive states);

Let A be a self-adjoint operator that can be diagonalized in an orthonormal basis $(e_n)_{n\in\mathbb{N}}$ (this is not the case for many useful self-adjoint operators!).

Dirac's bra-ket notation:
$$A=\sum_{n\in\mathbb{N}}\lambda_n|e_n\rangle\langle e_n|,\quad \lambda_n\in\mathbb{R},\quad \langle e_m|e_n\rangle=\delta_{mn}.$$

Then,

- the operator A is bounded if and only if $||A|| = \sup_n |\lambda_n| < \infty$;
- $D(A) = \{|u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |\lambda_n|^2) |u_n|^2 < \infty\rangle\};$
- ullet $\sigma_{\mathrm{p}}(A)=\{\lambda_n\}_{n\in\mathbb{N}}$ and $\sigma_{\mathrm{c}}(A)=\left\{ ext{accumulation points of } \{\lambda_n\}_{n\in\mathbb{N}} \right\} \setminus \sigma_{\mathrm{p}}(A)$;
- $\mathcal{H}_{p} = \mathcal{H}$ and $\mathcal{H}_{c} = \{0\}$ (no diffusive states);
- ullet functional calculus for diagonalizable self-adjoint operators: for all $f:\mathbb{R} \to \mathbb{C}$, the operator f(A) defined by

$$D(f(A)) = \left\{ |u\rangle = \sum_{n \in \mathbb{N}} u_n |e_n\rangle \mid \sum_{n \in \mathbb{N}} (1 + |f(\lambda_n)|^2) |u_n|^2 < \infty \right\}, \quad f(A) = \sum_{n \in \mathbb{N}} f(\lambda_n) |e_n\rangle \langle e_n|$$

is independent of the choice of the spectral decomposition of A.

Theorem (functional calculus for bounded functions). Let $\mathfrak{B}(\mathbb{R},\mathbb{C})$ be the *-algebra of bounded \mathbb{C} -valued Borel functions on \mathbb{R} and let A be a self-adjoint operator on \mathcal{H} . Then there exists a unique map

$$\Phi_A: \mathfrak{B}(\mathbb{R},\mathbb{C})\ni f\mapsto f(A)\in \mathcal{B}(\mathcal{H})$$

satisfies the following properties:

1. Φ_A is a homomorphism of *-algebras:

$$(\alpha f + \beta g)(A) = \alpha f(A) + \beta g(A), \quad (fg)(A) = f(A)g(A), \quad \overline{f}(A) = f(A)^*;$$

- **2.** $||f(A)|| \le \sup_{x \in \mathbb{R}} |f(x)|;$
- 3. if $f_n(x) \to x$ pointwise and $|f_n(x)| \le |x|$ for all n and all $x \in \mathbb{R}$, then $\forall u \in D(A), \quad f_n(A)u \to Au$ in \mathcal{H} ;
- **4.** if $f_n(x) \to f(x)$ pointwise and $\sup_n \sup_{x \in \mathbb{R}} |f_n(x)| < \infty$, then $\forall u \in \mathcal{H}, \quad f_n(A)u \to f(A)u \text{ in } \mathcal{H};$

In addition, if $u \in \mathcal{H}$ is such that $Au = \lambda u$, then $f(A)u = f(\lambda)u$.

Theorem (spectral projections and functional calculus - general case -).

Let A be a self-adjoint operator on \mathcal{H} .

- For all $\lambda \in \mathbb{R}$, the bounded operator $P_{\lambda}^{A} := \mathbb{1}_{]-\infty,\lambda]}(A)$, where $\mathbb{1}_{]-\infty,\lambda]}(\cdot)$ is the characteristic function of $]-\infty,\lambda]$, is an orthogonal projection.
- Spectral decomposition of A: for all $u \in D(A)$ and $v \in \mathcal{H}$, it holds

$$\langle v|Au \rangle = \int_{\mathbb{R}} \lambda \; d\langle v|P_{\lambda}^{A}u \rangle, \quad \text{which we denote by} \quad A = \int_{\mathbb{R}} \lambda \, dP_{\lambda}^{A}.$$

• Functional calculus: let f be a (not necessarily bounded) \mathbb{C} -valued Borel function on \mathbb{R} . The operator f(A) can be defined by

$$D(f(A)) := \left\{ u \in \mathcal{H} \mid \int_{\mathbb{R}} |f(\lambda)|^2 d\langle u | P_{\lambda}^A u \rangle < \infty \right\}$$

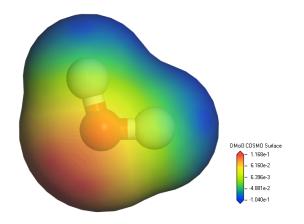
and

$$\forall (u,v) \in D(f(A)) \times \mathcal{H}, \ \langle v|f(A)u \rangle := \int_{\mathbb{R}} f(\lambda) \, \langle v|P_{d\lambda}^A u \rangle.$$

2 - Electronic Hamiltonians

17

Electronic problem for a given nuclear configuration $\{\mathbf{R}_k\}_{1 \leq k \leq M}$



Ex: water molecule H₂O

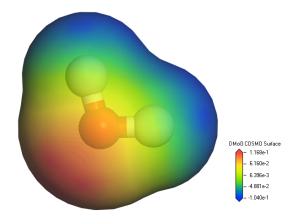
$$M = 3$$
, $N = 10$, $z_1 = 8$, $z_2 = 1$, $z_3 = 1$

$$v_{ ext{ext}}(\mathbf{r}) = -\sum_{k=1}^{M} \frac{z_k}{|\mathbf{r} - \mathbf{R}_k|}$$

$$\left| \left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_i} + \sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_i) + \sum_{1 \le i < j \le N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right) \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = E \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) \right|$$

$$\forall p \in \mathfrak{S}_N, \quad \Psi(\mathbf{r}_{p(1)}, \cdots, \mathbf{r}_{p(N)}) = \varepsilon(p)\Psi(\mathbf{r}_1, \cdots, \mathbf{r}_N),$$
 (Pauli principle)

Electronic problem for a given nuclear configuration $\{\mathbf{R}_k\}_{1 \leq k \leq M}$



Ex: water molecule H₂O

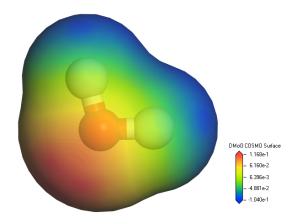
$$M = 3$$
, $N = 10$, $z_1 = 8$, $z_2 = 1$, $z_3 = 1$

$$v_{ ext{ext}}(\mathbf{r}) = -\sum_{k=1}^{M} \frac{z_k}{|\mathbf{r} - \mathbf{R}_k|}$$

$$\left| \left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_i} + \sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_i) + \sum_{1 \le i < j \le N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right) \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = E \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) \right|$$

$$\Psi \in \mathcal{H}_N = \bigwedge^N \mathcal{H}_1, \qquad \mathcal{H}_1 = L^2(\mathbb{R}^3, \mathbb{C})$$

Electronic problem for a given nuclear configuration $\{\mathbf{R}_k\}_{1 \leq k \leq M}$



Ex: water molecule H₂O

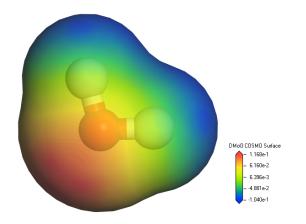
$$M = 3$$
, $N = 10$, $z_1 = 8$, $z_2 = 1$, $z_3 = 1$

$$v_{ ext{ext}}(\mathbf{r}) = -\sum_{k=1}^{M} \frac{z_k}{|\mathbf{r} - \mathbf{R}_k|}$$

$$\left| \left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_i} + \sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_i) + \sum_{1 \le i < j \le N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right) \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = E \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) \right|$$

$$\Psi \in \mathcal{H}_N = \bigwedge^N \mathcal{H}_1, \qquad \mathcal{H}_1 = L^2(\mathbb{R}^3, \mathbb{C}^2)$$
 with spin

Electronic problem for a given nuclear configuration $\{\mathbf{R}_k\}_{1 \leq k \leq M}$



Ex: water molecule H₂O

$$M = 3$$
, $N = 10$, $z_1 = 8$, $z_2 = 1$, $z_3 = 1$

$$v_{\mathrm{ext}}(\mathbf{r}) = -\sum_{k=1}^{M} \frac{z_k}{|\mathbf{r} - \mathbf{R}_k|}$$

$$\left| \left(-\frac{1}{2} \sum_{i=1}^{N} \Delta_{\mathbf{r}_i} + \sum_{i=1}^{N} v_{\text{ext}}(\mathbf{r}_i) + \sum_{1 \le i < j \le N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \right) \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = E \Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) \right|$$

$$\Psi \in \mathcal{H}_N = \bigwedge^N \mathcal{H}_1, \qquad \mathcal{H}_1 = L^2(\mathbb{R}^3, \mathbb{C})$$
 Theorem (Kato '51). The operator $H_N := -\frac{1}{2} \sum_{i=1}^N \Delta_{\mathbf{r}_i} + \sum_{i=1}^N v_{\mathrm{ext}}(\mathbf{r}_i) + \sum_{1 \leq i < j \leq N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$ with domain $D(H_N) := \mathcal{H}_N \cap H^2(\mathbb{R}^{3N})$ is self-adjoint on \mathcal{H}_N .

18

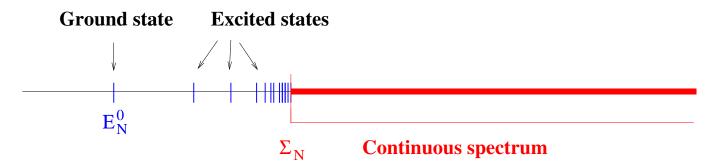
Theorem (spectrum of H_N).

