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Introduction 1
.

Question 1

A Fortran library for solving Ax = b gives the following results:

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 b =


32
23
33
31

 Solution: x =


1
1
1
1



A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 b =


32.001
22.999
33.001
30.999

 Solution: x =


1.082
0.862
1.035
0.979



A =


10 7.021 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 b =


32
23
33
31

 Solution: x =


−2.77...
7.19...
−0.51...
1.90...


Should you trust this library?
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.

Question 2

Constrained optimization is ubiquitous in quantum physics and chemistry
(e.g. Hartree-Fock, DFT, etc.). In Physics and Chemistry textbooks, such
problems are solved using the Lagrangian method.

Example: solve inf
g(x)=0

E(x) where E : Rd → R and g : Rd → Rm are regular.

Introduce the Lagrangian L : Rd × Rm → R defined as

L(x, λ) = E(x) + λTg(x).

Then, the minimizers are obtained by solving the system of equations∇xL(x, λ) = 0

∇λL(x, λ) = 0,

Application: d = 1, m = 1, E(x) = x, g(x) = x2{
1 + 2λx = 0
x2 = 0

⇒ No solution, though x = 0 is obviously a minimizer!
What’s the catch?
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Question 3

Diagonalizing the translation operators (TR)R∈Z3

(TRψ)(r) = ψ(r−R)

Let ψ ̸= 0 be such that TRψ = C(R)ψ for all R ∈ Z3 with C(R) ∈ C. Since

|C(R)|2
∫

|ψ(r)|2 dr =
∫

|C(R)ψ(r)|2 dr =
∫

|(TRψ)(r)|2 dr =
∫

|ψ(r−R)|2 dr

=

∫
|ψ(r)|2 dr, (1)

then |C(R)| = 1 and therefore C(R) = eiα(R). Since TR+R′ = TRTR′, we get
C(R) = eik·R for some k ∈ R3. And from there, we get

ψ(r) = eik·ru(r) where u is an Z3-periodic function

But then,
∫
|ψ(r)|2 dr = +∞, and we can’t infer from (1) that |C(R)| = 1.

How to make this (physically correct) argument mathematically correct?
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Question 4

The bound states of the hydrogen atom Hamiltonian are known

ĥ = −1

2
∆− 1

r
ĥ φn,ℓ,m(r, θ, ϕ) = Enφn,ℓ,m(r, θ, ϕ),

∣∣∣∣∣∣
n ∈ N∗

0 ≤ ℓ ≤ n− 1
−ℓ ≤ m ≤ ℓ

When two hydrogen atoms are at distance R ≫ 1 a.u., their interaction
energy can be expanded as

∆E(R) = −C6

R6
+ h.o.t. (van der Waals interaction)

The C6 coefficient can be computed by perturbation theory

Using the “sum over state” technique in the basis (φn,ℓ,m) we get

C6 ≃ 3.923 u.a. to be compared with the correct value C6 ≃ 6.499 u.a.

What’s wrong in this approach?



Introduction 5
.

Question 5

Which spin states can you actually represent with your two hands?
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.

1. Spectral theory of self-adjoint operators

2. From molecules to materials

3. A bit of numerical analysis

4. Constrained optimization and Lagrange multipliers



1 - Spectral theory of self-adjoint operators

References:

• E.B. Davies, Linear operators and their spectra, Cambridge University
Press 2007.

• B. Helffer, Spectral theory and its applications, Cambridge University
Press 2013.

• M. Reed and B. Simon, Modern methods in mathematical physics, in 4
volumes, 2nd edition, Academic Press 1972-1980.

• M. Lewin, Théorie spectrale et mécanique quantique, Springer 2022
(English version to appear soon).

Notation: in this section, H denotes a separable complex Hilbert space, ⟨·|·⟩
its inner product, and ∥ · ∥ the associated norm.
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Fundamental principles of quantum mechanics

1. To each quantum system is associated a separable complex Hilbert space H

2. If the state of the system at time t is completely known (pure state), it
can be described by a normalized vector ψ(t) of H. The set of physically
admissible pure states is the projective space P (H).

3. Physical observables are represented by self-adjoint operators on H.

4. Let a be a physical observable represented by the self-adjoint operator A.
The outcome of a measurement of a is always in σ(A), the spectrum of A.

5. If, just before the measurement, the system is in the pure state ψ(t0),
then the probability that the outcome lays in the interval I ⊂ R is
∥1I(A)ψ(t0)∥2, where 1I is the characteristic function of I and 1I(A)
is defined by functional calculus.

6. If the system is isolated, its dynamics between two successive measures
is given by ψ(t) = U(t − t0)ψ(t0) where U(τ ) = e−iτH/ℏ, H being the
Hamiltonian, i.e. the self-adjoint operator associated with the energy.
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Definition (Hilbert space). A Hilbert space is a real or complex vector space H
endowed with a inner product ⟨·|·⟩ and complete for the associated norm ∥ · ∥.

Definition (completeness). A sequence (ψn)n∈N of elements of a normed vector space (H, ∥ · ∥) is Cauchy if

∀ε > 0, ∃N ∈ N s.t. ∀q ≥ p ≥ N, ∥ψp − ψq∥ ≤ ε.

The normed vector space (H, ∥ · ∥) is called complete if any Cauchy sequence of elements of H converges in H.

Example: all finite-dimensional normed R- or C-vector spaces are complete.
• Endowed with the hermitian inner product, Cd is a Hilbert space:

⟨x|y⟩ =
∑
1≤i≤d

xi yi, ∥x∥ = ⟨x|s⟩1/2 =

∑
1≤i≤d

|xi|2
1/2

.

• Let S ∈ Cd×d be a positive definite hermitian matrix
(Sji = Sij for all 1 ≤ i, j ≤ d and x∗Sx > 0 for all x ∈ Cd \ {0}).
Then ⟨x|y⟩S = x∗Sy defines a inner product on Cd and

∀x ∈ Cd, λ1(S)∥x∥ ≤ ∥x∥S ≤ λd(S)∥x∥,
where λ1(S) ≤ λ2(S) ≤ · · · ≤ λd(S) are the eigenvalues of S.
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Fundamental examples: the Hilbert space L2(Rd,C).
• The sequilinear form

⟨φ|ψ⟩ :=
∫
Rd
φψ :=

∫
Rd
φ(r)ψ(r) dr

defines a inner product on

C∞
c (Rd,C) :=

{
φ ∈ C∞(Rd,C) | φ = 0 outside some bounded set

}
,

but C∞
c (Rd,C), endowed with the inner product ⟨φ|ψ⟩, is not a Hilbert space.

• To obtain a Hilbert space, we have to "complete" it with "all the limits
of the Cauchy sequences of elements of C∞

c (Rd)". We thus obtain the set

L2(Rd,C) :=
{
φ : Rd → C |

∫
Rd

|φ|2 <∞
}
,

which, endowed with the inner product ⟨φ|ψ⟩, is a Hilbert space.

• Technical details:

– one must use the Lebesgue integral (doesn’t work with Riemann integral);
– the elements of L2(Rd,C) are in fact equivalence classes of measurable functions (for the Lebesgue

measure) for the equivalence relation φ ∼ φ′ iff φ = φ′ everywhere except possibly on a set of zero
Lebesgue measure.
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Fundamental examples: the Sobolev spaces H1(Rd,C) and H2(Rd,C).

