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Dynamical Mean Field Theory

DFT: an electron in the effective field of other electrons
DMFT: a correlated atom in the effective field of other atoms

@ Dynamical :
o The effective field is frequency dependent = energy levels generating the field are
distributed in energy.
o In contrast to static mean field theory of ferromagnetism in the Ising model.
e The frequency dependence of this field is not created by interactions but is required to
treat the correlated atom.

@ Dynamical : the self-energy is frequency dependent, in contrast to DFT+U and DFT,
allowing to describe strong correlations and its features in photoemission.
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Correlation Can compute
Weak Strong Spectra  Structure | Solids No Non Perturbative
correlation = correlation Parameters
Single reference methods
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Atomic orbitals 1s, 2s and 3s

Radial distribution function
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THE PERIODIC TABLE

H He
Li Be B [ N o F Ne
Na | Mg Al Si P Cl Ar
0 = B T e = = = = = = 0] = = = = =
1s/3d/4p | K Ca | Sc Ti A Cr [ Mn [ Fe | Co | Ni Cu|2Zn | Ga | Ge | As | Se Br Kr
5s/4d/5p [ Rb | Sr Y Zr f Nb JMo | Tc | Ru | Rh | Pd | Ag | Cd In Sn | Sb | Te I Xe
Cs | Ba La;Lu Hf Ta w Re | Os Ir Pt Au | Hg T Pb Bi Po At Rn
e
Fr Ra |Ac-Lr| Rf Db | Sg | Bh Hs Mt Ds | Rg | Cn | Nh FI Mc | Lv Ts | Og
Lanthanides 4f | La Ce Pr | Nd | Pm | Sm | Eu [ Gd | Tb Dy | Ho Er | Tm | Yb Lu
Actinides 5/ | Ac | Th Pa | Np | Pu | Am | Cm | Bk Cf Es | Fm | Md | No Lr




Localization of 3d, 4f and 5 f orbitals.

(R )=
p_
[ T d
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I ~—]} 2
0_ —
A _ T e () = Ru(r)Yin (6,9)
051 1 — 7] @ For 1s,2p,3d,4f, R has no node, their
o —4 05r ] maxima are thus closer to the nucleus
- Nb (4d), of T Cefan] @ 3d and 4f orbitals are more localized.
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Hydrogen Molecule

Non diagonal elements of the Hamiltonian creates chemical bonding

a—b

antibonding state o, = %3

bonding state o = “£



Hydrogen atom:

1s orbital




Hydrogen

molecule: molecular orbital.

cg~(a+b)




Hydrogen molecule: stretched.




Hydrogen molecule: same orbital for both spins !
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Hydrogen molecule: same orbital for both spins !
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Hydrogen molecule: dissociation limit is bad
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A solution: break symmetry

no more artificial delocalization, no more interaction



But

@ Symmetry breaking. An artificial magnetism is induced.
@ A static theory, which overestimates localization.



Solution 1:

localization: lowers interaction




Solution 2:

localization: lowers interaction




Solution 3: delocalization: lowers kinetic energy




The exact solution

W) = c1]1 : localized 1) + ¢2|2 : localized |T) + ¢33 : delocalized)
t 1
hd \0\ Il Il hd hd Il Il /¢/ hd hd \0\ Il /¢/
‘ ‘

@ This mixing of configuration correctly describes the system (magnetism, structural properties).

@ c¢1 = c2: no ordered magnetism.
@ c3 increases if distance between atoms lowers.

o0

@ IfW >>Uthenci =cy << c3

“‘. ‘/‘/7
@ IfW << Uthency =ca >> c3 .+ 0Ob



THE PERIODIC TABLE
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4d —:

Localization in f electrons systems
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[Mac Mahan, et al J. Comp.-Aid. Mater. Des. 5, 131 (1998)]
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Localization in f electrons systems

At atmospheric pressure:
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Localization in f electrons systems

At atmospheric pressure:
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Isostructural transition in Cerium

P VA v
Isostructural transition T
S

Electronic configuration 4f*.
@ « phase: Pauli paramagnetism
= «a phase: f e”more delocalized.
@ ~ phase: Curie Paramagnetism

= ~ phase: fe™ is localized

[Johansson, B. Phil. Mag. 30, 469 (1974)]
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Transition in lanthanides.

We now discuss the equation of states of lanthanides
as a function of pressure.

