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Dynamical Mean Field Theory

DFT: an electron in the effective field of other electrons
DMFT: a correlated atom in the effective field of other atoms

Dynamical :
The effective field is frequency dependent = energy levels generating the field are
distributed in energy.
In contrast to static mean field theory of ferromagnetism in the Ising model.
The frequency dependence of this field is not created by interactions but is required to
treat the correlated atom.

Dynamical : the self-energy is frequency dependent, in contrast to DFT+U and DFT,
allowing to describe strong correlations and its features in photoemission.
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Why using Dynamical Mean Field Theory ?

Describe solids with strong correlations, static correlations

Correlation Can compute
Weak Strong Spectra Structure Solids No Non Perturbative

correlation correlation Parameters
Single reference methods
MBPT (GW, BSE) + + + + +

MP2 + + + +/- +
CC + + + +/- +
HF + + + +
DFT+U +/- + + + -
Multi reference methods or static correlation included
MCSCF,CI + + + + - + +
MRPT + + + + - +
DMET + + + +/- +
DMFT + + + + +/- +
Other methods
QMC + + + + +
RDMFT + + + + + +
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Atomic orbitals 1s, 2s and 3s
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r (bohr)
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Radial distribution function

Ψnlm(r) = Rnl(r)Ylm(θ, φ)
Radial distribution function is (rRnl(r))
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THE PERIODIC TABLE
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Localization of 3d, 4f and 5f orbitals.
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Ψnlm(r) = Rnl(r)Ylm(θ, φ)

For 1s, 2p, 3d, 4f , R has no node, their
maxima are thus closer to the nucleus
3d and 4f orbitals are more localized.
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Hydrogen Molecule

a b

bonding state σg = a+b√
2

antibonding state σu = a−b√
2

Non diagonal elements of the Hamiltonian creates chemical bonding

7



Hydrogen atom: 1s orbital

-r
0 0 r

0

-r
0 0 r

0

a(r) 1s orbital

σg = a+b√
2 8



Hydrogen molecule: molecular orbital.

-r
0 0 r

0

-r
0 0 r

0

a(r) b(r)

σg~(a+b)

σg = a+b√
2 9



Hydrogen molecule: stretched.

-10 -5 0 5 10
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Hydrogen molecule: same orbital for both spins !

-10 -5 0 5 10

spin

spin
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Hydrogen molecule: same orbital for both spins !

spin

spin

0.5 0.5

0.5 0.5
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Hydrogen molecule: dissociation limit is bad

spin

spin

0.5 0.5

0.5 0.5

U/4
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A solution: break symmetry

no more artificial delocalization, no more interaction

14



But

Symmetry breaking. An artificial magnetism is induced.
A static theory, which overestimates localization.
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Solution 1: localization: lowers interaction
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Solution 2: localization: lowers interaction
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Solution 3: delocalization: lowers kinetic energy

18



The exact solution

|Ψ〉 = c1|1 : localized ↑↓〉 + c2|2 : localized ↓↑〉 + c3|3 : delocalized〉

This mixing of configuration correctly describes the system (magnetism, structural properties).

c1 = c2: no ordered magnetism.
c3 increases if distance between atoms lowers.

If W >> U then c1 = c2 << c3

If W << U then c1 = c2 >> c3
a b W

19
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Localization in f electrons systems

4d 4d
W

At atmospheric pressure:
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[Mac Mahan, et al J. Comp.-Aid. Mater. Des. 5, 131 (1998)]
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Localization in f electrons systems
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Localization in f electrons systems

4f 4f W

Ln 4fn(6s5d)3

Eu 4f6(6s5d)3 ⇒ 4f7(6s5d)2

Yb 4f13(6s5d)3 ⇒ 4f14(6s5d)2

At atmospheric pressure:
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[Mac Mahan, et al J. Comp.-Aid. Mater. Des. 5, 131 (1998)]
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Isostructural transition in Cerium

Isostructural transition Vγ−Vα
Vγ

= 15%, ends at a critical point

Electronic configuration 4f1.

α phase: Pauli paramagnetism

⇒ α phase: f e−more delocalized.

γ phase: Curie Paramagnetism

⇒ γ phase: f e− is localized

[Johansson, B. Phil. Mag. 30, 469 (1974)]
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Transition in lanthanides.

We now discuss the equation of states of lanthanides
as a function of pressure.

At low pressure, compact structures.

Under pressure, more distorted structure

f electrons participate to the bonding

Figure from [Schiwek, (2002)]
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Localization in f electrons systems

4d element: filling of the 4d band
(Bonding states and antibonding):

4d electrons are delocalized .

Lanthanides: 4f electrons localized ,

negligible overlap between 4f orbitals .

Actinides: intermediate case of localiza-
tion.

At atmospheric pressure:
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[Mac Mahan, et al J. Comp.-Aid. Mater. Des. 5, 131 (1998)]
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THE EXACT HAMILTONIAN

The exact hamiltonien is (i, j are electrons)

H =
N∑
i=1

[−
1

2
∇2

ri
+ Vext(ri)] +

1

2

∑
i 6=j

1

|ri − rj |

It can be exactly rewritten in second quantization as (i, j are e.g. indices indicating atomic orbitals on all atoms)

H =
∑
i,j

〈φi| −
1

2
∇2

r + Vext(ri)|φj〉c†i cj +
1

2

∑
i,j,k,l

〈φiφj |
1

|r1 − r2|
|φkφl〉︸ ︷︷ ︸

Uijkl

c†i c
†
jckcl

Let’s simplify this exact hamiltonian
One orbital per atom: i and j indicates thus only the atom on which orbitals are centered.

Local interactions: i, j, k, l are relating to the same orbital on the same atom.

H =
∑
i

ε0( ni↑︸︷︷︸
c
†
i↑ci↑

+ni↓) +
∑

j 6=i,σ=↑,↓
tijc
†
iσcjσ︸ ︷︷ ︸

one electron term : delocalization

+
∑
i

Un̂i↑n̂i↓︸ ︷︷ ︸
interaction term : localization
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2

∑
i 6=j

1

|ri − rj |
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2

∑
i,j,k,l
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Uijkl

c†i c
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jckcl
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The Hubbard model: Competition between localization and delocalization

H =
∑
i

ε0(ni↑ + ni↓) +
∑

j 6=i,σ=↑,↓

tijc
†
iσcjσ +

∑
i

Un̂i↑n̂i↓

↓

↑

↓

↓

↓

↑

↑

↓

↓

↓

↑

↓

↓

↑↓

InteractionU

↑

↓

↓

U is the energy repulsion of two electrons on the same site.
For large value of the interaction U , electrons are localized
For low value of the interaction U , electrons are delocalized 26



The Hubbard model U = 0

In this limit, we neglect the interaction term.