1. HVZ theorem (Hunziger '66, van Winten '60, Zhislin '60)

$$\sigma_{\rm c}(H_N) = [\Sigma_N, +\infty)$$
 with $\Sigma_N = \min \sigma(H_{N-1}) \le 0$ and $\Sigma_N < 0$ iff $N \ge 2$.

2. Bound states of neutral molecules and positive ions (Zhislin '61)

If $N \leq Z := \sum_{k=1}^{M} z_k$, then H_N has an infinite number of bound states.



3. Bound states of negative ions (Yafaev '72)

If $N \geq Z+1$, then H_N has at most a finite number of bound states.

19

Assumptions

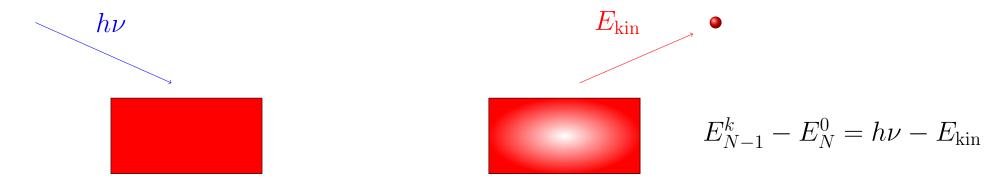
1. Non-degeneracy of the N-particle ground state

$$E_N^0$$
 is a simple eigenvalue of H_N , $H_N\Psi_N^0=E_N^0\Psi_N^0$, $\|\Psi_N^0\|=1$.

2. Stability of the N-particle system

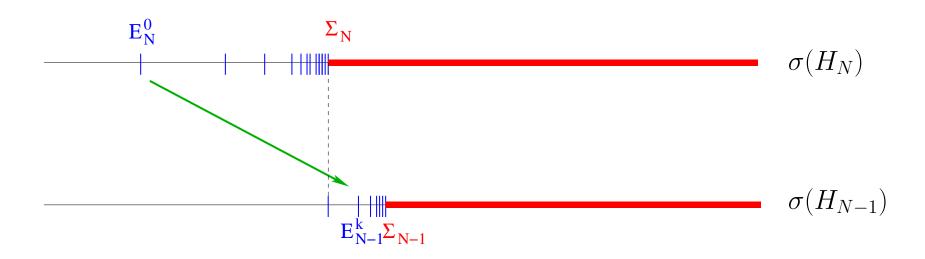
$$2E_N^0 < E_{N+1}^0 + E_{N-1}^0.$$

Photoemission spectroscopy (PES)

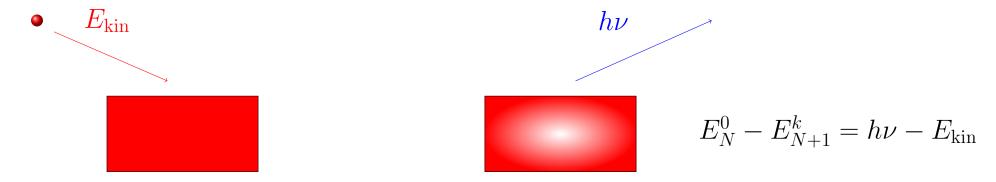


System with N electrons

System with N-1 electrons



Inverse photoemission spectroscopy (IPES)



System with N electrons

System with N+1 electrons

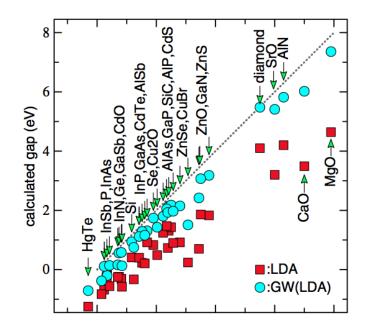
Goal: compute the excitation energies $E^k_{N+1}-E^0_N$ and $E^k_{N-1}-E^0_N$

- Wavefunction methods: scales from N_b^6 (CISD) to $N_b!$ (full CI).
- Time-dependent density functional theory (TDDFT): lots of problems (especially for extended systems).

Goal: compute the excitation energies $E_{N+1}^k - E_N^0$ and $E_{N-1}^k - E_N^0$

- Wavefunction methods: scales from N_b^6 (CISD) to $N_b!$ (full CI).
- Time-dependent density functional theory (TDDFT): lots of problems (especially for extended systems).
- GW: decent to very good results (especially for extended systems).

Electronic excitations for perfect crystals $(N \to +\infty)$



Electronic ground state density

$$\rho_N^0(\mathbf{r}) = N \int_{\mathbb{R}^{3(N-1)}} |\Psi_N^0(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)|^2 d\mathbf{r}_2 \cdots d\mathbf{r}_N$$

One-body electronic ground state density matrix

$$\gamma_N^0(\mathbf{r}, \mathbf{r}') = N \int_{\mathbb{R}^{3(N-1)}} \Psi_N^0(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N) \, \Psi_N^0(\mathbf{r}', \mathbf{r}_2, \cdots, \mathbf{r}_N) \, d\mathbf{r}_2 \cdots d\mathbf{r}_N$$

One-body Green's function

$$G(\mathbf{r}, \mathbf{r}', t - t') = -i \langle \Psi_0^N | T(\Psi_H(\mathbf{r}, t) \Psi_H^{\dagger}(\mathbf{r}', t')) | \Psi_0^N \rangle$$

Electronic ground state density

$$\rho_N^0(\mathbf{r}) = N \int_{\mathbb{R}^{3(N-1)}} |\Psi_N^0(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)|^2 d\mathbf{r}_2 \cdots d\mathbf{r}_N$$

One-body electronic ground state density matrix

$$\gamma_N^0(\mathbf{r}, \mathbf{r}') = N \int_{\mathbb{R}^{3(N-1)}} \Psi_N^0(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N) \, \Psi_N^0(\mathbf{r}', \mathbf{r}_2, \cdots, \mathbf{r}_N) \, d\mathbf{r}_2 \cdots d\mathbf{r}_N$$

One-body Green's function

$$G(\mathbf{r}, \mathbf{r}', t - t') = -i \langle \Psi_0^N | T(\Psi_H(\mathbf{r}, t) \Psi_H^{\dagger}(\mathbf{r}', t')) | \Psi_0^N \rangle$$

No concept of wavefunction for infinite systems (such as perfect crystals)

Electronic ground state density

$$\rho_N^0(\mathbf{r}) = N \int_{\mathbb{R}^{3(N-1)}} |\Psi_N^0(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N)|^2 d\mathbf{r}_2 \cdots d\mathbf{r}_N$$

One-body electronic ground state density matrix

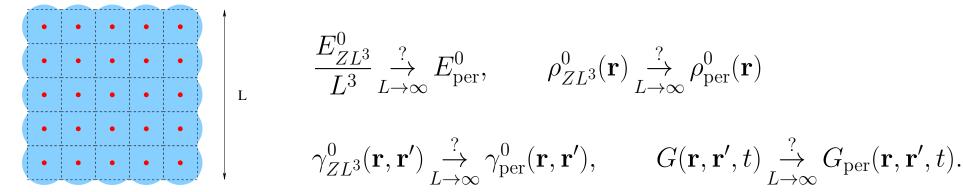
$$\gamma_N^0(\mathbf{r}, \mathbf{r}') = N \int_{\mathbb{R}^{3(N-1)}} \Psi_N^0(\mathbf{r}, \mathbf{r}_2, \cdots, \mathbf{r}_N) \, \Psi_N^0(\mathbf{r}', \mathbf{r}_2, \cdots, \mathbf{r}_N) \, d\mathbf{r}_2 \cdots d\mathbf{r}_N$$

One-body Green's function

$$G(\mathbf{r}, \mathbf{r}', t - t') = -i \langle \Psi_0^N | T(\Psi_H(\mathbf{r}, t) \Psi_H^{\dagger}(\mathbf{r}', t')) | \Psi_0^N \rangle$$

No concept of wavefunction for infinite systems (such as perfect crystals)

Thermodynamic limit problem (for periodic crystals):



3 - One-body Green's function and self-energy

Let X be a Banach space (typically $X = \mathcal{B}(\mathcal{H}_1)$).

Fourier transform: let $f \in L^1(\mathbb{R}_t, X)$

$$\forall \omega \in \mathbb{R}, \quad [\mathcal{F}f](\omega) = \widehat{f}(\omega) = \int_{-\infty}^{+\infty} f(t) \ e^{i\omega t} \ dt.$$

3 - One-body Green's function and self-energy

Let X be a Banach space (typically $X = \mathcal{B}(\mathcal{H}_1)$).

Fourier transform: let $f \in L^1(\mathbb{R}_t, X)$

$$\forall \omega \in \mathbb{R}, \quad [\mathcal{F}f](\omega) = \widehat{f}(\omega) = \int_{-\infty}^{+\infty} f(t) \ e^{i\omega t} \ dt.$$

Laplace transform of causal functions: let $f \in L^{\infty}(\mathbb{R}_t, X)$ s.t. f(t) = 0 for t < 0

$$\forall z \in \mathbb{U} = \{z \in \mathbb{C} \mid \Im(z) > 0\}, \quad [\mathcal{L}f](z) = \int_{-\infty}^{+\infty} f(t) \ e^{izt} \ dt = \int_{0}^{+\infty} f(t) \ e^{izt} \ dt.$$

3 - One-body Green's function and self-energy

Let X be a Banach space (typically $X = \mathcal{B}(\mathcal{H}_1)$).