• The sets

H1(Rd,C) :=
{
φ ∈ L2(Rd,C) | ∇φ ∈ (L2(Rd,C))d

}
,

H2(Rd,C) :=
{
φ ∈ L2(Rd,C) | ∇φ ∈ (L2(Rd,C))d and D2φ ∈ (L2(Rd,C))d×d

}
are vector spaces. Respectively endowed with the inner products

⟨φ|ψ⟩H1 :=

∫
Rd
φψ +

∫
Rd

∇φ · ∇ψ,

⟨φ|ψ⟩H2 :=

∫
Rd
φψ +

∫
Rd

∇φ · ∇ψ +

∫
Rd
D2φ : D2ψ,

they are Hilbert spaces.
• Technical detail: the gradient and the second derivatives are defined by means of distribution theory.

Remark. Let φ ∈ H1(Rd). A function φ̃ ∈ H1(Rd) can be a very accurate
approximation of φ in L2(Rd) and a terrible approximation of φ in H1(Rd).

For instance, let φ(x) = 1
1+x2

and φn(x) =
(
1 + sin(n2x2)

n

)
φ(x). The sequence

(φn)n∈N∗ converges to φ in L2(R) and goes to infinity in H1(R).
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Bounded linear operators on Hilbert spaces

Definition-Theorem (bounded linear operator). A bounded operator on H
is a linear map Â : H → H such that

∥Â∥ := sup
Ψ∈H\{0}

∥ÂΨ∥
∥Ψ∥

<∞.

The set B(H) of the bounded operators on H is a non-commutative algebra
and ∥ · ∥ is a norm on B(H).

Remark. A bounded linear operator A is uniquely defined by the values of
the sesquilinear form H×H ∋ (Ψ1,Ψ2) 7→ ⟨Ψ1|ÂΨ2⟩ ∈ C.

Definition-Theorem (adjoint of a bounded linear operator). Let A ∈ B(H).
The operator Â† ∈ B(H) defined by

∀(u, v) ∈ H ×H, ⟨u|Â†v⟩ = ⟨Au|v⟩,
is called the adjoint of A. The operator A is called self-adjoint if Â† = A.

Endowed with its norm ∥ · ∥ and the ∗ operation, B(H) is a C∗-algebra.
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(Non necessarily bounded) linear operators on Hilbert spaces

Definition (linear operator). A linear operator on H is a linear map
Â : D(Â) → H, where D(Â) is a subspace of H called the domain of Â.
Note that bounded linear operators are particular linear operators.

Definition (extensions of operators). Let Â1 and Â2 be operators on H. Â2 is
called an extension of Â1 if D(Â1) ⊂ D(Â2) and if ∀u ∈ D(Â1), Â2u = Â1u.

Definition (unbounded linear operator). An operator Â on H which does
not possess a bounded extension is called an unbounded operator on H.

Definition (symmetric operator). A linear operator Â on H with dense
domain D(Â) is called symmetric if

∀Ψ1,Ψ2 ∈ D(Â)×D(Â), ⟨Ψ1|ÂΨ2⟩ = ⟨ÂΨ1|Ψ2⟩.

Symmetric operators are not very interesting. Only self-adjoint operators
represent physical observables and have nice mathematical properties:

• real spectrum;
• spectral decomposition and functional calculus.
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Definition (adjoint of a linear operator with dense domain). Let A be a linear operator on H with dense
domain D(Â), and D(Â†) the vector space defined as

D(Â†) =
{
v ∈ H | ∃wv ∈ H s.t. ∀u ∈ D(Â), ⟨Au|v⟩ = ⟨u|wv⟩

}
.

The linear operator Â† on H, with domain D(Â†), defined by

∀v ∈ D(Â†), Â†v = wv,

(if wv exists, it is unique since D(Â) is dense) is called the adjoint of A.

This definition agrees with the previous one for bounded operators.

Definition (self-adjoint operator). A linear operator Â with dense domain
is called self-adjoint if Â† = Â (that is if Â symmetric and D(Â†) = D(Â)).

Case of bounded operators:

symmetric ⇔ self-adjoint.

Case of unbounded operators:

symmetric (easy to check) ⇏
⇐ self-adjoint (sometimes difficult to check)
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Some unbounded self-adjoint operators arising in quantum mechanics

• position operator along the j axis:
– H = L2(Rd),
– D(r̂j) =

{
u ∈ L2(Rd) | rju ∈ L2(Rd)

}
, (r̂jϕ)(r) = rjϕ(r);

• momentum operator along the j axis:
– H = L2(Rd),
– D(p̂j) =

{
u ∈ L2(Rd) | ∂rju ∈ L2(Rd)

}
, (p̂jϕ)(r) = −i∂rjϕ(r);

• kinetic energy operator:
– H = L2(Rd),

– D(T ) = H2(Rd) :=
{
u ∈ L2(Rd) | ∆u ∈ L2(Rd)

}
, T = −1

2∇
2 = −1

2
∆;

• Schrödinger operators in 3D: let V ∈ L2
unif(R3,R) (V (r) = − Z

|r| OK)

– H = L2(R3),

– D(H) = H2(R3), H = −1

2
∆ + V .



1 - Spectral theory of self-adjoint operators 16
.

Definition-Theorem (spectrum of a linear operator). Let A be a closed1

linear operator on H.

• The open set ρ(A) =
{
z ∈ C | (z − A) : D(Â) → H invertible

}
is called

the resolvent set of A. The analytic function

ρ(A) ∋ z 7→ Rz(A) := (z − A)−1 ∈ B(H)

is called the resolvent ofA. It holdsRz(A)−Rz′(A) = (z′−z)Rz(A)Rz′(A).

• The closed set σ(A) = C \ ρ(A) is called the spectrum of A.

• If A is self-adjoint, then σ(A) ⊂ R and it holds σ(A) = σp(A) ∪ σc(A),
where σp(A) and σc(A) are respectively the point spectrum and the con-
tinuous spectrum of A defined as

σp(A) =
{
z ∈ C | (z − A) : D(Â) → H non-injective

}
= {eigenvalues of A}

σc(A) =
{
z ∈ C | (z − A) : D(Â) → H injective but non surjective

}
.

1 The operator A is called closed if its graph Γ(A) :=
{
(u,Au), u ∈ D(Â)

}
is a closed subspace of H×H.
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On the physical meaning of point and continuous spectra

Theorem (RAGE, Ruelle ’69, Amrein and Georgescu ’73, Enss ’78).

LetH be a locally compact self-adjoint operator on L2(Rd) with no singular
continuous spectrum. [Ex.: the Hamiltonian of the hydrogen atom.]

Let Hp = Span {eigenvectors of H} and Hc = H⊥
p .

[Ex.: for the Hamiltonian of the hydrogen atom, dim(Hp) = dim(Hc) = ∞.]

Let χBR be the characteristic function of the ball BR =
{
r ∈ Rd | |r| < R

}
.

Then

(ϕ0 ∈ Hp) ⇔ ∀ε > 0, ∃R > 0, ∀t ≥ 0,
∥∥(1− χBR)e

−itHϕ0
∥∥2
L2

≤ ε;

(ϕ0 ∈ Hc) ⇔ ∀R > 0, lim
t→+∞

∥∥χBRe−itHϕ0∥∥2L2 = 0.