H =
∑
i

ε0(ni↑ + ni↓) +
∑

j 6=i,σ=↑,↓
tijc
†
iσcjσ +

���
��

∑
i

Un̂i↑n̂i↓

In this case, one can easily solve this non interacting Hamiltonian either by direct diagonalisation or by using
Bloch states:

We can define Bloch states |k〉 as (−π
a
≤ k ≤ π

a
)

|ψk〉 =
1
√
N

∑
i

|φTi 〉e
ikTi

where |φTi 〉 are atomic orbitals: 〈r|φTi 〉 = φ(r − Ti) on site i. Does it satisfy the Bloch theorem (cf lecture by V.
Robert) ?

ψk(r + T ) =
1
√
N

∑
i

φTi (r + T )eikTi =
1
√
N

∑
i

φ(r + T − Ti)〉eikTi

ψk(r + T ) ==
1
√
N

∑
j

φ(r − Tj)〉eikTj eikT = ψk(r)eikT

We also have

|φTi 〉 =
1
√
N

∑
k

|ψk〉e−ikTi

27
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The Hubbard model U = 0

We also have the change of basis for creation and annihilation operators:

c†i =
1
√
N

∑
k

c†ke−ikTi ci =
1
√
N

∑
k

ckeikTi

As a consequence, one can show that (using that 1
N

∑
i ei(k−k

′)Ti = δkk′ show it!).

H =
∑
i

ε0(ni↑ + ni↓) +
∑

j 6=i,σ=↑,↓
tijc
†
iσcjσ =

∑
k

εkc
†
kck with εk = ε0 +

1

N

∑
i 6=j

tije
−ik(Ti−Tj)

In a simple case (one dimension and if tij is non zero only for neighboring atoms), we have :

εk = ε0 +
1

N

∑
i 6=j

tije
−ik(Ti−Tj) = ε0 +

1

N

N∑
i=1

[ti,i+1e−ik(−a) + ti,i−1e−ik(a)] = ε0 + 2tcos(ka)

28
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Toward the 1D chain: H2

For hydrogen molecule, hopping t induces a bonding state and an antibonding
states for the molecule.

-r
0 0 r

0
-r

0 0 r
0

a(r) b(r) a(r) b(r)

σg~(a+b) σu~(a-b)

29



The chain of atoms: εk = ε0 + 2tcos(ka) t < 0

-π/a π/a0
0

H
a

H
b

H
c

H
d

H
e

H
f

H
g

k=π/a

k=π/2a

k=π/4a

k=0

a

ψk(r) =
∑
i

e
ikTi

φ(r− Ti) = eik(r)
∑
n

e
−ik(r−Ti)

φ(r− Ti) = eik(r)uk(r) [Ti = ia]

30



Hubbard model with t = 0

H =
∑
i

ε0(ni↑ + ni↓) +
��������

∑
j 6=i,σ=↑,↓

tijc
†
iσcjσ +

∑
i

Un̂i↑n̂i↓

If t = 0 then

H =
∑
i

ε0(ni↑ + ni↓) +
∑
i

Un̂i↑n̂j↓

Atoms are disconnected, one can study one single atom !

H =
∑
i

[ε0(ni↑ + ni↓) + Un̂i↑n̂i↓] =
∑
i

Hi
atomic

31
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Hubbard model with t = 0

The isolated atom limit: t = 0

H = Un↑n↓ + ε0(n↑ + n↓)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?

0

↑ ↓ ε0

↑↓ 2ε0 + U

0

↑ ↓ ε0

↑↓ 2ε0 + U0

↑ ↓ ε0

↑↓ 2ε0 + U
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Direct photoemission

Ne−

hν

e−

(N − 1)e−

hν + EN = Ekin + EN−1

One can measure EN − EN−1

cf also F. Bruneval lecture.
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Inverse photoemission

Ne−

e−

hν

(N + 1)e−

Ekin + EN = hν + EN+1

One can measure EN+1 − EN
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Hubbard bands

The isolated atom limit: t = 0

H = Un↑n↓ + ε0(n↑ + n↓) = Un↑n↓ + ε0(n↑ + n↓)

0

↑ ↓ ε0

↑↓ 2ε0 + U
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Hubbard bands

The isolated atom limit: t = 0
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Hubbard bands

The isolated atom limit: t = 0

H = Un↑n↓ + ε0(n↑ + n↓) = Un↑n↓ + ε0(n↑ + n↓)

0

↑ ↓ ε0

↑↓ 2ε0 + U

ε0

ε0 + U

ε00→ 1

1→ 2 ε0 + U

U

35



Atomic case: Green’s function

We study the atomic problem with 1 electron.
Green’s function of the atom and Self-energy. Let’s use ε0 = −U/2 and the Lehman representation of the

Green’s function (F. Bruneval Lecture):

G(ω) =
1/2

ω + U/2
+

1/2

ω − U/2
=

ω

ω2 − (U/2)2

Equation of motion for the non interacting Green’s function.

(ω − ε0)G0(ω) = 1⇒ G0(ω) =
1

ω − ε0
=

1

ω + U/2

The Dyson eq writes:

Σ(ω) = G−1
0 −G−1 = ω + U/2−

ω2 − (U/2)2

ω
= U/2 +

(U/2)2

ω 36



Dynamical Mean Field Theory

The Hubbard model physics can be mimicked by an Anderson model + Self-consistency

37



Dynamical Mean Field Theory

The Hubbard model physics can be mimicked by an Anderson model + Self-consistency

≡

37



Dynamical Mean Field Theory

The Hubbard model physics can be mimicked by an Anderson model + Self-consistency

≡
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A. Georges and G.Kotliar Phys. Rev. B 45 (12) 6479 (1992)

Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J. Rozenberg Rev. Mod. Phys. 68, 13 (1996)
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Anderson Hamiltonian in the DMFT

ω1

ωk

ωN

H0a

ε0

role of U ?

H0b

HAnderson =

N∑
σ,k=1

ωka
+
k,σakσ︸ ︷︷ ︸

H0a

+ ε0(n↑ + n↓) + Un↑n↓︸ ︷︷ ︸
H0b
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HAnderson =

N∑
σ,k=1

ωka
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H0a

+
∑
k,σ

Vk(a+
k,σcσ + c+σ ak,σ)︸ ︷︷ ︸
H1
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Anderson Hamiltonian with Vk = 0: Hubbard bands

HAnderson =
∑

ωka
+
k,σakσ︸ ︷︷ ︸

H0a

+

�����������
∑
k,σ

Vk(a+
k,σcσ + c+σ ak,σ︸ ︷︷ ︸
H1

) + ε0(n↑ + n↓) + Un↑n↓︸ ︷︷ ︸
H0b

If Vk = 0,

then H1 = 0 thus :

HAnderson =
∑

ωka
+
k,σakσ︸ ︷︷ ︸

H0a

+ ε0(n↑ + n↓) + Un↑n↓︸ ︷︷ ︸
H0b

H0a and H0b are not coupled. Solution is equivalent to Hubbard model with t = 0: Hubbard
bands.
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Anderson hamiltonian U = 0