Fourier transform: let $f \in L^1(\mathbb{R}_t, X)$

$$\forall \omega \in \mathbb{R}, \quad [\mathcal{F}f](\omega) = \widehat{f}(\omega) = \int_{-\infty}^{+\infty} f(t) \ e^{i\omega t} \ dt.$$

Laplace transform of causal functions: let $f \in L^{\infty}(\mathbb{R}_t, X)$ s.t. f(t) = 0 for t < 0

$$\forall z \in \mathbb{U} = \{z \in \mathbb{C} \mid \Im(z) > 0\}, \quad [\mathcal{L}f](z) = \int_{-\infty}^{+\infty} f(t) \ e^{izt} \ dt = \int_{0}^{+\infty} f(t) \ e^{izt} \ dt.$$

Laplace transform of anti-causal functions: let $f \in L^{\infty}(\mathbb{R}_t, X)$ s.t. f(t) = 0 for t > 0

$$\forall z \in = \{z \in \mathbb{C} \mid \Im(z) < 0\}, \quad [\mathcal{L}f](z) = \int_{-\infty}^{+\infty} f(t) \ e^{izt} \ dt = \int_{-\infty}^{0} f(t) \ e^{izt} \ dt.$$

3 - One-body Green's function and self-energy

Let X be a Banach space (typically $X = \mathcal{B}(\mathcal{H}_1)$).

Fourier transform: let $f \in L^1(\mathbb{R}_t, X)$

$$\forall \omega \in \mathbb{R}, \quad [\mathcal{F}f](\omega) = \widehat{f}(\omega) = \int_{-\infty}^{+\infty} f(t) \ e^{i\omega t} \ dt.$$

Laplace transform of causal functions: let $f \in L^{\infty}(\mathbb{R}_t, X)$ s.t. f(t) = 0 for t < 0

$$\forall z \in \mathbb{U} = \{z \in \mathbb{C} \mid \Im(z) > 0\}, \quad [\mathcal{L}f](z) = \int_{-\infty}^{+\infty} f(t) \ e^{izt} \ dt = \int_{0}^{+\infty} f(t) \ e^{izt} \ dt.$$

Laplace transform of anti-causal functions: let $f \in L^{\infty}(\mathbb{R}_t, X)$ s.t. f(t) = 0 for t > 0

$$\forall z \in = \{z \in \mathbb{C} \mid \Im(z) < 0\}, \quad [\mathcal{L}f](z) = \int_{-\infty}^{+\infty} f(t) \ e^{izt} \ dt = \int_{-\infty}^{0} f(t) \ e^{izt} \ dt.$$

The Fourier and Laplace transforms can be extended to some distribution spaces. (extension of the Fourier transform to the space of tempered distributions).

Second quantization formalism (for fermions)

• Fock space

$$\mathbb{F} := \bigoplus_{N=0}^{+\infty} \mathcal{H}_N, \qquad \mathcal{H}_0 = \mathbb{C}, \qquad \mathcal{H}_1 = L^2(\mathbb{R}^3, \mathbb{C}), \qquad \mathcal{H}_N = \bigwedge^N \mathcal{H}_1.$$

• Creation and annihilation operators

$$a \in \mathcal{A}(\mathcal{H}_1, \mathcal{B}(\mathbb{F})), \qquad a^{\dagger} \in \mathcal{B}(\mathcal{H}_1, \mathcal{B}(\mathbb{F})), \qquad ||a(\phi)|| = ||a(\phi)^{\dagger}|| = ||\phi||,$$

$$\forall \phi \in \mathcal{H}_1, \quad a(\phi)|_{\mathcal{H}_N} : \mathcal{H}_N \to \mathcal{H}_{N-1}, \quad a^{\dagger}(\phi)_{\mathcal{H}_N} : \mathcal{H}_N \to \mathcal{H}_{N+1}, \quad a^{\dagger}(\phi) = (a(\phi))^*,$$

$$\forall \Psi_N \in \mathcal{H}_N, \qquad (a(\phi)\Psi_N)(\mathbf{r}_1, \cdots, \mathbf{r}_{N-1}) = \sqrt{N} \int_{\mathbb{R}^3} \overline{\phi(\mathbf{r})} \, \Psi_N(\mathbf{r}, \mathbf{r}_1, \cdots, \mathbf{r}_{N-1}) \, d\mathbf{r}.$$

Canonical commutation relations (CCR)

$$\forall \phi, \psi \in \mathcal{H}_1, \quad a(\phi)a(\psi)^{\dagger} + a(\psi)^{\dagger}a(\phi) = \langle \phi | \psi \rangle \operatorname{Id}_{\mathbb{F}}.$$

Particle Green's function

• Time representation: $G_p \in L^{\infty}(\mathbb{R}_t, \mathcal{B}(\mathcal{H}_1))$ defined by

$$\forall t \in \mathbb{R}, \quad \forall (f,g) \in \mathcal{H}_1 \times \mathcal{H}_1, \quad \langle g|G_p(t)|f\rangle = -i\Theta(t)\langle \Psi_0^N|a(g)e^{-it(H_{N+1}-E_0^N)}a^{\dagger}(f)|\Psi_0^N\rangle.$$

System with N+1 electrons

System with N electrons

Particle Green's function

• Time representation: $G_p \in L^{\infty}(\mathbb{R}_t, \mathcal{B}(\mathcal{H}_1))$ defined by

$$\forall t \in \mathbb{R}, \quad \forall (f,g) \in \mathcal{H}_1 \times \mathcal{H}_1, \quad \langle g|G_p(t)|f\rangle = -i\Theta(t)\langle \Psi_0^N|a(g)e^{-it(H_{N+1}-E_0^N)}a^{\dagger}(f)|\Psi_0^N\rangle.$$

• Frequency representation (Fourier transform)

$$\widehat{G}_{p}(\omega) = (\mathcal{F}G_{p})(\omega), \qquad \widehat{G}_{p} \in H^{-1}(\mathbb{R}_{\omega}, \mathcal{B}(\mathcal{H}_{1})).$$

Particle Green's function

• Time representation: $G_p \in L^{\infty}(\mathbb{R}_t, \mathcal{B}(\mathcal{H}_1))$ defined by

$$\forall t \in \mathbb{R}, \quad \forall (f,g) \in \mathcal{H}_1 \times \mathcal{H}_1, \quad \langle g|G_p(t)|f\rangle = -i\Theta(t)\langle \Psi_0^N|a(g)e^{-it(H_{N+1}-E_0^N)}a^{\dagger}(f)|\Psi_0^N\rangle.$$

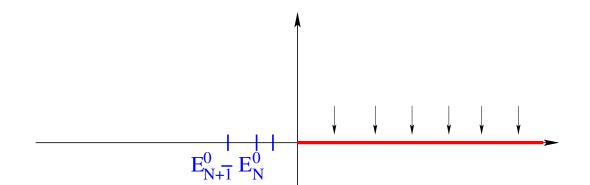
• Frequency representation (Fourier transform)

$$\widehat{G}_{\mathbf{p}}(\omega) = (\mathcal{F}G_{\mathbf{p}})(\omega), \qquad \widehat{G}_{\mathbf{p}} \in H^{-1}(\mathbb{R}_{\omega}, \mathcal{B}(\mathcal{H}_1)).$$

• Complex plane representation (analytic continuation of the Laplace transform)

$$\widetilde{G}_{\mathrm{p}}(z) = A_{+}(z - (H_{N+1} - E_{N}^{0}))^{-1}A_{+}^{*}$$
 where $A_{+}^{*}: \mathcal{H}_{1} \to \mathcal{H}_{N+1}$ $f \mapsto a^{\dagger}(f)|\Psi_{N}^{0}\rangle$

The singularities of $z\mapsto \widetilde{G}_{\mathrm{p}}(z)$ are contained in $\sigma(H_{N+1}-E_N^0)$.



Hole Green's function

• Time representation: $G_h \in L^{\infty}(\mathbb{R}_t, \mathcal{B}(\mathcal{H}_1))$ defined by

$$\forall t \in \mathbb{R}, \quad \forall (f,g) \in \mathcal{H}_1 \times \mathcal{H}_1, \quad \langle g|G_{\mathbf{h}}(t)|f\rangle = i\Theta(-t)\langle \Psi_0^N|a^{\dagger}(\overline{g})e^{it(H_{N-1}-E_0^N)}a(\overline{f})|\Psi_0^N\rangle.$$



System with N electrons

System with N-1 electrons

Hole Green's function

• Time representation: $G_h \in L^{\infty}(\mathbb{R}_t, \mathcal{B}(\mathcal{H}_1))$ defined by

$$\forall t \in \mathbb{R}, \quad \forall (f,g) \in \mathcal{H}_1 \times \mathcal{H}_1, \quad \langle g|G_{\mathbf{h}}(t)|f\rangle = i\Theta(-t)\langle \Psi_0^N|a^{\dagger}(\overline{g})e^{it(H_{N-1}-E_0^N)}a(\overline{f})|\Psi_0^N\rangle.$$

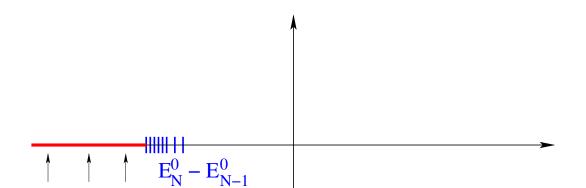
• Frequency representation (Fourier transform)

$$\widehat{G}_{\mathrm{h}}(\omega) = (\mathcal{F}G_{\mathrm{h}})(\omega), \qquad \widehat{G}_{\mathrm{h}} \in H^{-1}(\mathbb{R}_{\omega}, \mathcal{B}(\mathcal{H}_1)).$$

• Complex plane representation (analytic continuation of the Laplace transform)

$$\widetilde{G}_{
m h}(z) = A_{-}^{*}(z - (E_{N}^{0} - H_{N-1}))^{-1}A_{-}$$
 where $A_{-}^{*}: \mathcal{H}_{1} \to \mathcal{H}_{N-1} \atop f \mapsto a(\overline{f})|\Psi_{N}^{0}\rangle$

The singularities of $z\mapsto \widetilde{G}_{\rm h}(z)$ are contained in $\sigma(E_N^0-H_{N-1})$.