Hp : subspace of localized states, Hc : subspace of scattering states
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Electronic problem for a given nuclear configuration {RA}1≤A≤M

Ex: water molecule H2O
M = 3, N = 10, z1 = 8, z2 = 1, z3 = 1

vnuc(r) = −
M∑
k=1

zA
|r−RA|

−1

2

N∑
i=1

∆ri +

N∑
i=1

vnuc(ri) +
∑

1≤i<j≤N

1

|ri − rj|

Ψ(x1, · · · ,xN) = E Ψ(x1, · · · ,xN)

∀p ∈ SN , Ψ(xp(1), · · · ,xp(N)) = ε(p)Ψ(x1, · · · ,xN), (Pauli principle)

Ψ ∈ HN =

N∧
H1, H1 = L2(R3 × {↑, ↓};C)

Theorem (Kato ’51). The operator ĤN := −1

2

N∑
i=1

∆ri+

N∑
i=1

vext(ri)+
∑

1≤i<j≤N

1

|ri − rj|
with domain D(ĤN) := HN ∩H2((R3 × {↑, ↓})N ;C) is self-adjoint on HN .
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Theorem (spectrum of ĤN).

1. HVZ theorem (Hunziger ’66, van Winten ’60, Zhislin ’60)

σc(ĤN) = [ΣN ,+∞) with ΣN = minσ(ĤN−1) ≤ 0 and ΣN < 0 iff N ≥ 2.

2. Bound states of neutral molecules and positive ions (Zhislin ’61)

If N ≤ Z :=

M∑
A=1

zA, then ĤN has an infinite number of bound states.

Continuous spectrum
N

Ε
0

Excited states

N
Σ

Ground state

3. Bound states of negative ions (Yafaev ’72)
If N ≥ Z + 1, then ĤN has at most a finite number of bound states.
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Spectra of Schrödinger operators with confining potentials

H = L2(Rd), V ∈ C0(Rd), lim
|r|→+∞

V (r) = +∞ (confining potential)

D(Ĥ) =

{
φ ∈ L2(Rd) | − 1

2
∆φ + V φ ∈ L2(Rd)

}
, ∀φ ∈ D(Ĥ), Ĥφ = −1

2
∆φ+V φ.

Ĥ is bounded below and its spectrum is purely discrete (σd(Ĥ) = σ(Ĥ), σess(Ĥ) = ∅).

As a consequence, H is diagonalizable in a orthonormal basis: there exist
• a non-decreasing sequence (En)n∈N of real numbers going to +∞;
• an orthonormal basis (ψn)n∈N of H composed of vectors of D(H),

such that
∀n ∈ N, Ĥψn = Enψn.

In addition, the ground state eigenvalue E0 is non-degenerate and the cor-
responding eigenvector can be chosen positive on Rd.
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Spectra of 3D Schrödinger operators with potentials decaying at infinity

V such that ∀ε > 0, ∃(V2, V∞) ∈ L2(R3)×L∞(R3) s.t. V = V2+V∞ and ∥V∞∥L∞ ≤ ε,

H = L2(R3), D(ĥ) = H2(R3), ∀φ ∈ D(ĥ), ĥφ = −1

2
∆φ + V φ.

The operator H is self-adjoint, bounded below, and σc(ĥ) = [0,+∞).

Depending on V , the discrete spectrum of ĥ may be
• the empty set;
• a finite number of negative eigenvalues;
• a countable infinite number of negative eigenvalues accumulating at 0

(ex: Ridberg states).

If ĥ has a ground state, then its energy is a non-degenerate eigenvalue and
the corresponding eigenvector can be chosen positive on Rd.
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The special case of Kohn-Sham LDA Hamiltonians

ĥKS
ρ = −1

2
∆+V KS

ρ with V KS
ρ (r) = −

M∑
A=1

zA
|r−RA|

+

∫
R3

ρ(r′)

|r− r′|
dr′+

deLDAxc

dρ
(ρ(r))

For any ρ ∈ L1(R3)∩L3(R3), the KS potential V KS
ρ satisfies the assumptions

of the previous slide. In particular Hρ is bounded below and σc(ĥρ) = [0,+∞).

Let Z =

M∑
A=1

zA be the total nuclear charge of the molecular system and N =

∫
R3
ρ.

• If N < Z (positive ion), ĥKS
ρ has a countable infinite number of negative

eigenvalues accumulating at 0.
• If N = Z (neutral molecular system) and if ρGS is a ground state density

of the system, then ĥKS
ρGS

has at least N non-positive eigenvalues.
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Spectra of (restricted) Hartree-Fock Hamiltonians

Let Φ = (ϕ1, · · · , ϕN) ∈ (H1(R3))N be such that
∫
R3
ϕiϕj = δij,

γ(r, r′) =
N∑
i=1

ϕi(r)ϕi(r
′), ργ(r) = 2γ(r, r) = 2

N∑
i=1

|ϕi(r)|2.

H = L2(R3), D(H) = H2(R3),

(ĥHFγ ϕ)(r) = −1

2
∆ϕ(r)−

M∑
A=1

zA
|r−RA|

ϕ(r)+

(∫
R3

ργ(r
′)

|r− r′|
dr′
)
ϕ(r)−

∫
R3

γ(r, r′)

|r− r′|
ϕ(r′) dr′

LetZ :=
∑M

A=1 zA. The operator ĥHFγ is self-adjoint, bounded below, and we have:
• σc = [0,+∞);

• if N < Z (positive ion), ĥHFγ has a countable infinite number of negative
eigenvalues accumulating at 0;

• if N = Z (neutral molecular system) and if ΦGS is a HF ground state,
then ĥHFγGS

has at least N negative eigenvalues (counting multiplicities).
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Spectra of Dirac Hamiltonians

H = L2(R3;C4), D(D̂0) = H1(R3;C4), D̂0 = c⃗̂p · α⃗ +mc2β

p̂j = −iℏ∂j, αj =

(
0 σk
σk 0

)
∈ C4×4, β =

(
I2 0
0 −I2

)
∈ C4×4

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(Pauli matrices)

The free Dirac operator D̂0 is self-adjoint and

σ(D̂0) = σc(D̂0) = (−∞,−mc2] ∪ [mc2,+∞).
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Theorem. Let α := e2

4πε0ℏc
≃ 1/137.036 be the fine structure constant. Let

D̂Z = D̂0 −
Z

|r|
, Z ∈ R (physical cases: Z = 1, 2, 3, · · · ).

• if |Z| <
√
3

2α ≃ 118.677, the Dirac operator D̂Z is essentially self-adjoint
(meaning that there exists a unique domainD(D̂Z) containingC∞

c (R3;C4)
for which D̂Z is self-adjoint);

• if |Z| >
√
3

2α ≃ 118.677, D̂Z has many self-adjoint extensions;

• if |Z| < 1
α ≃ 137.036, D̂Z has a special self-adjoint extension, considered

as the physical one. The essential spectrum of this self-adjoint exten-
sion is (−∞,−mc2] ∪ [mc2,+∞) and its discrete spectrum consist of the
eigenvalues

Enj = mc2

1 +
 Zα

n− j − 1
2 +
√
(j + 1

2)
2 − Z2α2


2

−1/2

, n ∈ N∗, j =
1

2
,
3

2
,
5

2
, · · · ≤ n−1

2
.

Many-body Dirac-Coulomb Hamiltonian are not understood mathematically.
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Functional calculus for diagonalizable self-adjoint operators

Let Â be a self-adjoint operator that can be diagonalized in an orthonormal
basis (φn)n∈N (this is not the case for many useful self-adjoint operators!).

Dirac’s bra-ket notation: Â =
∑
n∈N

λn|φn⟩⟨φn|, λn ∈ R, ⟨φm|φn⟩ = δmn.