The hamiltonian writes:

HAnderson =
∑

ωka
+
k,σakσ +

∑
k,σ

Vk(a+k,σcσ + c+σ ak,σ) + ε0(n↑ + n↓)

With only one bath state, H is:
ε0 V1 ... Vk ... VN
V1 ω1 0 0 0 0
.... 0 ........ 0 0 0
Vk 0 0 ωk 0 0
... 0 0 0 ..... 0
VN 0 0 0 0 ωN


ω1

ωk

ωN

ε0
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The hamiltonian writes:

HAnderson =
∑

ωka
+
k,σakσ +

∑
k,σ

Vk(a+k,σcσ + c+σ ak,σ) + ε0(n↑ + n↓)

With only one bath state, H is:
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Vk 0 0 ωk 0 0
... 0 0 0 ..... 0
VN 0 0 0 0 ωN


ω1

ωk

ωN

ε0
V1

Vk

VN

This hamiltonian contains the hybridization of a single level ε0 to other levels. The level with move and will be
broadened by hybridization on other levels.
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Anderson hamiltonian U = 0

H is:
ε0 V1 ... Vk ... VN
V1 ω1 0 0 0 0
.... 0 ........ 0 0 0
Vk 0 0 ωk 0 0
... 0 0 0 ..... 0
VN 0 0 0 0 ωN


ω1

ωk

ωN

ε0
V1

Vk

VN

H is:(
ε0 V1
V1 ω1

)
ω1

ε0
V1
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Anderson hamiltonian U = 0

∣∣∣∣ ε0 − λ V1
V1 ω1 − λ

∣∣∣∣ = 0

Eigenvalues are the λ:

(ε0 − λ)(ω1 − λ)− V 2
1 = 0

Let’s now compute Green’s function poles, using the following relation, which comes from the equation of motion
of the Green’s function (which comes from the time Schrodinger eq (see lecture of P. Romaniello)).

G = (ωI −H)−1

G =

(
ω − ε0 V1
V1 ω − ω1

)−1

=
1

(ω − ε0)(ω − ω1)− V 2
1

(
ω − ε1 −V1
−V1 ω − ω0

)
The pole of G are indeed the eigenvalues of this two orbital model.
Let’s now focus on the element of the Greens function on the correlated orbitals G00

G00 =
ω − ε1

(ω − ε0)(ω − ω1)− V 2
1

=
1

ω − ε0 −
V 2
1

ω−ω1
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Spectral function

We can now compute the spectral function of this system by computing:

A(ω) = − 1

π
ImGR(ω + iδ) = − 1

π
Im

1

ω + iδ − ε0 − V 2
1

ω+iδ−ω1

ε0

ω1

A(ω)

V1 = 0

ε0

ω1

A(ω)

V1 = 1

ε0

ω1

A(ω)

V1 = 2
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Anderson Hamiltonian with U = 0.

H is:
ε0 V1 ... Vk ... VN
V1 ω1 0 0 0 0
.... 0 ........ 0 0 0
Vk 0 0 ωk 0 0
... 0 0 0 ..... 0
VN 0 0 0 0 ωN



G = (ωI −H)−1

We can inverse this matrix and compute the Green’s function of the correlated orbital (Using
A−1 = Com(A)T /detA to inverse I −H). We obtain as a generalisation of the previous result:

G(ω) =
1

ω − ε0 −∆(ω)
with ∆(ω) =

∑
k

V 2
k

ω − ωk

Where ∆(ω) is called the hybridization function.
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Anderson Hamiltonian with U = 0.

We can now compute the spectral function of this system by com-
puting:

A(ω) = −
1

π
ImGR(ω + iδ) = −

1

π
Im

1

ω + iδ − ε0 −∆(ω + iδ)

We need

∆(ω + iδ) =
∑
k

V 2
k

ω + iδ − ωk

Re∆ =
∑
k

V 2
k

(ω − ωk)2 + δ2
Im∆ =

∑
k

−δV 2
k

(ω − ωk)2 + δ2
.

And with limδ→0
1
π

δ
x2+δ2

= δ(x)

Im∆ = −π
∑
k

V 2
k δ(ω − ωk) ' −π|V |2ρ(ω)

A(ω) = −
1

π
ImGR(ω + iδ) = −

1

π

Im∆

(ω − ε0 − Re∆)2 + Im∆2

ω1

ωk

ωN

ε0
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π
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ωk

ωN

ε0

V1

Vk

VN

Re∆
Im∆
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Anderson Hamiltonian; Hubbard band with hybridization ?

−U/2

U/2

−U/2

U/2
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title

ω1

ωk

ωN

ε0

V1

Vk

VN ω1

ε0

V1

Size of the Hilbert space ?
If N=2 electrons ?
If U =∞ ?

47



Anderson Hamiltonian: one orbital for the bath.

ω1

2ε0 + U =∞

ε0
V1

V = 0
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ω1−ε0

Because of hybridization, the ground state is a many body problem
Because of U , the ground state is a many body problem
Because of U and hybridization, the ground state is not magnetic.
The formation of a singlet is the essence of the Kondo effect.
There is a low energy excitation ' V 2

ω1−ε0
Fulde 1988
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The Anderson model: 3 peak structure

Hubbard bands are due to charge fluctuations (as in the atomic case)
Quasiparticle peak is linked to spin fluctuations (see Anderson molecule)
(from Georges et al RMP 1996)
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The Anderson Hamiltonian (solved by CTQMC)

W

H0a

ε0

ε0 + U

H0b

E Gull, AJ Millis, AI Lichtenstein, AN Rubtsov, M Troyer, P Werner Reviews of Modern Physics 83 (2), 349 (2011)
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The Anderson Hamiltonian (solved by CTQMC)
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H0a
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H0b
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HAnderson =
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ωka
+
k,σakσ︸ ︷︷ ︸

H0a
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∑
k,σ

Vkfa
+
k,σfσ︸ ︷︷ ︸

H1

+
∑
σ

εff
+
σ fσ + Unf↑nf↓︸ ︷︷ ︸

H0b

E Gull, AJ Millis, AI Lichtenstein, AN Rubtsov, M Troyer, P Werner Reviews of Modern Physics 83 (2), 349 (2011)
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+
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σ

εff
+
σ fσ + Unf↑nf↓︸ ︷︷ ︸

H0b

Continuous Time Quantum Monte Carlo: Expansion as a function of H1
[P. Werner, A. Comanac, L. de medici, M. Troyer and A. J. Millis Phys. Rev. Lett. 97, 076405 (2006)] E Gull, AJ Millis, AI Lichtenstein, AN Rubtsov, M Troyer, P Werner Reviews of
Modern Physics 83 (2), 349 (2011)
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The self consistency condition and the DMFT loop

The equation of Motion of the Green’s function (see lecture from P. Romaniello) is