ullet Spectral functions (operator-valued measures on \mathbb{R}_{ω})

$$\forall b \in \mathscr{B}(\mathbb{R}_{\omega}), \quad \mathcal{A}_{p}(b) = -\pi^{-1} \Im \widehat{G}_{p}(b)$$
$$\mathcal{A}_{h}(b) = +\pi^{-1} \Im \widehat{G}_{h}(b)$$
$$\mathcal{A}(b) = \mathcal{A}_{p}(b) + \mathcal{A}_{h}(b)$$

ullet Spectral functions (operator-valued measures on \mathbb{R}_{ω})

$$\forall b \in \mathscr{B}(\mathbb{R}_{\omega}), \quad \mathcal{A}_{p}(b) = -\pi^{-1} \Im \widehat{G}_{p}(b) = A_{+} \mathbb{1}_{b} (H_{N+1} - E_{N}^{0}) A_{+}^{*} \ge 0,$$

$$\mathcal{A}_{h}(b) = +\pi^{-1} \Im \widehat{G}_{h}(b) = A_{-}^{*} \mathbb{1}_{b} (E_{N}^{0} - H_{N-1}) A_{-} \ge 0,$$

$$\mathcal{A}(b) = \mathcal{A}_{p}(b) + \mathcal{A}_{h}(b) \ge 0.$$

ullet Spectral functions (operator-valued measures on \mathbb{R}_{ω})

$$\forall b \in \mathscr{B}(\mathbb{R}_{\omega}), \quad \mathcal{A}_{p}(b) = -\pi^{-1} \Im \widehat{G}_{p}(b) = A_{+} \mathbb{1}_{b} (H_{N+1} - E_{N}^{0}) A_{+}^{*} \ge 0,$$

$$\mathcal{A}_{h}(b) = +\pi^{-1} \Im \widehat{G}_{h}(b) = A_{-}^{*} \mathbb{1}_{b} (E_{N}^{0} - H_{N-1}) A_{-} \ge 0,$$

$$\mathcal{A}(b) = \mathcal{A}_{p}(b) + \mathcal{A}_{h}(b) \ge 0.$$

$$|\operatorname{Supp}(\mathcal{A}_{\mathrm{h}}) \subset \sigma(E_N^0 - H_{N-1}), \qquad \operatorname{Supp}(\mathcal{A}_{\mathrm{p}}) \subset \sigma(H_{N+1} - E_N^0)|$$

Sum rule:

$$\mathcal{A}_{\mathrm{p}}(\mathbb{R}) = A_{+}A_{+}^{*} = 1 - \gamma_{N}^{0}, \qquad \mathcal{A}_{\mathrm{h}}(\mathbb{R}) = A_{-}^{*}A_{-} = \gamma_{N}^{0}, \qquad \mathcal{A}(\mathbb{R}) = 1.$$

ullet Spectral functions (operator-valued measures on \mathbb{R}_{ω})

$$\forall b \in \mathscr{B}(\mathbb{R}_{\omega}), \quad \mathcal{A}_{p}(b) = -\pi^{-1} \Im \widehat{G}_{p}(b) = A_{+} \mathbb{1}_{b} (H_{N+1} - E_{N}^{0}) A_{+}^{*} \ge 0,$$

$$\mathcal{A}_{h}(b) = +\pi^{-1} \Im \widehat{G}_{h}(b) = A_{-}^{*} \mathbb{1}_{b} (E_{N}^{0} - H_{N-1}) A_{-} \ge 0,$$

$$\mathcal{A}(b) = \mathcal{A}_{p}(b) + \mathcal{A}_{h}(b) \ge 0.$$

$$\operatorname{Supp}(\mathcal{A}_{\mathrm{h}}) \subset \sigma(E_N^0 - H_{N-1}), \qquad \operatorname{Supp}(\mathcal{A}_{\mathrm{p}}) \subset \sigma(H_{N+1} - E_N^0)$$

Sum rule:

$$\mathcal{A}_{p}(\mathbb{R}) = A_{+}A_{+}^{*} = 1 - \gamma_{N}^{0}, \qquad \mathcal{A}_{h}(\mathbb{R}) = A_{-}^{*}A_{-} = \gamma_{N}^{0}, \qquad \mathcal{A}(\mathbb{R}) = 1.$$

 \bullet It holds $\gamma_N^0 = -iG_{
m h}(0^-)$.

ullet Spectral functions (operator-valued measures on \mathbb{R}_{ω})

$$\forall b \in \mathscr{B}(\mathbb{R}_{\omega}), \quad \mathcal{A}_{p}(b) = -\pi^{-1} \Im \widehat{G}_{p}(b) = A_{+} \mathbb{1}_{b} (H_{N+1} - E_{N}^{0}) A_{+}^{*} \ge 0,$$

$$\mathcal{A}_{h}(b) = +\pi^{-1} \Im \widehat{G}_{h}(b) = A_{-}^{*} \mathbb{1}_{b} (E_{N}^{0} - H_{N-1}) A_{-} \ge 0,$$

$$\mathcal{A}(b) = \mathcal{A}_{p}(b) + \mathcal{A}_{h}(b) \ge 0.$$

$$\left| \mathbf{Supp}(\mathcal{A}_{\mathrm{h}}) \subset \sigma(E_N^0 - H_{N-1}), \quad \mathbf{Supp}(\mathcal{A}_{\mathrm{p}}) \subset \sigma(H_{N+1} - E_N^0) \right|$$

Sum rule:

$$\mathcal{A}_{p}(\mathbb{R}) = A_{+}A_{+}^{*} = 1 - \gamma_{N}^{0}, \qquad \mathcal{A}_{h}(\mathbb{R}) = A_{-}^{*}A_{-} = \gamma_{N}^{0}, \qquad \mathcal{A}(\mathbb{R}) = 1.$$

- It holds $\gamma_N^0 = -iG_{\rm h}(0^-)$.
- Galitskii-Migdal formula

$$E_N^0 = \frac{1}{2} \operatorname{Tr}_{\mathcal{H}_1} \left(\left(\frac{d}{d\tau} - i \left(-\frac{1}{2} \Delta + v_{\text{ext}} \right) \right) G_{\text{h}}(\tau) \Big|_{\tau = 0^-} \right).$$

System of non-interacting electrons subjected to an effective potential V

$$H_{0,N} = \sum_{i=1}^{N} \left(-\frac{1}{2} \Delta_{\mathbf{r}_i} + V(\mathbf{r}_i) \right)$$
 on \mathcal{H}_N , $h_1 = -\frac{1}{2} \Delta + V$ on \mathcal{H}_1 .

System of non-interacting electrons subjected to an effective potential V

$$H_{0,N} = \sum_{i=1}^N \left(-\frac{1}{2} \Delta_{\mathbf{r}_i} + V(\mathbf{r}_i) \right)$$
 on \mathcal{H}_N , $h_1 = -\frac{1}{2} \Delta + V$ on \mathcal{H}_1 .

Ground state of non-interacting systems

$$\Phi_N^0 = \phi_1 \wedge \cdots \wedge \phi_N, \qquad \gamma_{0,N}^0 = \mathbb{1}_{]-\infty,\mu_0]}(h_1) = \sum_{i=1}^N |\phi_i\rangle\langle\phi_i|.$$

System of non-interacting electrons subjected to an effective potential V

$$H_{0,N} = \sum_{i=1}^{N} \left(-\frac{1}{2} \Delta_{\mathbf{r}_i} + V(\mathbf{r}_i) \right)$$
 on \mathcal{H}_N , $h_1 = -\frac{1}{2} \Delta + V$ on \mathcal{H}_1 .

Ground state of non-interacting systems

$$\Phi_N^0 = \phi_1 \wedge \cdots \wedge \phi_N, \qquad \gamma_{0,N}^0 = \mathbb{1}_{]-\infty,\mu_0]}(h_1) = \sum_{i=1}^N |\phi_i\rangle\langle\phi_i|.$$

Particle and hole Green's functions

$$\widetilde{G}_{0,p}(z) = (1 - \gamma_{0,N}^0)(z - h_1)^{-1}(1 - \gamma_{0,N}^0), \qquad \widetilde{G}_{0,h}(z) = \gamma_{0,N}^0(z - h_1)^{-1}\gamma_{0,N}^0.$$

System of non-interacting electrons subjected to an effective potential V

$$H_{0,N} = \sum_{i=1}^{N} \left(-\frac{1}{2} \Delta_{\mathbf{r}_i} + V(\mathbf{r}_i) \right)$$
 on \mathcal{H}_N , $h_1 = -\frac{1}{2} \Delta + V$ on \mathcal{H}_1 .

Ground state of non-interacting systems

$$\Phi_N^0 = \phi_1 \wedge \cdots \wedge \phi_N, \qquad \gamma_{0,N}^0 = \mathbb{1}_{]-\infty,\mu_0]}(h_1) = \sum_{i=1}^N |\phi_i\rangle\langle\phi_i|.$$

Particle and hole Green's functions

$$\widetilde{G}_{0,p}(z) = (1 - \gamma_{0,N}^0)(z - h_1)^{-1}(1 - \gamma_{0,N}^0), \qquad \widetilde{G}_{0,h}(z) = \gamma_{0,N}^0(z - h_1)^{-1}\gamma_{0,N}^0.$$

Time-ordered Green's function for interacting and non-interacting systems

$$G = G_{\rm p} + G_{\rm h}, \qquad G_0 = G_{0,\rm p} + G_{0,\rm h}$$

System of non-interacting electrons subjected to an effective potential V

$$H_{0,N} = \sum_{i=1}^{N} \left(-\frac{1}{2} \Delta_{\mathbf{r}_i} + V(\mathbf{r}_i) \right)$$
 on \mathcal{H}_N , $h_1 = -\frac{1}{2} \Delta + V$ on \mathcal{H}_1 .