Then,
• the operator Â is bounded if and only if ∥Â∥ = supn |λn| <∞;
• D(Â) =

{
|ψ⟩ =

∑
n∈N cn|φn⟩ |

∑
n∈N(1 + |λn|2)|cn|2 <∞⟩

}
;

• σp(Â) = {λn}n∈N and σc(Â) =
{

accumulation points of {λn}n∈N
}
\σp(Â);

• Hp = H and Hc = {0} (if Â is a Hamiltonian: no scattering states!);
• functional calculus for diagonalizable self-adjoint operators: for all
f : R → C, the operator f (Â) defined by

D(f (Â)) =

{
|ψ⟩ =

∑
n∈N

cn|φn⟩ |
∑
n∈N

(1 + |f (λn)|2)|cn|2 <∞⟩

}
, f (Â) =

∑
n∈N

f (λn)|φn⟩⟨φn|

is independent of the choice of the spectral decomposition of Â.
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Theorem (functional calculus for bounded functions). Let B(R,C) be the
∗-algebra of bounded C-valued Borel functions on R and let Â be any self-
adjoint operator on H. Then there exists a unique map

ΦA : B(R,C) ∋ f 7→ f (Â) ∈ B(H)

satisfies the following properties:

1. ΦA is a homomorphism of ∗-algebras:

(αf+βg)(Â) = αf (Â)+βg(Â), (fg)(Â) = f (Â)g(Â), f ∗(Â) = f (Â)†;

2. ∥f (Â)∥ ≤ sup
x∈R

|f (x)|;

3. if fn(x) → x pointwise and |fn(x)| ≤ |x| for all n and all x ∈ R, then

∀ψ ∈ D(Â), fn(Â)ψ → Âψ in H;

4. if fn(x) → f (x) pointwise and supn supx∈R |fn(x)| <∞, then

∀ψ ∈ H, fn(Â)ψ → f (Â)ψ in H;

In addition, if ψ ∈ H is such that Âψ = λψ, then f (Â)ψ = f (λ)ψ.
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Theorem (spectral projections and functional calculus - general case -).

Let Â be a self-adjoint operator on H.

• For all λ ∈ R, the bounded operator P̂A
λ := 1(−∞,λ](Â), where 1(−∞,λ](·)

is the characteristic function of (−∞, λ], is an orthogonal projection.

• Spectral decomposition of Â: for all ψ ∈ D(Â) and ψ′ ∈ H, it holds

⟨ψ′|Âψ⟩ =
∫
R
λ d⟨ψ′|P̂A

λ ψ⟩︸ ︷︷ ︸, which we denote by Â =

∫
R
λ dP̂A

λ .

Bounded complex measure on R

• Functional calculus: let f be a (not necessarily bounded) C-valued Borel
function on R. The operator f (A) can be defined by

D(f (Â)) :=

{
ψ ∈ H |

∫
R
|f (λ)|2 d⟨ψ|PA

λ ψ⟩︸ ︷︷ ︸ <∞
}

Bounded positive measure on R
and

∀(ψ, ψ′) ∈ D(f (Â))×H, ⟨ψ′|f (Â)ψ⟩ :=
∫
R
f (λ) d⟨ψ′|P̂A

λ ψ⟩.
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Application of spectral theory and functional calculus: one-body density matrices

1-RDM associated with an N -body wavefunction ΨN

γΨN (x,x
′) : = ⟨ψN |Ψ̂†(r)Ψ̂(r′)|ΨN⟩

= N

∫
(R3×{↑,↓})N−1

ΨN(x,x2, · · · ,xN)ΨN(x
′,x2, · · · ,xN)∗ dx2 · · · dxN

It is extremely fruitful to consider γΨN (x,x
′) as the integral kernel of an

operator γ̂ΨN on H1 (also called 1-RDM or DM for short)

∀φ ∈ H1, (γ̂ΨNφ)(x) =

∫
R3×{↑,↓}

γΨN (x,x
′)φ(x′) dx′

The operator γ̂ΨN is self-adjoint, diagonalizable, σ(γ̂ΨN ) ⊂ [0, 1], and Tr(γ̂ΨN ) = N

γ̂ΨN =

+∞∑
j=1

nj|φj⟩⟨φj|, ⟨φj|φj′⟩ = δjj′, 0 ≤ nj ≤ 1,

+∞∑
j=1

nj = N

The φj’s are called the natural orbitals (associated with ΨN), and the nj’s
the natural occupation numbers
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Application of spectral theory and functional calculus: one-body density matrices

When ΨN is the Slater determinant of orthonormal orbitals (φ1, · · · , φN),
then γ̂ΨN is the orthogonal projector on span(φ1, · · · , φN):

γ̂ΨN =

N∑
j=1

|φj⟩⟨φj|, γ̂2ΨN = γ̂ΨN = γ̂†ΨN
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Application of spectral theory and functional calculus: one-body density matrices

Consider a system of non-interacting “electrons” with one-body Hamiltonian ĥ

Assume that ĥ has at least N eigenvalues ε1 ≤ ε2 ≤ · · · ≤ εN (counting
multiplicities) and that εN < εN+1 (energy gap). Then

• NVE ground-state density matrix is

γ̂NVE = 1(−∞,µF](ĥ)

where µF is any number in the range [εN , εN+1) (Fermi level)

Assume that ĥ is diagonalizable: ĥ =

+∞∑
j=1

εj|φj⟩⟨φj|, ⟨φj|φj′⟩ = δjj′

• NVT (canonical) ground-state density matrix:

γ̂NVT = fβ(ĥ− µ), µ such that Tr(γ̂NVT) = N, fβ(ε) =
1

1 + eβε

• µVT (grand-canonical) ground-state density matrix:

γ̂µVT = fβ(ĥ− µ)
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Periodic 3D system Periodic 2D system

Alloy at finite temperature Amorphous system
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Preliminary remarks
• At the atomic scale, a material looks like an infinity system (1023 ∼ ∞)
• There is no such thing as the wavefunction of a system with infinite num-

ber of electrons
• The way out is to only use n-particle density matrices and/or Green’s

functions, typically with n = 1 or n = 1, 2 and pass to the thermody-
namic limit
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Bravais lattice L, unit cell Ω, reciprocal lattice L∗, and Brillouin zone B

• FCC 3D crystal (ex: aluminium, copper, gold...)

L = Za1 + Za2 + Za3
Ω = [0, 1)a1 + [0, 1)a2 + [0, 1)a3
L∗ = Zb1 + Zb2 + Zb3
B: truncated octahedron
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Bravais lattice L, unit cell Ω, reciprocal lattice L∗, and Brillouin zone B

• hexagonal 2D materials (e.g. graphene, hBN...)