(ω −H − Σ)G = 1

It is an equation for operators and it directly comes from the time dependent Schrödinger Eq. for creation and
annihilation operators. One can insert the closure relation for Bloch states which is∑
k′
|ψk′ 〉〈ψk′ | = 1

We thus have:

(ω −H − Σ)
∑
k′
|ψk′ 〉〈ψk′ |G = 1

We can project on the left and right by ψk:

〈ψk|(ω −H − Σ)
∑
k′
|ψk′ 〉〈ψk′ |G|ψk〉 = 1

thus

[ω − εk − Σk(ω)]Gk(ω)

the lattice Green’s function for the Hubbard model is written:

Gk(ω) =
1

ω − εk − Σk(ω) 51



Green’s function of the lattice

The Green’s function of the lattice in real space writes:

Glocal
ij (ω) =

1

N

∑
k

eik(Ti−Tj)Gk(ω) =
1

N

∑
k

Gk(ω)

The local Green’s function of the lattice is

Glocal
ii (ω) =

1

N

∑
k

eik(Ti−Ti)Gk(ω) =
1

N

∑
k

Gk(ω)

Glocal
ii (ω) =

1

N

∑
k

1

ω − εk − Σk(ω)
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Green’s function of the Anderson model

From the equation of motion:
G = (ωI −H − Σ)−1

with H + Σ is:
ε0 + Σ V1 ... Vk ... VN
V1 ω1 0 0 0 0
.... 0 ........ 0 0 0
Vk 0 0 ωk 0 0
... 0 0 0 ..... 0
VN 0 0 0 0 ωN


we can show using exactly the same derivation as for U = 0:

GAnderson(ω) =
1

ω − ε0 −∆(ω)− Σ(ω)

or equivalently using the Dyson equation using the expression of G−1
0

G−1 = G−1
0 − Σ = ωI −H −∆− Σ

GAnderson(ω) =
1
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Green’s function of the Anderson model

From the equation of motion:
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ε0 + Σ V1 ... Vk ... VN
V1 ω1 0 0 0 0
.... 0 ........ 0 0 0
Vk 0 0 ωk 0 0
... 0 0 0 ..... 0
VN 0 0 0 0 ωN


we can show using exactly the same derivation as for U = 0:

GAnderson(ω) =
1

ω − ε0 −∆(ω)− Σ(ω)

or equivalently using the Dyson equation using the expression of G−1
0

G−1 = G−1
0 − Σ = ωI −H −∆− Σ

GAnderson(ω) =
1

ω − ε0 −∆(ω)− Σ(ω)
53



The self consistency condition and the DMFT loop

For one atom in the solid, the local Green’s function is

Glocal
ii (ω) =

1

N

∑
k

1

ω − εk − Σk(ω)

For the Anderson model, the correlated orbital Green’s function is:

GAnderson(ω) =
1

ω − ε0 −∆(ω)− Σ(ω)

What could be the self-consistency relation ?
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The self consistency condition and the DMFT loop

For one atom in the solid, the local Green’s function is

Glocal
ii (ω) =

1

N

∑
k

1

ω − εk − Σk(ω)

For the Anderson model, the correlated orbital Green’s function is:

GAnderson(ω) =
1

ω − ε0 −∆(ω)− Σ(ω)

Identity of spectral functions for the lattice and for the Anderson model

− 1

π
Im[Glocal

ii (ω)] = − 1

π
Im[GAnderson]
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The self consistency condition and the DMFT loop

For one atom in the solid, the local Green’s function is

Glocal
ii (ω) =

1

N

∑
k

1

ω − εk − Σk(ω)

For the Anderson model, the correlated orbital Green’s function is:

GAnderson(ω) =
1

ω − ε0 −∆(ω)− Σ(ω)

The DMFT idea is to identify the two Green’s function and the Self-energies:

Glocal
ii (ω) = GAnderson(ω) ⇒ 1

N

∑
k

1

ω − εk − Σ(ω)
=

1

ω − ε0 −∆(ω)− Σ(ω)

54



DMFT scheme

Glocal
ii (ω) =

1

N

∑
k

1

ω − εk − Σk(ω)

GAnderson(ω) =
1

ω − ε0 −∆(ω)− Σ(ω)

Glocal
ii (ω) = GAnderson(ω)

DMFT Loop

Compute lattice Green’s function
Glocal(ω) = 1

N

∑
k

1
ω−εk−Σ(ω)

Compute hybridization function
1

ω−ε0−∆(ω)−Σ(ω) = Glocal

Glocal(ω)

Impurity Solver (CTQMC)

∆(ω)

Compute Self-energy
1

ω−ε0−∆(ω)−Σ(ω) = G

G(ω)

Σ(ω)
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The self consistency condition and the DMFT loop

1

N

∑
k

1

ω − εk − Σ(ω)
=

1

ω − ε0 −∆(ω)− Σ(ω)

If t = 0, then εk = ε0 and ∆ = 0 thus, the self-consistency is always fulfilled. The
Anderson model can be solved only one time to give the exact solution.

1

N

∑
k

1

ω − ε0 − Σ(ω)
=

1

ω − ε0 − Σ(ω)

If U = 0, then the lattice Green’s function and the local Green’s function are exact.

1

N

∑
k

1

ω − εk
=

1

ω − ε0 −∆(ω)

The Green’s function is exact in the two cases. The self-consistency has no effect. 56



Phase diagram of Hubbard model in DMFT

Watzenböck et al Scipost (2022)
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Phase diagram of Hubbard model in DMFT

 U/t

T
em

pe
ra

tu
re

Phase diagram T, U

Metal Insulator

C
oexistence

(localized 4f )

(delocalized 4f )

U/t

Figure: Phase diagram of the Hubbard model in DMFT compared to phase diagram of Cerium.
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Phase diagram of Hubbard model in DMFT
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Spectral function of Hubbard model in DMFT
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DFT : The Kohn Sham Equations

The total energy expression as a function of φ(r) is

Evext [n(r)] = −
∑
i

∫
φ∗i (r)

∇2

2
φi(r)dr +

∫
drvext(r)n(r) + EHartree[n(r)] + Exc[n(r)]

and can be minimized.

One obtains the one electron Kohn-Sham Equations[
−
∇2

2
+ VKS(r)

]
φi(r) = εiφi(r)

The effective Kohn Sham potential VKS(r) is defined as a the functional derivative of the last three terms of
the energy:

VKS(r) = vext(r) +

∫
dr′

n(r′)

|r− r′|
+ vxc[n(r)](r)

The exchange and correlation potential vxc(r) is

vxc(r) =
δExc[n(r)]

δn(r)
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From DFT to DFT+DMFT

DMFT

Glattice
k (ω) =

1

ω − εk − Σk(ω)

Glocal
ii (ω) =

1

N

∑
k

Glattice
k (ω)

For the Anderson model, the correlated
orbital Green’s function is:

GAnderson(ω) =
1

ω − ε0 −∆(ω)− Σ(ω)

DFT + DMFT

εk= Kohn Sham eigenvalues -
double counting correction
The local Green’s function is
defined on correlated orbitals.
⇒ G and Σ are matrices
Need a projection from Kohn
Sham states to correlated
orbitals. 〈Ψnk|χlm〉
The Anderson model is
multiorbital, e.g. 10 (d) or 14
(f ) orbitals.
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The DMFT Loop

DMFT Loop

Compute lattice Green’s function
Glocal(ω) = 1

N

∑
k

1
ω−εk−Σ(ω)

Compute hybridization function
1

ω−ε0−∆(ω)−Σ(ω) = Glocal

Glocal(ω)

Impurity Solver (CTQMC)

∆(ω)

Compute Self-energy
1

ω−ε0−∆(ω)−Σ(ω) = G

G(ω)

Σ(ω)
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The DMFT Loop

DMFT Loop
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Reminder about Hubbard model

Local quantities are expressed in a basis of correlated orbitals.