Ground state of non-interacting systems

$$\Phi_N^0 = \phi_1 \wedge \cdots \wedge \phi_N, \qquad \gamma_{0,N}^0 = \mathbb{1}_{]-\infty,\mu_0]}(h_1) = \sum_{i=1}^N |\phi_i\rangle\langle\phi_i|.$$

Particle and hole Green's functions

$$\widetilde{G}_{0,p}(z) = (1 - \gamma_{0,N}^0)(z - h_1)^{-1}(1 - \gamma_{0,N}^0), \qquad \widetilde{G}_{0,h}(z) = \gamma_{0,N}^0(z - h_1)^{-1}\gamma_{0,N}^0,$$

Time-ordered Green's function for interacting and non-interacting systems

$$G=G_{\mathrm{p}}+G_{\mathrm{h}}, \qquad G_{0}=G_{0,\mathrm{p}}+G_{0,\mathrm{h}} \qquad \Rightarrow \qquad \widetilde{G}_{0}(z)=(z-h_{1})^{-1}$$
 (resolvent of h_{1} at z)

Non-interacting systems: $\widetilde{G}_0(z)=(z-h_1)^{-1}$ Interacting systems: $\widetilde{G}(z)=(z-\widetilde{H}(z))^{-1},\quad \widetilde{H}(z):$ dynamical Hamiltonian

Non-interacting systems: $\widetilde{G}_0(z) = (z - h_1)^{-1}$

Proposition. Let $z \in \mathbb{C} \setminus \mathbb{R}$. The dynamical Hamiltonian is a well-defined closed unbounded operator on \mathcal{H}_1 with dense domain $\widetilde{D}(z) \subset H^2(\mathbb{R}^3)$.

Non-interacting systems: $\widetilde{G}_0(z) = (z - h_1)^{-1}$

Proposition. Let $z \in \mathbb{C} \setminus \mathbb{R}$. The dynamical Hamiltonian is a well-defined closed unbounded operator on \mathcal{H}_1 with dense domain $\widetilde{D}(z) \subset H^2(\mathbb{R}^3)$.

Self-energy operator

$$\forall z \in \mathbb{C} \backslash \mathbb{R}, \quad \widetilde{\Sigma}(z) := (\widetilde{G}_0(z))^{-1} - (\widetilde{G}(z))^{-1}$$

Non-interacting systems: $\widetilde{G}_0(z) = (z - h_1)^{-1}$

Proposition. Let $z \in \mathbb{C} \setminus \mathbb{R}$. The dynamical Hamiltonian is a well-defined closed unbounded operator on \mathcal{H}_1 with dense domain $\widetilde{D}(z) \subset H^2(\mathbb{R}^3)$.

Self-energy operator

$$\forall z \in \mathbb{C} \backslash \mathbb{R}, \quad \widetilde{\Sigma}(z) := (\widetilde{G}_0(z))^{-1} - (\widetilde{G}(z))^{-1} \quad \Leftrightarrow \quad \widetilde{G}(z) = \widetilde{G}_0(z) + \widetilde{G}_0(z) \widetilde{\Sigma}(z) \widetilde{G}(z).$$
(Dyson equation)

Non-interacting systems: $\widetilde{G}_0(z) = (z - h_1)^{-1}$

Proposition. Let $z \in \mathbb{C} \setminus \mathbb{R}$. The dynamical Hamiltonian is a well-defined closed unbounded operator on \mathcal{H}_1 with dense domain $\widetilde{D}(z) \subset H^2(\mathbb{R}^3)$.

Self-energy operator

$$\forall z \in \mathbb{C} \backslash \mathbb{R}, \quad \widetilde{\Sigma}(z) := (\widetilde{G}_0(z))^{-1} - (\widetilde{G}(z))^{-1} \quad \Leftrightarrow \quad \widetilde{H}(z) = h_1 + \widetilde{\Sigma}(z).$$

Non-interacting systems: $\widetilde{G}_0(z) = (z - h_1)^{-1}$

Proposition. Let $z \in \mathbb{C} \setminus \mathbb{R}$. The dynamical Hamiltonian is a well-defined closed unbounded operator on \mathcal{H}_1 with dense domain $\widetilde{D}(z) \subset H^2(\mathbb{R}^3)$.

Self-energy operator

$$\forall z \in \mathbb{C} \backslash \mathbb{R}, \quad \widetilde{\Sigma}(z) := (\widetilde{G}_0(z))^{-1} - (\widetilde{G}(z))^{-1} \quad \Leftrightarrow \quad \widetilde{H}(z) = h_1 + \widetilde{\Sigma}(z).$$

Road map:

- 1. construct a non-interacting Green's function G_0 (using e.g. the Kohn-Sham LDA Hamiltonian);
- 2. construct an approximation $\widetilde{\Sigma}^{\mathrm{app}}(z)$ of the self-energy operator;
- 3. seek the singularities of $\widetilde{G}^{\mathrm{app}}(z) := (z (h_1 + \widetilde{\Sigma}^{\mathrm{app}}(z)))^{-1}$.

4 - The dynamically screened Coulomb operator \boldsymbol{W}

In the vacuum and neglecting relativistic effects, the electrostatic potential created by a time-dependent charge distribution ρ at point r and time t is

$$[V\rho](\mathbf{r},t) = \int_{\mathbb{R}^3} \frac{1}{|\mathbf{r} - \mathbf{r}'|} \rho(\mathbf{r}',t) d\mathbf{r}'$$

$$V(\tau) = v_{\rm c}\delta_0(\tau), \qquad \widehat{v_{\rm c}\rho}(\mathbf{k}) = \frac{4\pi}{|\mathbf{k}|^2}\widehat{\rho}(\mathbf{k}).$$

In the vacuum and neglecting relativistic effects, the electrostatic potential created by a time-dependent charge distribution ρ at point r and time t is

$$[V\rho](\mathbf{r},t) = \int_{\mathbb{R}^3} \frac{1}{|\mathbf{r} - \mathbf{r}'|} \rho(\mathbf{r}',t) d\mathbf{r}'$$

$$V(\tau) = v_{\rm c}\delta_0(\tau), \qquad \widehat{v_{\rm c}\rho}(\mathbf{k}) = \frac{4\pi}{|\mathbf{k}|^2}\widehat{\rho}(\mathbf{k}).$$

Screening: in the presence of the molecular system, the perturbation of the electrostatic potential created at point r and time t by a time-dependent external charge distribution $\delta \rho$, is given, in the linear response regime, by

$$\delta V(\mathbf{r}, t) = \int_{-\infty}^{t} W_{+}(\mathbf{r}, \mathbf{r}', t - t') \, \delta \rho(\mathbf{r}', t') \, dt'.$$

In the vacuum and neglecting relativistic effects, the electrostatic potential created by a time-dependent charge distribution ρ at point r and time t is

$$[V\rho](\mathbf{r},t) = \int_{\mathbb{R}^3} \frac{1}{|\mathbf{r} - \mathbf{r}'|} \rho(\mathbf{r}',t) d\mathbf{r}'$$

$$V(\tau) = v_{\rm c}\delta_0(\tau), \qquad \widehat{v_{\rm c}\rho}(\mathbf{k}) = \frac{4\pi}{|\mathbf{k}|^2}\widehat{\rho}(\mathbf{k}).$$

Screening: in the presence of the molecular system, the perturbation of the electrostatic potential created at point r and time t by a time-dependent external charge distribution $\delta \rho$, is given, in the linear response regime, by

$$\delta V(\mathbf{r}, t) = \int_{-\infty}^{t} W_{+}(\mathbf{r}, \mathbf{r}', t - t') \, \delta \rho(\mathbf{r}', t') \, dt'.$$

The dynamically screened Coulomb operator is defined by

$$\forall \tau \in \mathbb{R}, \quad W(\tau) = \Theta(\tau)W_{+}(\tau) + \Theta(-\tau)W_{+}(-\tau) = v_{\mathrm{c}}^{1/2}(\delta(\tau) - \chi_{\mathrm{sym}}(\tau))v_{\mathrm{c}}^{1/2}.$$

In the vacuum and neglecting relativistic effects, the electrostatic potential created by a time-dependent charge distribution ρ at point r and time t is

$$[V\rho](\mathbf{r},t) = \int_{\mathbb{R}^3} \frac{1}{|\mathbf{r} - \mathbf{r}'|} \rho(\mathbf{r}',t) d\mathbf{r}'$$

$$V(\tau) = v_{\rm c}\delta_0(\tau), \qquad \widehat{v_{\rm c}\rho}(\mathbf{k}) = \frac{4\pi}{|\mathbf{k}|^2}\widehat{\rho}(\mathbf{k}).$$

Screening: in the presence of the molecular system, the perturbation of the electrostatic potential created at point r and time t by a time-dependent external charge distribution $\delta \rho$, is given, in the linear response regime, by

$$\delta V(\mathbf{r}, t) = \int_{-\infty}^{t} W_{+}(\mathbf{r}, \mathbf{r}', t - t') \, \delta \rho(\mathbf{r}', t') \, dt'.$$

The dynamically screened Coulomb operator is defined by

$$\forall \tau \in \mathbb{R}, \quad W(\tau) = \Theta(\tau)W_{+}(\tau) + \Theta(-\tau)W_{+}(-\tau) = v_{\rm c}^{1/2}(\delta(\tau) - \chi_{\rm sym}(\tau))v_{\rm c}^{1/2}.$$

$$\in L^{\infty}(\mathbb{R}, \mathcal{B}(L^{2}(\mathbb{R}^{3})))$$

5 - Hedin's equations and the GW approximation

5 - Hedin's equations and the GW approximation

Notation

ullet Kernel of a space-time operator A

$$A((\mathbf{r}_1, t_1), (\mathbf{r}_2, t_2)) \longleftrightarrow A(12)$$

ullet If A is a time-translation invariant space-time operator

$$A(12^+) = A((\mathbf{r}_1, t_1), (\mathbf{r}_2, t_2^+)) = \lim_{t \to t_2^+} A((\mathbf{r}_1, t_1), (\mathbf{r}_2, t)) = [A((t_1 - t_2)^-)](\mathbf{r}_1, \mathbf{r}_2).$$