L = Za1 + Za2
Ω: a cylinder
L∗ = Zb1 + Zb2

B: an hexagon
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Thermodynamic limit (bulk limit) for perfect crystals (L = Z3, simple cubic)

L


ρnucL =

∑
R∈Z3∩(−L/2,L/2]3

z m(· −R)

zL3 electrons

−→

∣∣∣∣∣∣∣∣∣∣
E0
L ground state total energy

ρ0L (unique) ground state density

γ0L a ground state density matrix

Theorem (Catto-Le Bris-Lions, ’01). For the Hartree model (KS with no xc)

lim
L→∞

E0
L

L3
= E0

per, ρ0L
in some sense−→

L→∞
ρ0per, γ0L

in some sense−→
L→∞

γ0per.
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Periodic (spin-unpolarized) Kohn-Sham equations



ĥ0per = −1

2
∆ + V̂ Hartree

per + V̂ xc
per on L2(R3;C)

−∆V Hartree
per (r) = 4π

(
ρnucper(r)− ρ0per(r)

)
, V 0

per L-periodic

ρ0per(r) = 2γ0per(r, r)

V xc
per(r) =

dexc
dρ

(ρ0per(r)) (LDA)

γ̂0per = 1(−∞,εF)(H
0
per),

∫
Ω

ρ0per =

∫
Ω

ρnucper
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Periodic (spin-unpolarized) Kohn-Sham equations



ĥ0per = −1

2
∆ + V̂ Hartree

per + V̂ xc
per on L2(R3;C)

−∆V Hartree
per (r) = 4π

(
ρnucper(r)− ρ0per(r)

)
, V 0

per L-periodic

ρ0per(r) = 2γ0per(r, r)

V xc
per(r) =

dexc
dρ

(ρ0per(r)) (LDA)

γ̂0per = 1(−∞,εF)(H
0
per),

∫
Ω

ρ0per =

∫
Ω

ρnucper

g F

Insulator / Semiconductor

z  = 2

Conduction bands

Band gap

(Fermi sea)

Valence bands

ε 
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Periodic (spin-unpolarized) Kohn-Sham equations



ĥ0per = −1

2
∆ + V̂ Hartree

per + V̂ xc
per on L2(R3;C)

−∆V Hartree
per (r) = 4π

(
ρnucper(r)− ρ0per(r)

)
, V 0

per L-periodic

ρ0per(r) = 2γ0per(r, r)

V xc
per(r) =

dexc
dρ

(ρ0per(r)) (LDA)

γ̂0per = 1(−∞,εF)(H
0
per),

∫
Ω

ρ0per =

∫
Ω

ρnucper

Valence states

F

(Fermi sea)

z  = 3

         Conductor

Conduction states

ε 
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Bloch decomposition of periodic one-body Schrödinger operator ĥ = −1
2∆+ V(

1

2
(−i∇ + k)2 + V

)
︸ ︷︷ ︸

ĥk

un,k = εn,kun,k, (un,k)n∈N∗ orthonormal basis of L2
per(Ω;C)

ε1,k ≤ ε2,k ≤ · · ·
k 7→ εn,k

∗-periodic from Rd to R
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Bloch decomposition of periodic one-body Schrödinger operator ĥ = −1
2∆+ V(

1

2
(−i∇ + k)2 + V

)
︸ ︷︷ ︸

ĥk

un,k = εn,kun,k, (un,k)n∈N∗ orthonormal basis of L2
per(Ω;C)

ε1,k ≤ ε2,k ≤ · · ·
k 7→ εn,k

∗-periodic from Rd to R
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Silicon (semiconductor) Tin (metal)

Graphene (semimetal)

ε 
F

ε 
F

ConductorInsulator / Semiconductor

z  = 2 z  = 3

Conduction bands

Band gap

(Fermi sea)
Valence bands

g 

µF

µF
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Materials classification in the independent-particle framework

• Fermi surface and Fermi surface sheets

S := {k ∈ B | ∃n ∈ N∗ s.t. εn,k = µF} =
⋃
n∈N∗

Sn

Sn := {k ∈ B | εn,k = µF}, n ∈ N∗

The Fermi surface database (http://www.phys.ufl.edu/fermisurface/)

• Insulators/semiconductors: S = ∅
• Non-degenerate metals: S ≠ ∅, Sn ∩ Sn+1 = ∅, ∇kεn,k ̸= 0 on Sn
• Semimetals: S = {a finite number of Dirac points}
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Supercell method for Kohn-Sham simulations in the condensed phase

︸ ︷︷ ︸
Size L



ĥ0L,per = −1

2
∆ + V 0

L,per + V xc
L,per on L2

per

(
[−L

2
,
L

2
)3
)

−∆V 0
L,per = 4π

(
ρL,nucper − ρ0L,per

)
, V 0

L,per LZ3-periodic

ρ0L,per(r) = 2γ0L,per(r, r)

γ̂0L,per = 1(−∞,εF)(ĥ
0
L,per),

∫
[−L

2 ,
L
2 )

3
ρ0L,per=

∫
[−L

2 ,
L
2 )

3
ρnucper

For infinite, macroscopically homogeneous, systems:

supercell method ∼ representative volume method (RVP) of stochastic homogenization

Converges when L → ∞ for the Hartree model for perfect crystals (⇔
uniform Brillouin zone discretization) and crystals with a single defect.
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Thermodynamic limit for crystals with defects

Crystals are like people,
it is their defects
that make them interesting

(attributed to F. C. Franck)
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Thermodynamic limit for crystals with defects

Crystals are like people,
it is their defects
that make them interesting

(attributed to F. C. Franck)

DFT models for a single defect (or a finite number of defects)

• TF: Lieb-Simon (’77), TFW: Catto-Le Bris-Lions (’98)
• Hartree: EC, Deleurence, Lewin (’08), EC, Lewin (’10),

Franck, Lewin, Lieb, Seiringer (’11), EC, Stoltz (’12), Gontier-Lahbabi (’16)
• LDA: EC, Deleurence, Lewin (’08)
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Thermodynamic limit for crystals with defects

Crystals are like people,
it is their defects
that make them interesting

(attributed to F. C. Franck)

DFT models for stationary random distributions of defects

• TFW: Blanc, Le Bris, Lions ’07
• Hartree (short-range interaction only): EC, Lahbabi, Lewin, ’13



3 - A bit of numerical analysis

The deterministic models used in quantum physics and chemistry give rise to
• linear eigenvalue problems (N -body Schrödinger eq., LR-TDDFT, BSE, ...)
• constrained optimization problems (HF, DFT, MCSCF, ...)
• algebraic equations (CC, ...)
• time-dependent linear or nonlinear Schrödinger equations (RT-TDDFT, ...)

Solving numerically all these problems eventually boils down to (cleverly!)
performing numerical quadratures and matrix-vector products.

Example: let F : Rd → Rd. A standard iterative algorithm to solve the
equation F (x) = 0 is the Newton algorithm:

xk begin given, solve the linear system F ′(xk)yk = −F (xk), then set xk+1 = xk+yk.

Linear systems can themselves be solved by iterative algorithms based on
matrix-vector products.



3.1 - Conditioning 43
.

A key concept: conditioning

Consider a problem consisting of computing an output s from an input y
(the data). The problem is called

• well-conditioned if a small variation of the input leads to a small varia-
tion of the output

• ill-conditioned otherwise.



3.1 - Conditioning 43
.

A key concept: conditioning

Consider a problem consisting of computing an output s from an input y
(the data). The problem is called

• well-conditioned if a small variation of the input leads to a small varia-
tion of the output

• ill-conditioned otherwise.

Toy example of a very ill-conditioned problem:

y =

(
2 1017

0 0.5

)
−→ s = eigenvalues of y = (0.5; 2)

y+δy =

(
2 1017

10−17 0.5

)
−→ s+δs = eigenvalues of y+δy = (0; 2.5) .



3.1 - Conditioning 44
.

An apparently nicer problem: solve the linear system Ax = b with

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 and b =


32
23
33
31


The matrix A is symmetric, det(A) = 1, and

A−1 =


25 −41 10 −6
−41 68 −17 10
10 −17 5 −3
−6 10 −3 2


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Reference linear system
10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10




 =


32
23
33
31

 Solution =


1
1
1
1


Slight perturbation of the right-hand side

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10




 =


32.001
22.999
33.001
30.999

 Solution =


1.082
0.862
1.035
0.979


Slight modification of the matrix A

10 7.021 8 7
7 5 6 5
8 6 10 9
7 5 9 10




 =


32
23
33
31

 Solution =


−2.77...
7.19...
−0.51...
1.90...