Σ̂(ω) =
∑
T

|χT〉Σ(ω)〈χT|

where χT is the unique orbital on the atom at T and T are the lattice vectors.
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The DMFT Loop
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Reminder about Hubbard model

Lattice Green’s functions are expressed in Bloch eigenvectors of the non interacting
Hamiltonian (εk = 1

N

∑
ij tije

−ik(Ti−Tj))

Ĥ0 = |χk〉εk〈χk|

with

|χk〉 =
1√
N

∑
T

|χT〉eikT

where T are lattice vectors.
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The DMFT Loop
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The DMFT Loop

DMFT Loop

Compute lattice Green’s function
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How to apply such idea for a real solid, with both strongly interacting orbitals, and
weakly interacting orbitals 67



DFT+DMFT scheme

DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define correlated or-
bitals and Hamiltonian

Compute lattice Green’s function
Glocal(ω) = 1
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∑
k
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New electronic density

68



DFT+DMFT scheme

DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define correlated or-
bitals and Hamiltonian

Compute lattice Green’s function
Glocal(ω) = 1

N

∑
k

1
ω−εk−Σ(ω)

Compute hybridization function
1

ω−ε0−∆(ω)−Σ(ω) = Glocal

Impurity Solver (CTQMC)

∆(ω)

Compute Self-energy
1

ω−ε0−∆(ω)−Σ(ω) = G

G(ω)

Σ(ω)

New electronic density

Local quantities

68



Correlated orbitals: what are they

For d orbitals (l=2), m ∈ {−2,−1, 0, 1, 2}, a correlated atomic orbital writes:

χm(r) = 〈r|χm〉 = R(r)Ym(θ, φ)

The angular part Ym(θ, φ) is well defined.
The radial part R(r) is not defined in a solid.

In a first step, let’s assume that we have found a good choice for R(r) and thus |χm〉 is
defined.
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In a real system in DFT+DMFT

Local Quantity are expressed in a basis of correlated orbitals.

Σ̂(ω) =
∑

m,m′,T

|χR
Tm〉Σm,m′(ω)〈χR

Tm′ |

where m,m′ ∈ −l, ..., l and χR
Tm is an orbital whose angular part is Ylm. Note that

Σm,m′ can be a matrix and have non diagonal elements.

[ for Hubbard model

Σ̂(ω) =
∑
T

|χT〉Σ(ω)〈χT|

]
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In a real system in DFT+DMFT

DFT Hamiltonian and thus lattice Green’s functions are more easily expressed in
Bloch eigenvectors of the DFT Kohn Sham Hamiltonian.

ĤKS = |Ψkν〉εkν〈Ψkν |

Where Ψkν are one electron Kohn Sham wave function for the k-point k and band
number ν.
Ψkν contains both correlated atomic orbitals and other non correlated orbitals.
(Reminder: in the Hubbard model, the analogue of Ψkν was just the Bloch transform
of atomic orbitals.)
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In a real system in DFT+DMFT

Local quantities such as Σ̂ can be computed in the Bloch basis:

Σνν′k(ω) = 〈Ψkν |Σ̂(ω)|Ψkν′〉 =
∑

m,m′,T

〈Ψkν |χR
Tm〉Σmm′(ω)〈χR

Tm′ |Ψkν′〉

Using |χR
Tm〉 = 1√

N

∑
k |χR

km〉e−ikT, one arrive to

Σνν′k(ω) =
∑
m,m′

〈Ψkν |χR
km〉Σmm′(ω)〈χR

km′ |Ψkν′〉

Note that now, the self-energy is a k dependent quantity, because of weight of orbitals
over Kohn Sham states depends on the k-point.
[ for Hubbard model Σk(ω) = Σ(ω) ]
From the Self energy, the full lattice Green’s function in the Kohn Sham basis

G−1(ω) = G−1
KS(ω)−∆Σ(ω) = (ω −HKS)I −∆Σ(ω)

Gνν′k(ω) = [ω − εkν −∆Σνν′k(ω)]
−1
νν′k

[ for Hubbard model Gk(ω) = 1
ω−εk−Σ(ω) ]

73



In a real system in DFT+DMFT

Local quantities such as Σ̂ can be computed in the Bloch basis:

Σνν′k(ω) = 〈Ψkν |Σ̂(ω)|Ψkν′〉 =
∑

m,m′,T

〈Ψkν |χR
Tm〉Σmm′(ω)〈χR

Tm′ |Ψkν′〉

Using |χR
Tm〉 = 1√

N

∑
k |χR

km〉e−ikT, one arrive to

Σνν′k(ω) =
∑
m,m′

〈Ψkν |χR
km〉Σmm′(ω)〈χR

km′ |Ψkν′〉

Note that now, the self-energy is a k dependent quantity, because of weight of orbitals
over Kohn Sham states depends on the k-point.

[ for Hubbard model Σk(ω) = Σ(ω) ]
From the Self energy, the full lattice Green’s function in the Kohn Sham basis

G−1(ω) = G−1
KS(ω)−∆Σ(ω) = (ω −HKS)I −∆Σ(ω)

Gνν′k(ω) = [ω − εkν −∆Σνν′k(ω)]
−1
νν′k

[ for Hubbard model Gk(ω) = 1
ω−εk−Σ(ω) ]

73



In a real system in DFT+DMFT

Local quantities such as Σ̂ can be computed in the Bloch basis:

Σνν′k(ω) = 〈Ψkν |Σ̂(ω)|Ψkν′〉 =
∑

m,m′,T

〈Ψkν |χR
Tm〉Σmm′(ω)〈χR

Tm′ |Ψkν′〉

Using |χR
Tm〉 = 1√

N

∑
k |χR

km〉e−ikT, one arrive to

Σνν′k(ω) =
∑
m,m′

〈Ψkν |χR
km〉Σmm′(ω)〈χR

km′ |Ψkν′〉

Note that now, the self-energy is a k dependent quantity, because of weight of orbitals
over Kohn Sham states depends on the k-point.
[ for Hubbard model Σk(ω) = Σ(ω) ]