Hedin's equations (Hedin '65)

• Dyson equation

$$G(12) = G_0(12) + \int d(34)G_0(13)\Sigma(34)G(42)$$

• Self-energy

$$\Sigma(12) = i \int d(34)G(13)W(41^{+})\Gamma(32;4)$$

• Screened interaction

$$W(12) = v_{c}(12) + \int d(34)v_{c}(13)P(34)W(42)$$

• Irreducible polarization

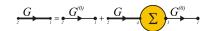
$$P(12) = -i \int d(34)G(13)G(41^{+})\Gamma(34; 2)$$

Vertex function

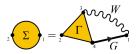
$$\Gamma(12;3) = \delta(12)\delta(13) + \int d(4567) \frac{\delta\Sigma(12)}{\delta G(45)} G(46)G(75)\Gamma(67;3)$$

The Hedin-Lundqvist Equations

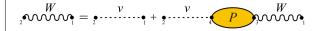
The Dyson eq.: $G(12) = G^{(0)}(12) + \int d(34) G^{(0)}(13) \Sigma(34) G(42)$ [H I]



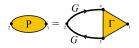
Self-energy: $\Sigma(12) = i \int d(34) W(1^{+}3) G(14) \Gamma(42;3)$ [H II]



Screened interaction: $W(12) = v(12) + \int d(34) W(13) P(34) v(42)$ [H III]



Irred. Polarisation: $P(12) = -i \int d(34) G(23) G(42) \Gamma(34;1)$ [H IV]



Vertex function: $\Gamma(12; 3) = \delta(12) \delta(13) + \int d(4567) \frac{\delta \Sigma(12)}{\delta G(45)} G(46) G(75) \Gamma(67; 3)$ [H V]

GW approximation (Hedin '65)

• Dyson equation

$$G(12) = G_0(12) + \int d(34)G_0(13)\Sigma(34)G(42)$$

• Self-energy

$$\Sigma(12) = i \int d(34)G(13)W(41^{+})\Gamma(32;4)$$

Screened interaction

$$W(12) = v_{c}(12) + \int d(34)v_{c}(13)P(34)W(42)$$

• Irreducible polarization

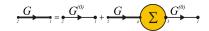
$$P(12) = -i \int d(34)G(13)G(41^{+})\Gamma(34; 2)$$

Vertex function

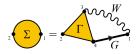
$$\Gamma(12;3) = \delta(12)\delta(13) + \int d(4567) \frac{\delta\Sigma(12)}{\delta G(45)} G(46)G(75)\Gamma(67;3)$$

The Hedin-Lundqvist Equations

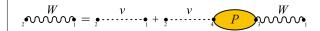
The Dyson eq.: $G(12) = G^{(0)}(12) + \int d(34) G^{(0)}(13) \Sigma(34) G(42)$ [H I]



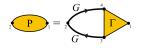
Self-energy: $\Sigma(12) = i \int d(34) W(1^{+}3) G(14) \Gamma(42;3)$ [H II]



Screened interaction: $W(12) = v(12) + \int d(34) W(13) P(34) v(42)$ [H III]



Irred. Polarisation: $P(12) = -i \int d(34) G(23) G(42) \Gamma(34;1)$ [H IV]



Vertex function: $\Gamma(12; 3) = \delta(12) \delta(13) + \int d(4567) \frac{\delta \Sigma(12)}{\delta G(45)} G(46) G(75) \Gamma(67; 3)$ [H V]

GW equations (Hedin '65)

Dyson equation

$$G^{\text{app}}(12) = G_0(12) + \int d(34)G_0(13)\Sigma^{\text{app}}(34)G^{\text{app}}(42)$$

• Self-energy

$$\Sigma^{\text{app}}(12) = iG^{\text{app}}(12)W^{\text{app}}(21^+)$$

• Screened interaction

$$W^{\rm app}(12) = v_{\rm c}(12) + \int d(34)v_{\rm c}(13)P^{\rm app}(34)W^{\rm app}(42)$$

• Irreducible polarization

$$P^{\text{app}}(12) = -iG^{\text{app}}(12)G^{\text{app}}(21)$$

GW equations in a mixed time-frequency representation

• Dyson equation

$$\widehat{G}^{\mathrm{app}}(\omega) = \widehat{G}_0(\omega) + \widehat{G}_0(\omega)\widehat{\Sigma}^{\mathrm{app}}(\omega)\widehat{G}^{\mathrm{app}}(\omega)$$

• Self-energy

$$\Sigma^{\rm app}(\tau) = iG^{\rm app}(0^{-}) \odot v_{\rm c}\delta_0(\tau) + G^{\rm app}(\tau) \odot W_{\rm c}^{\rm app}(-\tau)$$

• Screened interaction

$$\widehat{W}_{c}^{app}(\omega) = \left[\left(1 - v_{c} \widehat{P}^{app}(\omega) \right)^{-1} - 1 \right] v_{c}$$

• Irreducible polarization

$$P^{\rm app}(\tau) = -iG^{\rm app}(\tau) \odot G^{\rm app}(-\tau)$$

Hadamard product of two operators: $(A \odot B)(\mathbf{r}_1, \mathbf{r}_2) = A(\mathbf{r}_1, \mathbf{r}_2)B(\mathbf{r}_2, \mathbf{r}_1).$

GW equations on imaginary axes

• Dyson equation

$$\widetilde{G}^{\text{app}}(\mu + i\omega) = \widetilde{G}_0(\mu + i\omega) + \widetilde{G}_0(\mu + i\omega)\widetilde{\Sigma}^{\text{app}}(\mu + i\omega)\widetilde{G}^{\text{app}}(\mu + i\omega)$$

Self-energy

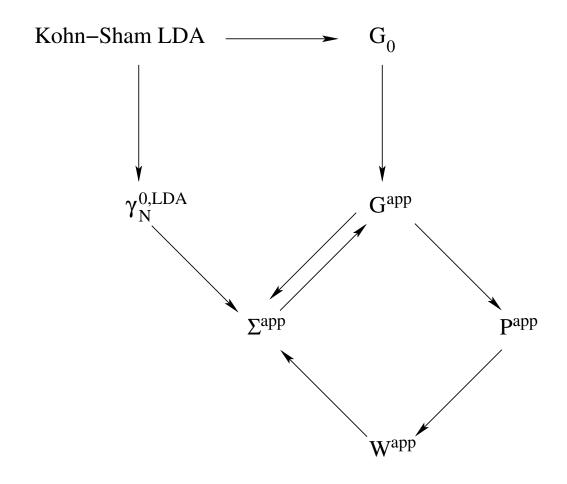
$$\widetilde{\Sigma}^{\mathrm{app}}(\mu + i\omega) = -\gamma_N^{0,\mathrm{LDA}} \odot v_{\mathrm{c}} - \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widetilde{G}^{\mathrm{app}}(\mu + i(\omega - \omega')) \odot \widetilde{W}_{\mathrm{c}}^{\mathrm{app}}(i\omega') d\omega'$$

• Screened interaction

$$\widetilde{W}_{\rm c}^{\rm app}(i\omega) = \left[\left(1 - v_{\rm c} \widetilde{P}^{\rm app}(i\omega) \right)^{-1} - 1 \right] v_{\rm c}$$

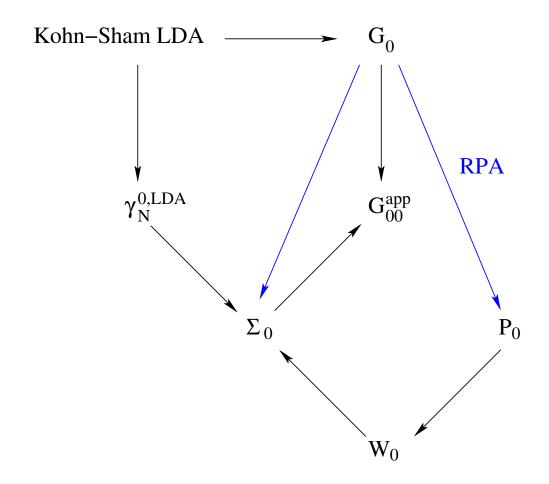
• Irreducible polarization

GW flowchart



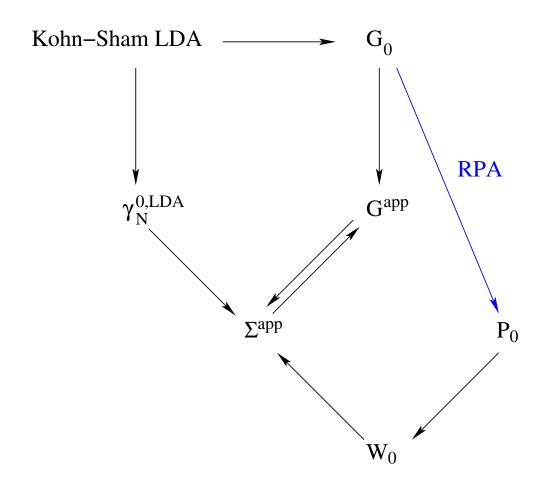
The existence of a solution to these equations is an open problem.

G_0W_0 method

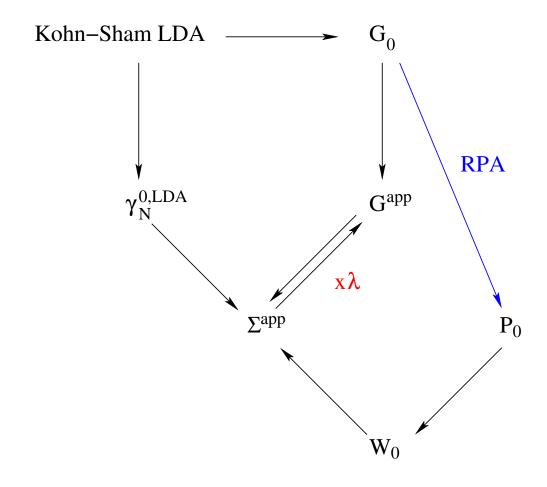


Theorem (EC, Gontier, Stoltz '15). The G_0W_0 method is well defined.