This apparently nice problem is not so well-conditioned ...
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lp-norm of a vector x ∈ Rn

∥x∥p :=

(
n∑
i=1

|xi|p
)1/p

for 1 ≤ p < +∞, ∥x∥∞ = max
1≤i≤n

|xi|
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|xi|p
)1/p

for 1 ≤ p < +∞, ∥x∥∞ = max
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|xi|

lp-norm of a matrix A ∈ Rn×m

∥A∥p := sup
x∈Rm\{0}

∥Ax∥p
∥x∥p
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lp-norm of a vector x ∈ Rn

∥x∥p :=

(
n∑
i=1

|xi|p
)1/p

for 1 ≤ p < +∞, ∥x∥∞ = max
1≤i≤n

|xi|

lp-norm of a matrix A ∈ Rn×m

∥A∥p := sup
x∈Rm\{0}

∥Ax∥p
∥x∥p

Condition number: the condition number of the abstract problem s = f (y)
at y = y0 for the lp-norm is (s ∈ Rn, y ∈ Rm) is

κp(y0) =
∥f ′(y0)∥p ∥y0∥p

∥f (y0)∥p
.



3.1 - Conditioning 46
.

lp-norm of a vector x ∈ Rn

∥x∥p :=

(
n∑
i=1

|xi|p
)1/p

for 1 ≤ p < +∞, ∥x∥∞ = max
1≤i≤n

|xi|

lp-norm of a matrix A ∈ Rn×m

∥A∥p := sup
x∈Rm\{0}

∥Ax∥p
∥x∥p

Condition number: the condition number of the abstract problem s = f (y)
at y = y0 for the lp-norm is (s ∈ Rn, y ∈ Rm) is

κp(y0) =
∥f ′(y0)∥p ∥y0∥p

∥f (y0)∥p
.

Rule of thumb: if the condition number is ∼ 10p and if you compute in
double precision (εmachine = 10−16), you can only trust the first 16− p digits
of your result.
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Condition number of an invertible square matrix A ∈ Rn×n

(for the lp-norm)

κp(A) := ∥A∥p ∥A−1∥p

κp(A) is the max. w.r.t. x of the condition numbers of the problems:
• matrix-vector product: y = (A,x) 7→ s = Ax

• linear system solver: y = (A,x) 7→ s = A−1x (solve As = x)

Example:

A =


10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 −→ κ2(A) = 2984 and κ∞(A) = 4488.
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Theorem. Let A ∈ Rn×n be an invertible matrix, and b ∈ Rn, b ̸= 0.

• Perturbation of the right-hand side

Ax = b, A (x + δx) = b + δb ⇒ ∥δx∥p
∥x∥p

≤ κp(A)
∥δb∥p
∥b∥p

and the inequality is optimal: A being given, there exists b and δb such
that the inequality is an equality.

• Perturbation of the matrix

Ax = b, (A + δA) (x + δx′) = b ⇒ ∥δx∥p
∥x + δx′∥p

≤ κp(A)
∥δA∥p
∥A∥p

and the inequality is optimal: A being given, there exists b and δA such
that the inequality is an equality.
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Properties of the condition number κp(A)

• κp(A) ≥ 1, ∀A ∈ GLn(R) (the set of invertible matrices)

• κ2(U) = 1 iff U is orthogonal (UUT = UTU = In)

• 1/κp(A) is a measure of the relative distance of the matrix A to the set
of singular matrices:

1

κp(A)
= min

E | (A+E)/∈GLn(R)

∥E∥p
∥A∥p

.

• If A is symmetric

κ2(A) =
max
i

|λi(A)|

min
i

|λi(A)|

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) denoting the eigenvalues of A.
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An iterative algorithm for solving a problem P is a method for construct-
ing, from an initial guess x0, a sequence x1, x2, x3, ... such that (hopefully)

xk −→
k→+∞

x, (2)

where x is a solution to the problem P (the solution if P is well-posed) .
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ing, from an initial guess x0, a sequence x1, x2, x3, ... such that (hopefully)

xk −→
k→+∞

x, (1)

where x is a solution to the problem P (the solution if P is well-posed) .

The algorithm is called convergent if (1) holds. In practice, the algorithm
is stopped when some stopping criteria are met. The efficiency of the algo-
rithm heavily relies on the choice of the stopping criteria.



3.2 - Iterative algorithms 50
.

An iterative algorithm for solving a problem P is a method for construct-
ing, from an initial guess x0, a sequence x1, x2, x3, ... such that (hopefully)

xk −→
k→+∞

x, (1)

where x is a solution to the problem P (the solution if P is well-posed) .

The algorithm is called convergent if (1) holds. In practice, the algorithm
is stopped when some stopping criteria are met. The efficiency of the algo-
rithm heavily relies on the choice of the stopping criteria.

Examples of stopping test for linear systems Ax = b:
• a terrible one: maximum number of iterations (k ≥ kmax) ⇒ STOP
• a good one: residual based error vector (∥rk∥2 ≤ εk) ⇒ STOP, where

rk = b−Axk = A(x−xk), εk = εtol(∥A∥1∥xk∥∞+∥b∥2) (Oetli-Prager, 1963)

If A is symmetric, positive definite, then ∥rk∥2 = ∥x− xk∥ where ∥ · ∥ is
the norm defined by ∥y∥ = ∥Ay∥2.
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Reminder: gradient of a differentiable function J : Rd → R

We have for all x ∈ Rd

∀h ∈ Rd, J(x+h) = J(x)+
d∑
i=1

∂J

∂xi
(x)hi+o(h) = J(x)+∇J(x) ·h+o(h)

↑
Euclidean inner product

Euclidean gradient: ∇J(x) =



∂J

∂x1
(x)

·
·
·

∂J

∂xd
(x)


.
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Reminder: gradient of a differentiable function J : Rd → R

We have for all x ∈ Rd

∀h ∈ Rd, J(x+h) = J(x)+
d∑
i=1

∂J

∂xi
(x)hi+o(h) = J(x)+∇J(x) ·h+o(h)

↑
Euclidean inner product

Euclidean gradient: ∇J(x) =



∂J

∂x1
(x)

·
·
·

∂J

∂xd
(x)


.

If Rd is endowed with the inner product (x,y)S := xTSy, where S ∈ Rd×d

is a positive definite symmetric matrix, then the gradient of J , which we
will denote by ∇SJ(x), is related to the Euclidean gradient ∇J(x) by

∇SJ(x) = S−1∇J(x).
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Geometrical interpretation of the gradient

Let J : Rd → R of class C1, x0 ∈ Rd and α = J(x0). If ∇J(x0) ̸= 0, then
• in the vicinity of x0, the level set

Cα :=
{
x ∈ Rd | J(x) = α

}
is a C1 hypersurface (a codimension 1 C1 manifold);

• the vector ∇J(x0) is orthogonal to the affine hyperplane tangent to Cα
at x0 and points toward the steepest ascent direction.
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Key remark: if the matrix A is symmetric, positive definite, then

solve Ax = b ⇔ solve min
y∈Rd

J(y) where J(y) :=
1

2
yTAy−bTy.
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Gradient methods only involve matrix-vector and inner products. There
are particularly efficient when

• the matrix A cannot be stored (e.g. grid methods for Kohn-Sham)

• and/or matrix-vector products can be efficiently computed (sparse ma-
trices, fast transforms such as FFT, ...)
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Key remark: if the matrix A is symmetric, positive definite, then

solve Ax = b ⇔ solve min
y∈Rd

J(y) where J(y) :=
1

2
yTAy−bTy.