From the Self energy, the full lattice Green’s function in the Kohn Sham basis

G−1(ω) = G−1
KS(ω)−∆Σ(ω) = (ω −HKS)I −∆Σ(ω)

Gνν′k(ω) = [ω − εkν −∆Σνν′k(ω)]
−1
νν′k

[ for Hubbard model Gk(ω) = 1
ω−εk−Σ(ω) ]

73



In a real system in DFT+DMFT

Local quantities such as Σ̂ can be computed in the Bloch basis:

Σνν′k(ω) = 〈Ψkν |Σ̂(ω)|Ψkν′〉 =
∑

m,m′,T

〈Ψkν |χR
Tm〉Σmm′(ω)〈χR

Tm′ |Ψkν′〉

Using |χR
Tm〉 = 1√

N

∑
k |χR

km〉e−ikT, one arrive to

Σνν′k(ω) =
∑
m,m′

〈Ψkν |χR
km〉Σmm′(ω)〈χR

km′ |Ψkν′〉

Note that now, the self-energy is a k dependent quantity, because of weight of orbitals
over Kohn Sham states depends on the k-point.
[ for Hubbard model Σk(ω) = Σ(ω) ]
From the Self energy, the full lattice Green’s function in the Kohn Sham basis

G−1(ω) = G−1
KS(ω)−∆Σ(ω) = (ω −HKS)I −∆Σ(ω)

Gνν′k(ω) = [ω − εkν −∆Σνν′k(ω)]
−1
νν′k

[ for Hubbard model Gk(ω) = 1
ω−εk−Σ(ω) ]

73



In a real system in DFT+DMFT

Local quantities such as Σ̂ can be computed in the Bloch basis:

Σνν′k(ω) = 〈Ψkν |Σ̂(ω)|Ψkν′〉 =
∑

m,m′,T

〈Ψkν |χR
Tm〉Σmm′(ω)〈χR

Tm′ |Ψkν′〉

Using |χR
Tm〉 = 1√

N

∑
k |χR

km〉e−ikT, one arrive to

Σνν′k(ω) =
∑
m,m′

〈Ψkν |χR
km〉Σmm′(ω)〈χR

km′ |Ψkν′〉

Note that now, the self-energy is a k dependent quantity, because of weight of orbitals
over Kohn Sham states depends on the k-point.
[ for Hubbard model Σk(ω) = Σ(ω) ]
From the Self energy, the full lattice Green’s function in the Kohn Sham basis

G−1(ω) = G−1
KS(ω)−∆Σ(ω) = (ω −HKS)I −∆Σ(ω)

Gνν′k(ω) = [ω − εkν −∆Σνν′k(ω)]
−1
νν′k

[ for Hubbard model Gk(ω) = 1
ω−εk−Σ(ω) ] 73



In a real system in DFT+DMFT

Using the operator expression of the lattice Green’s function

Ĝ(ω) =
∑
νν′k

|Ψkν〉Gνν′k(ω)〈Ψkν′ |

One can write the local Green’s function as:

Gmm′(ω) =
∑
νν′k

〈χR
Tm|Ψkν〉Gνν′k(ω)〈Ψkν′ |χR

Tm′〉

for Hubbard model G(ω) =
∑
k

Gk(ω)
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Ĝ(ω) =
∑
νν′k

|Ψkν〉Gνν′k(ω)〈Ψkν′ |

One can write the local Green’s function as:

Gmm′(ω) =
∑
νν′k

〈χR
Tm|Ψkν〉Gνν′k(ω)〈Ψkν′ |χR

Tm′〉

for Hubbard model G(ω) =
∑
k

Gk(ω)

74



From DFT to DFT+DMFT

DMFT

Glattice
k (ω) =

1

ω − εk − Σk(ω)

Glocal(ω) =
1

N

∑
k

Glattice
k (ω)

For the Anderson model, the correlated
orbital Green’s function is:

GAnderson(ω) =
1

ω − ε0 −∆(ω)− Σ(ω)

DFT + DMFT

Glattice
n,n′k (ω) =

1

ω − εnk − Σnn′k(ω)

Glocal
mm′ (ω) =

∑
k,n,n′

〈χkm|Ψkn〉Gnn′ (k, ω)〈Ψkn′ |χkm′ 〉

For the Anderson model, the correlated orbital Green’s
function is:

GAnderson
mm′ (ω) = [ωI − E0 −∆(ω)− Σ(ω)]−1

∣∣
mm′
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Definition of correlated orbitals: example of SrVO3.

Need a projection from Kohn Sham states to correlated orbitals. 〈Ψnk|χlm〉
A possible choice for correlation orbitals is Wannier functions.
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Definition of correlated orbitals: example of SrVO3.
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Extended Wannier function

Wannier orbitals are made from Vdt2g bands so, they are not pure dt2g orbitals because of the
hybridization
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Definition of correlated orbitals: example of SrVO3.

Need a projection from Kohn Sham states to correlated orbitals. 〈Ψnk|χlm〉
A possible choice for correlation orbitals is Wannier functions.
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V
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O-p

R Γ X M Γ

V-t
2g

R Γ X M Γ

V-e
g

Wannier dp

Op Op

Op

Op

Vd

Localized Wannier function

Wannier orbitals are made from Vdt2g bands and O p bands so, they are closer to dt2g orbitals
because more t2g character is taken into account.
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Double counting of interactions

Double counting corrections: Atomic limit (or Full localized limit) [Lichtenstein(1995), Anisimov (1991)]:

EFLL
dc =

∑
t

(
U

2
N(N − 1)−

∑
σ

J

2
Nσ(Nσ − 1))

Around mean field version [Czyzyk(1994)] (delocalized limit):

EAMF
dc =

∑
t

(UN↑N↓ +
1

2
(N2
↑ +N2

↓ )
2l

2l + 1
(U − J))

(Made to correct the delocalized limit.)

GAnderson(ω) =
1

ω − ε0 −∆(ω)− [Σ(ω)− Σdc(ω)]
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DFT+DMFT scheme
DFT

DMFT Loop

Diagonalize HKS

Kohn-Sham Hamiltonian HKS

Define correlated or-
bitals and Hamiltonian

Compute lattice Green’s function
Glocal(ω) = 1

N

∑
k

1
ω−εk−Σ(ω)

Compute hybridization function
1

ω−ε0−∆(ω)−Σ(ω) = Glocal

Impurity Solver (CTQMC)

∆(ω)

Compute Self-energy
1

ω−ε0−∆(ω)−Σ(ω) = G

G(ω)

Σ(ω)

New electronic density

More generally, DFT+DMFT can be expressed as functional of the local Green’s function
and the electronic density⇒ Internal and free energies can be computed. 78
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A functional of the density and the local Green’s function

Theory DFT Green’s fct Functional Theory
Interaction functional EHa+xc[n(r)] Φ̂U [G]
Interaction potential vHa+xc Self energy Σ
Equivalent system non interacting system non interacting system

with a effective potential with a frequency dependent potential
(self energy)

Approximation LDA DMFT
Reference system Homogeneous electron gas Anderson Impurity model
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DFT+U

Introduction to correlations.
Dynamical Mean Field Theory (DMFT).
Density Functional Theory and DMFT
Calculation of effective interaction U .
DFT+U .
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How to compute the effective interaction ?