Self-consistent GW_0 method



Self-consistent GW₀ method



Theorem (EC, Gontier, Stoltz '15). The self-consistent GW_0 method is well defined in the perturbative regime (λ small enough).

Summary of the current mathematical results

EC, D. Gontier and G. Stoltz, A mathematical analysis of the GW method for computing electronic excited state energies of molecules, arXiv 1506.01737.

- The fundamental objects (G, G_0, Σ, P, W) involved in the GW formalism are mathematically well-defined.
- Some of their properties (sum rules, signs, Galitskii-Migdal formula) have been rigorously established.
- The G_0W_0 version of the GW approach is well defined.
- \bullet The self-consistent GW $_0$ method is well-defined in the perturbation regime.

Work in progress

- Analysis of the partially self-consistent GW method (self-consistency on the eigenvalues only).
- Analysis of the fully self-consistent GW method.
- Infinite systems (periodic crystals, disordered materials).
- Numerical algorithms.

A1 - Fourier transform

Definition (Schwartz space). A function $\phi: \mathbb{R} \to \mathbb{C}$ of class C^{∞} is called rapidly decreasing if for all $p \in \mathbb{N}$,

$$\mathcal{N}_p(\phi) := \max_{0 \le k \le p} \max_{0 \le l \le p} \sup_{t \in \mathbb{R}} \left| t^k \frac{d^l \phi}{dt^l}(t) \right| < \infty.$$

The vector space of all C^{∞} rapidly decreasing functions from $\mathbb R$ to $\mathbb C$ is denoted by $\mathcal S(\mathbb R)$ and is called the Schwartz space.

Gaussian functions and gaussian-polynomial functions are in $\mathcal{S}(\mathbb{R})$.

Definition (convergence in $\mathcal{S}(\mathbb{R})$). A sequence $(\phi_n)_{n\in\mathbb{N}}$ of functions of $\mathcal{S}(\mathbb{R})$ converges in $\mathcal{S}(\mathbb{R})$ to $\phi \in \mathcal{S}(\mathbb{R})$ if

$$\forall p \in \mathbb{N}, \quad \mathcal{N}_p(\phi_n - \phi) \underset{n \to +\infty}{\longrightarrow} 0.$$

Definition (Fourier transform in $\mathcal{S}(\mathbb{R})$). The Fourier transform of a function $\phi \in \mathcal{S}(\mathbb{R})$ is the function denoted by $\widehat{\phi}$ or $\mathcal{F}\phi$ and defined by

$$\forall \omega \in \mathbb{R}, \quad \widehat{\phi}(\omega) = \mathcal{F}\phi(\omega) := \int_{-\infty}^{+\infty} \phi(t) \, e^{i\omega t} \, dt.$$

Remark. Other sign and normalization conventions are also commonly used in the physics and mathematical literatures.

Theorem (some properties of $\mathcal{S}(\mathbb{R})$). The Schwartz space $\mathcal{S}(\mathcal{R})$ is stable by

- 1. translation, scaling, complex conjugation;
- 2. derivation and multiplication by polynomials;
- **3. Fourier transform** $(\forall p \in \mathbb{N}, \ \exists C_p \in \mathbb{R}_+ \text{ s.t.} \forall \phi \in \mathcal{S}(\mathbb{R}), \ \mathcal{N}_p(\widehat{\phi}) \leq C_p \ \mathcal{N}_{p+2}(\phi)$ **).**

Besides, the Fourier transform defines a sequentially bicontinuous linear map from $\mathcal{S}(\mathcal{R})$ onto itself, with inverse \mathcal{F}^{-1} defined by

$$\forall \psi \in \mathcal{S}(\mathbb{R}), \quad \forall t \in \mathbb{R}, \quad [\mathcal{F}^{-1}\psi](t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \psi(\omega) \, e^{-i\omega t} \, d\omega.$$

Definition (tempered distributions). We denote by $\mathcal{S}'(\mathbb{R})$ the vector space of the linear forms $u: \mathcal{S}(\mathbb{R}) \to \mathbb{C}$ satisfying the following continuity property: there exists $p \in \mathbb{N}$ and $C \in \mathbb{R}_+$ such that

$$\forall \phi \in \mathcal{S}(\mathbb{R}), \qquad |\langle u, \phi \rangle| \le C \mathcal{N}_p(\phi).$$
 (1)

Theorem (canonical embedding of $L^p(\mathbb{R})$ in $\mathcal{S}'(\mathbb{R})$). Let $1 \leq p \leq +\infty$ and $f \in L^p(\mathbb{R})$. Then, the linear form $u_f : \mathcal{S}(\mathbb{R}) \to \mathbb{C}$ defined by

$$\forall \phi \in \mathcal{S}(\mathbb{R}), \quad \langle u_f, \phi \rangle := \int_{-\infty}^{+\infty} f(t)\phi(t) dt$$

is a tempered distribution, and if f_1 and f_2 are both in $L^p(\mathbb{R})$ and such that $u_{f_1}=u_{f_2}$, then $f_1=f_2$.

We can therefore, with no ambiguity, denote f instead of u_f :

$$f \in L^p(\mathbb{R}) \hookrightarrow \mathcal{S}'(\mathbb{R}) \quad ext{and} \quad orall \phi \in \mathcal{S}(\mathbb{R}), \quad \langle f, \phi
angle := \int_{-\infty}^{+\infty} f(t) \phi(t) \, dt.$$

Definition-Theorem (basic operations on $\mathcal{S}'(\mathbb{R})$)

1. Let $u \in \mathcal{S}'(\mathbb{R})$. The derivative of u is the element of $\mathcal{S}'(\mathbb{R})$ denote by $\frac{du}{dt}$ and defined by

$$\forall \phi \in \mathcal{S}(\mathbb{R}), \quad \langle \frac{du}{dt}, \phi \rangle = -\langle u, \frac{d\phi}{dt} \rangle.$$

2. Let $u \in \mathcal{S}'(\mathbb{R})$ and $p : \mathbb{R} \to \mathbb{C}$ a polynomial function. The product pu is the element of $\mathcal{S}'(\mathbb{R})$ defined by

$$\forall \phi \in \mathcal{S}(\mathbb{R}), \quad \langle pu, \phi \rangle = \langle u, p\phi \rangle.$$

3. Let $u \in \mathcal{S}'(\mathbb{R})$. The Fourier transform of u is the element of $\mathcal{S}'(\mathbb{R})$ denoted by \widehat{u} or $\mathcal{F}u$ and defined by

$$\forall \phi \in \mathcal{S}(\mathbb{R}), \quad \langle \widehat{u}, \phi \rangle = \langle u, \widehat{\phi} \rangle.$$

Crucial point: the above definitions are consistent with the usual definitions for "nice" functions (ex: $\hat{u}(\omega) = \int_{-\infty}^{+\infty} u(t)e^{i\omega t}\,dt$ for all $u\in L^1(\mathbb{R})$).

Exercise: define the translation, scaling, and complex conjugation operations on $\mathcal{S}'(\mathbb{R})$.

Definition (convergence in $S'(\mathbb{R})$). A sequence $(u_n)_{n\in\mathbb{N}}$ of elements of $S'(\mathbb{R})$ converges in $S'(\mathbb{R})$ to $u\in S'(\mathbb{R})$ if and only if

$$\forall \phi \in \mathcal{S}(\mathbb{R}), \quad \langle u_n, \phi \rangle \underset{n \to +\infty}{\longrightarrow} \langle u, \phi \rangle.$$

Theorem (some properties of the Fourier transform on $\mathcal{S}'(\mathbb{R})$).

1. Let $u \in \mathcal{S}'(\mathbb{R})$. Then

$$\mathcal{F}\left(\frac{du}{dt}\right) = i\omega \widehat{u}(\omega) \qquad \text{and} \qquad \mathcal{F}\left(tu(t)\right) = i\frac{d\widehat{u}}{d\omega}(\omega).$$

2. The Fourier transform is a sequentially bicontinuous linear map from $\mathcal{S}'(\mathbb{R})$ onto itself, with inverse \mathcal{F}^{-1} defined by

$$\forall \phi \in \mathcal{S}(\mathbb{R}), \quad \langle \mathcal{F}^{-1}u, \phi \rangle_{\mathcal{S}', \mathcal{S}} = \langle u, \mathcal{F}^{-1}\phi \rangle_{\mathcal{S}', \mathcal{S}}.$$

Exercise: compute the Fourier transform of a translated tempered distribution, of a scaled tempered distribution, and of the complex conjugate of a tempered distribution.

Two important cases

1. The Dirac distribution at $t_0 \in \mathbb{R}$ is the tempered distribution denoted by δ_{t_0} and defined by

$$\forall \phi \in \mathcal{S}(\mathbb{R}), \quad \langle \delta_{t_0}, \phi \rangle = \phi(t_0).$$

Computation of the Fourier transform δ_{t_0} :

$$\forall \phi \in \mathcal{S}(\mathbb{R}), \quad \langle \widehat{\delta}_{t_0}, \phi \rangle = \langle \delta_{t_0}, \widehat{\phi} \rangle = \widehat{\phi}(t_0) = \int_{-\infty}^{+\infty} \phi(\omega) e^{i\omega t_0} d\omega = \langle e^{i\omega t_0}, \phi \rangle.$$

Thus, the Fourier transform of δ_{t_0} is the smooth function $\widehat{\delta}_{t_0}(\omega) = e^{i\omega t_0}$.