Gradient methods consist in choosing an initial guess x0 ∈ Rn and in build-
ing a sequence of iterates (xk)k∈N of Rn such that

J(xk) ↓
k→+∞

min
Rn

J Note that ∇J(y) = Ay − b

Gradient methods only involve matrix-vector and inner products. There
are particularly efficient when

• the matrix A cannot be stored (e.g. grid methods for Kohn-Sham)

• and/or matrix-vector products can be efficiently computed (sparse ma-
trices, fast transforms such as FFT, ...)

Remark: Extensions of gradient algorithms to general linear systems are
available (MINRES - GMRES, 1986 - BiCGstab, 1992 - ...).
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Fixed-step and optimal step gradient algorithms

xk

−∇J(xk)

The function J is decreasing in the direction

dk = −∇J(xk) = b−Axk (residual)

One then may choose
xk+1 = xk + tkdk

for some tk > 0.
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Fixed step: the step t is chosen once and for all{
rk = b−Axk
xk+1 = xk + trk

Optimal step: one chooses the “best” xk+1 on the half-line xk − t∇J(xk)
rk = b−Axk

tk =
rTk rk
rTkArk

xk+1 = xk + tkrk

xk

−∇J(xk)

xk+1
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Conjugate gradient algorithm (1952)

The descent direction dk = −∇J(xk) is optimal for infinitesimal steps, but
not in general for finite step.

Optimal descent direction

xk

−∇J(xk)

The conjugate gradient algorithm provides better descent directions dk.
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Conjugate gradient algorithm:

• Initialization. Choose x0 ∈ Rn and εtol, compute r0 = b − Ax0 and set
d0 = r0. Set k = 0.

• Iterations.
1. Stopping test: if ∥rk∥2 ≤ εtol(∥A∥1∥xk∥∞ + ∥b∥2), stop.
2. Update xk and the residual rk :

zk = Adk, tk =
rTk rk
dTk zk

,

xk+1 = xk + tkdk, rk+1 = rk − tkzk,

3. Update the descent direction dk :

βk =
rTk+1rk+1

rTk rk
, dk+1 = rk+1 + βkdk.

4. Set k = k + 1 and go to step 1.
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Krylov subspaces

The Krylov subspaces (Kk(y)) associated with a matrix A ∈ Rn×n and a
vector y are defined by

Kk(y) = Span(y,Ay, · · · ,Aky)

Application to linear systems

x = A−1b

= A−1(Ax0 + b−Ax0)

= x0 + A−1r0
= x0 +Q(A)r0 with Q polynomial of degree m ≤ n− 1 (Hamilton-Cayley)
∈ x0 +Km(r0).
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Theorem. Let (xk) the sequence generated by the conjugate gradient algo-
rithm (with εtol = 0).

1. For all k ≥ 0,

xk = arginf
y∈x0+Kk(r0)

J(y), J(y) =
1

2
yTAy − bTy
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the conjugate gradient algorithm converges in at most n iterations
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Theorem. Let (xk) the sequence generated by the conjugate gradient algo-
rithm (with εtol = 0).

1. For all k ≥ 0,

xk = arginf
y∈x0+Kk(r0)

J(y), J(y) =
1

2
yTAy − bTy

2. The sequence of Krylov subspace Kk(r0) is strictly increasing until the
algorithm has converged: if xk ̸= x, dim Kk(r0) = k + 1. Consequently,
the conjugate gradient algorithm converges in at most n iterations

3. If the conjugate gradient algorithm converges inm iterations, then ∀0 ≤
k ≤ m− 1,
• (r0, r1, · · · , rk) is an orthogonal basis of Kk(r0): rTi rj = δij
• (d0,d1, · · · ,dk) is an A-orthogonal basis of Kk(r0): dTi Adj = δij

−→ The descent directions dk are A-conjugate
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Theorem. Let A a symmetric positive definite matrix, b ∈ Rn and x ∈ Rn

the solution of Ax = b. Let (xk) the sequence generated by the conjugate
gradient algorithm with (avec ε = 0) from the initial guess x0.

The conjugate gradient algorithm converges at least linearly

∥xk − x∥A ≤ ρk∥x0 − x∥A with 0 ≤ ρ =

(√
κ2(A)− 1√
κ2(A) + 1

)
< 1,

where κ2(A) =
λn(A)

λ1(A)
≥ 1 is the condition number of A for the l2-norm,

and where ∥ · ∥A is the energy norm on Rn defined by ∥y∥A = (Ay,y)1/2.
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Theorem. Let A a symmetric positive definite matrix, b ∈ Rn and x ∈ Rn

the solution of Ax = b. Let (xk) the sequence generated by the conjugate
gradient algorithm with (avec ε = 0) from the initial guess x0.

The conjugate gradient algorithm converges at least linearly

∥xk − x∥A ≤ ρk∥x0 − x∥A with 0 ≤ ρ =

(√
κ2(A)− 1√
κ2(A) + 1

)
< 1,

where κ2(A) =
λn(A)

λ1(A)
≥ 1 is the condition number of A for the l2-norm,

and where ∥ · ∥A is the energy norm on Rn defined by ∥y∥A = (Ay,y)1/2.

Remarks
• This estimate is not optimal (convergence in at most n iterations)
• The actual performance of the CG algorithm depends on the distribu-

tion of the eigenvalues of A
• The smaller the condition number, the faster the algorithm

−→ Preconditioning can (often must) be used to reduced the cond. numb.
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Iterative algorithms are usually totally inefficient without preconditioning.

Preconditioning of linear systems:

Basic idea: instead of solving

Ax = b

solve {
P−1/2AP−1/2z = P−1/2b,
P1/2x = z.

for some symmetric matrix P such that

κ2(P
−1/2AP−1/2) ≪ κ2(A)

This replacement can be done implicitely: no need to compute P−1/2.
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Preconditioned conjugate gradient algorithm

• Initialisation. Choose x0 ∈ Rn and a threshold εtol, compute r0 = b −
Ax0, and the solution y0 to Py0 = r0. Set d0 = y0 and k = 0. ;

• Iterations.
1. Stopping test: if ∥rk∥2 ≤ εtol(∥A∥1∥xk∥∞ + ∥b∥2), stop.
2. Update xk and rk

zk = Adk, tk =
yTk rk
dTk zk

,

xk+1 = xk + tkdk, rk+1 = rk − tkzk,

Solve Pyk+1 = rk+1

3. Updated the descent direction dk

βk =
yTk+1rk+1

yTk rk
, dk+1 = yk+1 + βkdk.

4. Set k = k + 1 and go to step 1.
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For the preconditioning technique to be efficient, the preconditioner P
must fulfill two conditions

1. κ2(P−1/2AP−1/2) ≪ κ2(A)

2. linear systems of the form Py = r are easy to solve.

−→ A trade-off has to be made.