1
|r1−r2|

(1−δ)2
|r1−r2|

1− δ

1− δ

Screening
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Methods to compute U

U is the screened interaction between electrons:
Direct calculation of interactions in LDA by constraint LDA 1

The coupling between d electrons and others is removed for the calculation.

Direct approach by linear response theory 3

The d local potential is modified, the number of correlated electrons changes, and the
rearrangement of electrons around the atom describes the screening

Calculation using the screening from LDA (cRPA formalism 2)
Frequency dependent interaction.

Empirical determination.
(1) Anisimov and Gunnarsson PRB 43 7570 (1991)

(2) Aryasetiawan, et al PRB 70 195104 (2004)

(3) Cococcioni and de Gironcoli PRB 71 035105 (2006)
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The cRPA approach.
The Constrained RPA Method 7.11

Pd

Pr

r

r

d

Pr

Polarisation: P = Pd + Pr

EF

Fig. 3: A schematic picture explaining the meaning of and . While is confined to the
transitions within the subspace, may contain transitions between the and subspaces.

occ unocc

(47)

where are usually chosen to be the Kohn-Sham eigenfunctions and eigenvalues and
is a combined index for the -vector and the spin . For systems without spin-

flipping processes, and evidently have the same spin. has exactly the same form as in
Eq. (47) but with the bands and restricted to the subspace. We note that contains
not only transitions inside the subspace but also transitions between the and subspaces as
illustrated in Fig. 3.
Since does not contain low-energy polarisations that are responsible for metallic screening,
becomes long range. The asymptotic decay of as a function of distance is expected to

behave according to where rather than exponential, as often assumed. This
behaviour is illustrated, e.g., in the case of the BEDT-TTF organic conductors [17].
It may be argued that for narrow-band materials with strong correlations it would not be suffi-
cient to calculate within the RPA. We would like to point out that from a physical point of
view much of the error in the RPA resides in rather than because the former corresponds
to the polarisation of the narrow bands, where we expect vertex corrections to the RPA to be
large, whereas the latter corresponds to polarisation involving more extended states, for which
the RPA is supposed to perform well. Since it is that enters into the calculation of , we
expect that the error in the RPA has much less influence on than one would anticipate
In practice, Eq. (44) is solved by introducing a set of basis functions, and the choice of basis
functions depends on the band-structure method. For band-structure methods based on pseu-
dopotentials, a plane-wave basis set is a natural choice. For band-structure methods based on

In cRPA, all excitations are taken into account except the one belonging to the
correlated subshell.

εr(ω) = 1− vPr(ω).

and Pr is the cRPA non interacting polarisability (see lectures of F. Bruneval) which
describes transitions between occupied and empty states.
Picture from F. Aryasetiawan, The LDA+DMFT approach to strongly correlated materials E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein (Eds.), Forschungszentrum JÃ 1

4
lich

(2011).
F. Aryasetiawan, Imada, Georges, Kotliar, Biermann et Lichtenstein PRB 2004.
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The cRPA approach.

We call here χ0 the non interacting (Kohn-Sham) polarizability of the system. Let’s now
separate the correlated states (They could be d states but the method is more general and
correlated orbitals could gather several orbitals from e.g different atoms) from the rest (r).
We thus have:

χ0 = χcorrel
0 + χr0

thus, we can rewrite the inverse dielectric matrix as:

ε−1 =
1

1− v(χcorrel
0 + χr0)

We now define the dielectric function due to correlated electrons as
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The cRPA approach.

ε−1
correl=̂

1

1−Wrχcorrel
0

,

the dielectric function of the other electrons as

ε−1
r =̂

1

1− vχr0
,

and the interaction screened only by the other (r) electrons as:

Wr =
v

1− vχr0
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The cRPA approach.

With these definitions, one shows that

ε−1
correlε

−1
r = ... =

1

1− vχr0 − vχcorrel
0

=
1

1− vχ0
= ε−1

Thus, we have

W =̂ε−1v = ε−1
correlε

−1
r v

We can interpret this result: The fully screened RPA interaction is the combination of two
screening processes. First, the bare interaction is screened by non-correlated electrons
(r), and it gives rises to a screened interaction Wr. Secondly the screening of this
interaction by correlated electrons recovers the fully screened interaction.
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Definition of correlated orbitals: example of SrVO3.
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Definition of correlated orbitals: example of SrVO3.
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Wannier dp

Bare interaction can be computed as:

v = 〈χχ| 1

r1 − r2
|χχ〉

Wannier function bare interaction v (eV)
Wannier d 15.3
Wannier dp 19.4
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DFT+U

Introduction to correlations.
Dynamical Mean Field Theory (DMFT).
Density Functional Theory and DMFT
Calculation of effective interaction U .
DFT+U .
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Rotationnaly invariant DFT+U [Lichtenstein et al (1995)]

The interaction part corresponds to :

ECoulomb
HF =

1

2

∑
i,j

[∫
φi(r)φj(r

′)
1

|r− r′|φi(r)φj(r
′) −

∫
φi(r)φj(r

′)
1

|r− r′|φj(r)φi(r
′)

]
Expand the wavefunctions on a new basis: the basis of Vanadium d orbitals and Oxygen p orbitals:

|φi〉 =
∑

d,m=−2...2

〈χd,m|φi〉|χd,m〉+ (
∑

p,m=−1...1

〈χp,m|φi〉|χp,m〉) + ......︸ ︷︷ ︸
neglected

and show that (blackboard or exercice):

ECoulomb
HF =

1

2

∑
m1,m2,m3,m4

[
〈χm1χm2 |

1

|r− r′| |χm3χm4〉nm4,m2nm3,m1 −〈χm1χm2 |
1

|r− r′| |χm3χm4〉nm3,m2nm4,m1

]
nV d,m1,m2 =

∑
i

〈φi|χd,m1〉〈χV d,m2 |φi〉

In the cubic symmetry, density matrices are diagonal and thus

ECoulomb
HF =

1

2

∑
m1,m2

[〈χm1χm2 |V |χm1χm2〉nm2,m2nm1,m1 − 〈χm1χm2 |V |χm2χm1〉nm2,m2nm1,m1 ]

Lichtenstein et al PRB (1995)
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DFT+U

Thus , in the simplest case (restoring spin):

EU
HF =

1

2

∑
m1,m2,σ

Um1,m2n
σ
m2
n−σm1

+
∑

m1,m2,σ

(Um1,m2
− Jm1,m2

)nσm2
nσm1

U

J

U − J

Let’s simplify even more, neglecting J and using a constant U .