2. The Heaviside function is the function of $L^\infty(\mathbb{R}) \hookrightarrow \mathcal{S}'(\mathbb{R})$ defined by

$$\Theta(t) = 1 \text{ if } t > 0 \text{ and } \Theta(t) = 0 \text{ if } t < 0.$$

Fourier transform of the Heaviside function $\Theta(t)$:

$$\widehat{\Theta}(\omega) = \pi \delta_0(\omega) + i \text{ p.v.} \left(\frac{1}{\omega}\right)$$
 (2)

$$\mathbf{where}\ \forall \phi \in \mathcal{S}(\mathbb{R}),\ \langle \mathbf{p.v.}\left(\frac{1}{\cdot}\right), \phi \rangle := \lim_{\varepsilon \to 0^+} \int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \frac{\phi(\omega)}{\omega} d\omega = \lim_{\eta \to 0^+} \int_{-\infty}^{+\infty} \frac{\omega}{\eta^2 + \omega^2} \phi(\omega)\ d\omega.$$

Proof of (2). For all $\eta > 0$, we set $\Theta_{\eta}(t) = \Theta(t)e^{-\eta t}$.

• Since for all $\eta > 0$, $\Theta_{\eta} \in L^1(\mathbb{R})$, we have

$$\widehat{\Theta}_{\eta}(\omega) = \int_{-\infty}^{+\infty} \Theta_{\eta}(t) e^{i\omega t} dt = \int_{0}^{+\infty} e^{-(\eta - i\omega)t} dt = \frac{1}{\eta - i\omega} = \frac{\eta}{\eta^2 + \omega^2} + i\frac{\omega}{\eta^2 + \omega^2}.$$

• We have $\Theta_{\eta} \xrightarrow[\eta \to 0^+]{\mathcal{S}'(\mathbb{R})} \Theta$. Indeed, for all $\phi \in \mathcal{S}(\mathbb{R})$,

$$\langle \Theta_{\eta}, \phi \rangle = \int_{-\infty}^{+\infty} \Theta_{\eta}(t) \phi(t) dt = \int_{0}^{+\infty} e^{-\eta t} \phi(t) dt \xrightarrow{\text{DCT}} \int_{0}^{+\infty} \phi(t) dt = \langle \Theta, \phi \rangle.$$

• We have $\widehat{\Theta}_{\eta} \overset{\mathcal{S}'(\mathbb{R})}{\underset{\eta \to 0^{+}}{\longrightarrow}} \pi \delta_{0} + i \text{ p.v. } \left(\frac{1}{\cdot}\right)$. Indeed, for all $\phi \in \mathcal{S}(\mathbb{R})$,

$$\langle \widehat{\Theta}_{\eta}, \phi \rangle = \int_{-\infty}^{+\infty} \frac{\eta}{\eta^2 + \omega^2} \phi(\omega) \, d\omega + i \int_{-\infty}^{+\infty} \frac{\omega}{\eta^2 + \omega^2} \phi(\omega) \, d\omega \underset{\eta \to 0^+}{\longrightarrow} \pi \phi(0) + i \langle \mathbf{p.v.} \left(\frac{1}{\cdot}\right), \phi \rangle.$$

ullet By sequential continuity of the Fourier transform in $\mathcal{S}'(\mathbb{R})$, we have

$$\Theta_{\eta} \xrightarrow[\eta \to 0^{+}]{\mathcal{S}'(\mathbb{R})} \Theta \quad \Rightarrow \quad \widehat{\Theta}_{\eta} \xrightarrow[\eta \to 0^{+}]{\mathcal{S}'(\mathbb{R})} \widehat{\Theta}.$$

We obtain (2) by uniqueness of the limit in $\mathcal{S}'(\mathbb{R})$.

Remark. The space $\mathcal{S}'(\mathbb{R})$ contains

- ullet all the functions of the form p(t)f(t), where p is a polynomial function and $f\in L^p(\mathbb{R})$ for some $1\leq p\leq \infty$;
- ullet all the compactly supported distributions on $\mathbb R$;
- ullet all the periodic distributions on $\mathbb R.$ In addition,

$$\left|u\ T ext{-periodic distribution}\right| \Rightarrow \widehat{u} = \sum_{k\in\mathbb{Z}} c_k(u)\,\delta_{k\omega}, \quad \text{with } \omega = \frac{2\pi}{T}$$

where the $c_k(u)$ are the Fourier coefficients of u. If u is a locally integrable function, then

$$c_k(u) = \int_0^T u(t)e^{ik\omega t} dt = \int_0^T u(t)e^{2i\pi kt/T} dt.$$

The space $S'(\mathbb{R})$ does <u>not</u> contain the distributions which rapidly grow at infinity, such as the exponential function.

Theorem (Fourier transform on $L^2(\mathbb{R})$). Up to a normalization constant, the Fourier transform is a unitary operator on $L^2(\mathbb{R})$: for all $u \in L^2(\mathbb{R})$, $\widehat{u} \in L^2(\mathbb{R})$ and $\|\widehat{u}\|_{L^2} = (2\pi)^{1/2} \|u\|_{L^2}$.

Theorem (Convolution and Fourier transform).

1. The convolution product of two functions f and g of $L^1(\mathbb{R})$ is the function of $L^1(\mathbb{R})$ denoted by $f\star g$ and defined (almost everywhere) by

$$\left| (f \star g)(t) := \int_{-\infty}^{+\infty} f(t - t') g(t') dt'. \right|$$
 (3)

We have for all f and g in $L^1(\mathbb{R})$,

$$\widehat{f \star g}(\omega) = \widehat{f}(\omega)\,\widehat{g}(\omega). \tag{4}$$

2. We have for all f and g in $L^1(\mathbb{R})$ such that \widehat{f} and \widehat{g} also are in $L^1(\mathbb{R})$,

$$\widehat{fg}(\omega) = \frac{1}{2\pi} (\widehat{f} \star \widehat{g})(\omega).$$
 (5)

The definition (3) and the equalities (4)- (5) can be extended to wider classes of tempered distributions. In particular, $\delta_0 \star u = u$ for all $u \in \mathcal{S}'(\mathbb{R})$.

A2 - Causal fund	ctions, Hilbert tı	ransform and I	Kramers-Kron	ig relations

Definition (causal function). A function $f \in \mathbb{R}_t \to \mathbb{C}$ is called causal if f = 0 a.e. on $(-\infty, 0)$.

Definition (Hilbert transform on $\mathcal{S}(\mathbb{R}_{\omega})$). The Hilbert transform of a function $\widehat{\phi} \in \mathcal{S}(\mathbb{R}_{\omega})$ is the function of $C^{\infty}(\mathbb{R}_{\omega})$ denoted by $\widehat{\mathfrak{h}}\widehat{\phi}$ and defined as

$$\left| \widehat{\mathfrak{h}} \widehat{\phi} = \frac{1}{\pi} \operatorname{p.v.} \left(\frac{1}{\cdot} \right) \star \widehat{\phi} \quad \text{or equivalently as} \quad \widehat{\mathfrak{h}} \widehat{\phi} = \mathcal{F} \left(-i \operatorname{sgn}(\cdot) \mathcal{F}^{-1} \widehat{\phi} \right). \right|$$

Proposition (Hilbert transform on $L^2(\mathbb{R}_\omega)$). The Hilbert transform \mathfrak{h} defines a unitary operator on $L^2(\mathbb{R}_\omega)$, with inverse $-\mathfrak{h}$, which commutes with the translations and the positive dilations, and anticommutes with the reflexions.

The Hilbert transform can be extended by continuity to a large class of tempered distributions. In particular, it is well defined on the set of Fourier transforms of bounded functions.

Theorem (Karmers-Kronig relations). Let $f \in L^{\infty}(\mathbb{R}_t)$ be a causal function and let \widehat{f} be its Fourier transform. Then,

$$\Re \widehat{f} = -\mathfrak{h}\left(\Im \widehat{f}\right) \quad \text{and} \quad \Im \widehat{f} = \mathfrak{h}\left(\Re \widehat{f}\right). \tag{6}$$

Elements of proof. Since f is causal, we have $f = \Theta f$. Hence,

$$\widehat{f} = \frac{1}{2\pi} \left(\widehat{\Theta} \star \widehat{f} \right) = \frac{1}{2\pi} \left(\pi \delta_0 + i \text{ p.v.} \left(\frac{1}{\cdot} \right) \right) \star \widehat{f} = \frac{1}{2} \left(\widehat{f} + i \, \mathfrak{h} \widehat{f} \right).$$

Therefore,

$$\widehat{f} = i \mathfrak{h} \widehat{f}.$$

Inserting the identity $\widehat{f}=\Re\widehat{f}+i\Im\widehat{f}$, and identifying the real and imaginary parts, we get

$$\Re \widehat{f} = -\mathfrak{h}\left(\Im \widehat{f}\right)$$
 and $\Im \widehat{f} = \mathfrak{h}\left(\Re \widehat{f}\right)$.

Definition (Laplace transform of a causal function). Let

$$\mathbb{U} = \{ z \in \mathbb{C} \mid \Im(z) > 0 \}$$

be the upper-half plane, and $f: \mathbb{R} \to \mathbb{C}$ be a causal function of $L^p(\mathbb{R})$ for some $1 \leq p \leq \infty$. The Laplace transform of f is the \mathbb{C} -valued function on the upper-half plane \mathbb{U} denoted by \widetilde{f} or $\mathcal{L}f$ and defined by

$$\forall z \in \mathbb{U}, \quad \widetilde{f}(z) = \mathcal{L}f(z) = \int_{-\infty}^{+\infty} f(t)e^{izt} dt.$$

Remark. The Laplace transform can in fact be defined for any causal tempered distribution.

Remark. Other (equivalent) definitions can be found in the mathematics and physics literatures.