• “Algebraic preconditioners”
– diagonal preconditioner
– SSOR preconditioner
– incomplete LU or Cholesky decomposition

• “Physical preconditioners”
– multigrid methods
– simplified model
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Example: planewave discretization of periodic Schrödinger operators

H = −1

2

d2

dx2
+V, V (x) = | cos(πx)|, ek(x) = e2iπkx, XN = Span(ek, |k| ≤ N)

Hkl = ⟨ek|H|el⟩ = 2π2|k|2δkl+V̂kl, V̂kl =

∫ 1

0

V (x) e2iπ(l−k)x dx, −N ≤ k, l ≤ N

Solve Hx = b, with b = (1, · · · , 1)T

−→ Possible preconditioner: P s.t. Pkl = (1 + 2π2|k|2)δkl

Stopping criterion: ∥rk∥2 ≤ 10−10 where rk = b−Hxk

N Size of the matrix H # CG iter. # PCG iter.
50 101 71 5

100 201 98 5
200 401 304 5
400 801 613 5
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Let E : Rd → R and g : Rd → Rm be two differentiable functions and
consider the optimization problem

inf
x∈K

E(x) where K =
{
x ∈ Rd | g(x) = 0

}
.



4 - Constrained optimization and Lagrange multipliers 66
.

Let E : Rd → R and g : Rd → Rm be two differentiable functions and
consider the optimization problem

inf
x∈K

E(x) where K =
{
x ∈ Rd | g(x) = 0

}
.

Definition (qualification of the constraints). The equality constraints g = 0
are called qualified at x0 ∈ K if g′(x0) ∈ Rm×d is surjective (i.e. Ran(g′(x0)) = Rm).



4 - Constrained optimization and Lagrange multipliers 66
.

Let E : Rd → R and g : Rd → Rm be two differentiable functions and
consider the optimization problem

inf
x∈K

E(x) where K =
{
x ∈ Rd | g(x) = 0

}
.

Definition (qualification of the constraints). The equality constraints g = 0
are called qualified at x0 ∈ K if g′(x0) ∈ Rm×d is surjective (i.e. Ran(g′(x0)) = Rm).

Theorem (Euler-Lagrange theorem). Let x0 ∈ K be a local minimum of E on K.
Assume that
1. x 7→ g′(x) is continuous in the vicinity of x0;
2. the equality constraints g = 0 is qualified at x0.

Then, there exists a unique λ ∈ Rm such that

∇E(x0) + g′(x0)
Tλ = 0,

where g′(x0)
T is the transpose of g′(x0). The vector λ is called the Lagrange

multiplier of the constraint g = 0.
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Euler-Lagrange equations

Assume that the constraints are qualified at any point of K. Then solving
seek (x, λ) ∈ Rd × Rm such that
∇E(x) + g′(x)Tλ = 0
g(x) = 0

(2)

allows one to find all the critical points (among which the local minimizers
and the local maximizers) of E on K.

Remark : the above problem consists of (d + m) scalar equations with
(d +m) scalar unknowns.
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Euler-Lagrange equations

Assume that the constraints are qualified at any point of K. Then solving
seek (x, λ) ∈ Rd × Rm such that
∇E(x) + g′(x)Tλ = 0
g(x) = 0

(4)

allows one to find all the critical points (among which the local minimizers
and the local maximizers) of E on K.

Remark : the above problem consists of (d + m) scalar equations with
(d +m) scalar unknowns.

The solutions of the Euler-Lagrange equations (4) are called the critical
points of E on K.

Remark. Equations (4) are equivalent to seeking (x, λ) ∈ Rd × Rm s.t.

∇xL(x, λ) = 0, ∇λL(x, λ) = 0, where L(x, λ) := E(x)+λ·g(x) (Lagrangian).
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Very important take-home messages

A mathematical theorem consists of
• a list of assumptions;
• one of more results following from these assumptions.

Do not forget to check the assumptions before using the results!
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the Lagragian method fails!
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Very important take-home messages

A mathematical theorem consists of
• a list of assumptions;
• one of more results following from these assumptions.

Do not forget to check the assumptions before using the results!

Back to the example d = 1, m = 1, E(x) = x, g(x) = x2. Then

K = {x ∈ R | g(x) = 0} = {0} and g′(0) = 0.

The constraint g = 0 is therefore not qualified, and this is the reason why
the Lagragian method fails!

Be all the more careful that
not every "reasonable" mathematical statement is true!

Example: let H be a Hilbert space. A continuous function E : H → R
going to +∞ at infinity does not necessarily have a minimizer.
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A simple 2D example (d = 2, m = 1)

g(u)

K

u

E(u)

On K = g−1(0) =
{
x ∈ R2 | g(x) = 0

}
, the function E possesses

• two local minimizers, all global
• two local maximizers, among which the global maximizer
• one critical point which is neither a local minimizer not a local maxi-

mizer.



4 - Constrained optimization and Lagrange multipliers 70
.

Sketch of the proof

• Let x0 be a local minimizer of E on K = g−1(0) =
{
x ∈ Rd | g(x) = 0

}
and α = E(x0).

• If the constraint g = 0 is qualified at x0 (i.e. if g′(x0) : H → K is
surjective), then, in the vicinity of x0, K is a C1 manifold with tangent
space

Tx0K =
{
h ∈ Rd | g′(x0)h = 0

}
= Ker(g′(x0)).

• Since x0 is a minimizer ofE onK, the vector ∇E(x0) must be orthogonal
to Tx0K. Indeed, for any h ∈ Tx0K, there exists a C1 curve ϕ : [−1, 1] →
Rd drawn on K such that ϕ(0) = x0 et ϕ′(0) = h, and we have

0 ≤ E(ϕ(t))− E(x0) = E(x0 + th + o(t))− E(x0) = t∇E(x0) · h + o(t).

• We have

∇E(x0) ∈ (Tx0K)⊥ = (Ker(g′(x0)))
⊥ = Ran(g′(x0)

T ).

• Therefore, there exists λ ∈ Rm such that ∇E(x0) + g′(x0)
Tλ = 0.
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Remarks

• The above results can be extended to the case when E : H → R and
g : H → K where H and K are Hilbert spaces.

• Most often, Lagrange multipliers have a "physical" interpretation

– statistical mechanics, the equilibrium state of a chemical system in-
teracting with its environment is obtained by maximizing the entropy
under the constraints that the energy, the volume and the concentra-
tion of chemical species are given on average:

→ the Lagrange multipliers are respectively 1/T , P/T and µi/T
(T : temperature, P : pressure, µi chemical potential of species i)

– fluid mechanics, the admissible dynamics of an incompressible fluid
are the critical points of the action under the constraint that the den-
sity of the fluid remains constant (div (u) = 0)

→ the Lagrange multiplier of the incompressibility constraint is the
pressure field.
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Analytical derivatives

∀R ∈ Rk, W (R) = inf
{
E(R,x), x ∈ Rd, g(R,x) = 0

}
(5)

with E : Rk × Rd → R, g : Rk × Rd → Rm.

Assume (5) has a unique minimizer x(R) and R 7→ x(R) is regular. Then,

W (R) = E(R,x(R)) ⇒ ∂W

∂Rk
(R) =

∂E

∂Rk
(R,x(R)) +∇xE(R,x(R)) · ∂x

∂Rk
(R),

g(R,x(R)) = 0 ⇒ ∂g

∂Rk
(R,x(R)) + g′x(R,x(R))

∂x

∂Rk
(R) = 0.

Euler-Lagrange equation: ∇xE(R,x(R)) + g′x(R,x(R))Tλ(R) = 0.

Therefore
∂W

∂Rk
(R) =

∂E

∂Rk
(R,x(R)) +

(
∂g

∂Rk
(R,x(R)), λ(R)

)
.