EU
HF =

1

2

∑
m1,m2

Unm2
nm1

=
∑

m1>m2

Unm2
nm1

If we have 2l + 1 orbitals, the number of interactions is 2l(2l + 1). The interaction is taken
into account twice ! One in Exc, one in ECoulomb ! We need to cancel the DFT contribution,
a proposition is:

E
dc(=double counting)
HF = U

N(N − 1)

2
with N = Tr[nm1 ]
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Basic effects of the static mean field approximation (DFT+U)

EU =
∑

m1>m2

Unm2
nm1

U favors integer occupation of
orbitals
It penalizes non integer values.

EU = 0.5× 0.5U = 0.125U

EU = 0× 1U = 0

0.50.5

1.0
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Basic effects of the static mean field approximation (DFT+U)

E = EDFT − U
N(N − 1)

2
+
U

2

∑
m 6=m′

nmnm′ ⇒ V = VDFT −
∑
m

|χm〉U(nm −
1

2
)〈χm|

(do it in exercice !)
nm = 0 , V = VDFT + U

2

nm = 1 , V = VDFT − U
2

⇒ A gap is opened among correlated orbitals.
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Charge transfert insulators and Mott Hubbard insulators

Mott insulators: Gap excitations
are d-d (or f-f)
ie between Hubbard bands.

Charge Transfert insulators:
Gap excitations are Op-d (Or
Op-f)
Correlation opens the gap in the
two cases !
Imada RMP (1998)

Zaanen, Sawatzky, and Allen PRL (1985)
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Main effects of Mean Field approximation (DFT+U)

FeO (d6): insulator in DFT+U
Cococcioniet al PRB 71 2005

LDA LDA+U

UO2 (f2): antiferromagnetic, insulator
Gapexp=2.1 eV

electrons localization: volume increases in DFT+U

Dudarev et al Micron 31 2000 95



γ cerium (paramagnetic)

Spectral functions: basic features are reproduced.

-5 0 5 10
(eV)

Ce γ

 (LDA)

-5 0 5 10
ω (eV)

Experiment (Wuilloud et al 1983, Wieliczka et al 1984)

-5 0 5 10
ω (eV)

Theory (LDA+U)

Structural data
⇒ Electron repulsion induces a weaken-
ing of the bonding.
(1) Shick, Pickett, Lichtenstein 2000,

Amadon, Jollet, Torrent PRB 2008.

Exp DFT+U1 DFT
alat (au) 9.76 9.83/9.54 8.54
B0 (GPa) 19 29.6/34 55

But: The α phase is not correctly described, magnetism is incorrect (except for the β
phase), no transitions.
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Some limitations of the DFT+U method

Mean Field solution : Fixed (frozen) occupancies.
Magnetic order: Paramagnetic insulators cannot be described.

V2O3, γ Cerium.

Orbital order and anisotropy are overestimated
Electrons are frozen.

Metallic and correlated phase are out of reach (α Cerium, SrVO3).
Transition induced by localization cannot be described.
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Spectral functions of cerium

α
γ

-5 0 5 10
ω (eV)

-5 0 5 10
ω (eV)

DFT/LDA DFT+DMFT

DFT/LDA+U Experiment

Theoretical spectral functions compared to photoemission spectra

Amadon et al PRB 2015
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Conclusion

Strong correlations
Localized orbitals induce strong electronic Coulomb interaction.
This repulsion can induce strong localization of electrons and creates Mott insulator.
Hubbard bands and Kondo effects are signatures of strong interaction.
DMFT can describe both localized and delocalized electron and metal insulator transition.

DMFT
DMFT is exact in infinite dimensions, at U = 0 and t = 0.
It can describe Kondo-like features in photoemission
Structural properties can also be computed (phase transition, elastic properties)
CTQMC, ED, DMRG, can be used as solvers.

Some quantities that can be obtained:
Photoemission spectra and various core spectroscopies.
Total and free energy.
Phonons and elastic properties.
Magnetic susceptibility (Curie, Pauli), Curie temperature.

Perspectives
Include non local interactions and correlations: Cluster-DMFT
Treat also weak correlation effects and more ab-initio (no parameters): GW+DMFT
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Pauli paramagnetism

E

N(E)

↓↑

B

↓↑

E

N(E)

B

↓↑

E

N(E)

Small magnetic moment, linear with B.
Pauli paramagnetism (temperature independent)
For simple metals (Na,Al): Pauli paramagnetism
Exercice : Derive the susceptibility and show that it is independent of temperature.
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Curie Weiss paramagnetism and ferromagnetism

Ferromagnetism
T=0 large magnetic
moment

T increases, magnetic
moment lowers (thermal
effect).
Curie temperature
(disordered fluctuating
moments)
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What happens at large temperature ?
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Susceptibility in cerium

Naka et al (1995) 103



An oversimplified derivation

φV

φOε1

Ψ1 = αφO + βφV β ≪ α

ε2

Ψ2 = βφO − αφV β ≪ α

New trends in computational approaches for many-body systems, June 2012, Sherbrooke – p.24/70

Two windows of energy are possible to compute

|χ̃〉 =
∑
i∈W
〈Ψi|φV 〉|Ψi〉

IfW = {ε2}, the correlated wavefunction is |χ̃〉 = |Ψ2〉 = β|φO〉 − α|φV 〉. No
renormalization is necessary thus |w〉 = |χ̃〉. It contains an Oxygen contribution
IfW = {ε1, ε2}, the correlated wavefunction is
|χ̃〉 =

∑
i〈Ψi|φV 〉|Ψi〉 = |φV 〉 and is much more localized. 104



Calculation of 〈m1m3|V |m2m4〉

One uses 1
r12

=
∑∞
k=0

∑k
m=−k

4π
2k+1

rk<
rk+1
>

Y mk (θ1, φ1)Y m∗k (θ2, φ2) and after some

manipulations: 〈m1m3|Vee|m2m4〉 contains an angular and a radial part.

〈m1m3|Vee|m2m4〉 = 4π
∑

k=0,2,4,6

Fk
2k + 1

+k∑
m=−k

〈m1|m|m2〉〈m3|m|m4〉

U =
1

(2l + 1)2

∑
m1,m2

〈m1m2|Vee|m1m2〉 = F0 coulomb term

J =
1

2l(2l + 1)

∑
m1 6=m2

〈m1m2|Vee|m2m1〉 =
F2 + F4

14
exchange term
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The DFT+U method

EDFT+U = EDFT −

EDC︷ ︸︸ ︷
U
N(N − 1)

2
+

Eee︷ ︸︸ ︷
U

2

∑
m 6=m′

nmnm′ = U
∑
m

(nm − n2
m)

In the atom (nf=1,0) Eee = EDC = U N(N−1)
2

Atom (integer nb of e− )=The DFT+U
correction disappears.

⇒ Self-interaction correction.
From Cococcioni et al PRB 71 (2005)

see also Solovyev et al PRB 50 16861 (1994)
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