@ At low pressure, compact structures.
@ Under pressure, more distorted structure
@ f electrons participate to the bonding

Figure from [Schiwek, (2002)]

Pressure (GPa)

La(Ce) Pr Nd Pm Sm(Eu) Gd Tb Dy Ho Er Tm (Yb)Lu

.

hcp  Sm-type dhcp fec dfcc bem(?) 2
(WP2)  (hR9)  (hP4)  (cF4) (hR24)



Localization in f electrons systems

At atmospheric pressure:

60 T \ T w
) - 50
4d element: filing of the 4d band _
(Bonding states and antibonding): g
|| 44 electrons are delocalized || E40
o<
Lanthanides: ” 4f electrons localized |, g 30
negligible overlap between 4 f orbitals . %
>
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[Mac Mahan, et al J. Comp.-Aid. Mater. Des. 5, 131 (1998)]
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THE EXACT HAMILTONIAN

The exact hamiltonien is (i, 7 are electrons)

N
1 1 1
H=Y [~=VZ 4 Vexe(rs)] + ~
;[ 2 r; + cxt(l‘z)] + B ; ‘I‘z - I‘]‘
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THE EXACT HAMILTONIAN

The exact hamiltonien is (i, 7 are electrons)

H = Z **VEZ + cht rz)] + Z

]?ﬁj |r 71‘7\

It can be exactly rewritten in second quantization as (4, j are e.g. indices indicating atomic orbitals on all atoms)

1
H= qul\—fv%vext(rz)\qsﬁc it D (6idl

,J 0,3:k,0

I — ‘();‘ ()/> C, (’TFLY(,’,/
r1 —ra !

Uijki

Let’s simplify this exact hamiltonian
@ One orbital per atom: 7 and j indicates thus only the atom on which orbitals are centered.
@ Local interactions: i, j, k, I are relating to the same orbital on the same atom.
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THE EXACT HAMILTONIAN

The exact hamiltonien is (i, 7 are electrons)

H = Z **VEZ + cht rz)] + Z

]?ﬁj |r 71‘7\

It can be exactly rewritten in second quantization as (4, j are e.g. indices indicating atomic orbitals on all atoms)
T

1 1
H = Z (]51‘ — 7V2 +Vext(rl)\¢]>c C] ‘) Z <C)1‘O/“m‘o;‘oj>(l(’ CLCl

,J 0,3:k,0

Uijki

Let’s simplify this exact hamiltonian
@ One orbital per atom: 7 and j indicates thus only the atom on which orbitals are centered.
@ Local interactions: i, j, k, I are relating to the same orbital on the same atom.
H = Z 6()( it +7’Lu) —+ Z tijc;-rUCjU + Z (,»“'fl,,»\fl,,;i
i e j#Lo=1,1 i

one electron term : delocalization ~ interaction term : localization

cZT cit
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The Hubbard model: Competition between localization and delocalization

H = Z Eo(nm + nu) + Z tijCjUCjo— + Z Uiy
7 i

J#iho="1,1

Interaction U

Lo fo o S
~_

To lo lo To lo lo

Jo lo To lo lo To

U is the energy repulsion of two electrons on the same site.
@ For large value of the interaction U, electrons are localized
@ For low value of the interaction U, electrons are delocalized

26



The Hubbard model U =0

In this limit, we neglect the interaction term.

H= Zeo(nm +n4y) + Z tijczacjo- +W
i =11 '

In this case, one can easily solve this non interacting Hamiltonian either by direct diagonalisation or by using
Bloch states:
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The Hubbard model U = 0

In this limit, we neglect the interaction term.

m=atutn e 3 ot S0
Jj#i,o="1,1 i

In this case, one can easily solve this non interacting Hamiltonian either by direct diagonalisation or by using
Bloch states: We can define Bloch states |k) as (5= <k < T)

[Yk) = \F Z b, ye'* i

where |¢7;) are atomic orbitals: (r|¢r,) = ¢(r — T;) on site i. Does it satisfy the Bloch theorem (cf lecture by V.

Robert) ?
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The Hubbard model U = 0

In this limit, we neglect the interaction term.

m=atutn e 3 ot S0
Jj#i,o="1,1 i

In this case, one can easily solve this non interacting Hamiltonian either by direct diagonalisation or by using
Bloch states: We can define Bloch states |k) as (5= <k < T)

[Yk) = \F Z b, ye'* i

where |¢7;) are atomic orbitals: (r|¢r,) = ¢(r — T;) on site i. Does it satisfy the Bloch theorem (cf lecture by V.

Robert) ?
1 BT 1 kT
Yr(r+T) = WZ¢Ti(r+T)e Wi — ﬁgjarw*n»e kT

( + T) P \/7 Z¢ ,,, _ sz sz =y (r)esz
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The Hubbard model U = 0

In this limit, we neglect the interaction term.

L S SRS S
j#o=1,1 i

In this case, one can easily solve this non interacting Hamiltonian either by direct diagonalisation or by using
Bloch states: We can define Bloch states |k) as (5= <k < T)

[Yk) = \F Z b, ye'* i

where |¢7;) are atomic orbitals: (r|¢r,) = ¢(r — T;) on site i. Does it satisfy the Bloch theorem (cf lecture by V.
Robert) ?

wk(T + T) = \/:liﬁ Zd)Ti (T + T)eisz‘ — % Z ¢(T 4T — Ti)>eikT1‘,
( + T) P \/7 Z¢ ,,, _ sz sz w (r)esz
We also have

_ 1 —ikT;
loT,) = \/N;Wwe



The Hubbard model U =0

We also have the change of basis for creation and annihilation operators:
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The Hubbard model U = 0

We also have the change of basis for creation and annihilation operators:

L o —ikT;
= = 2o
N k

1 1kT;
- S
VN 4

As a consequence, one can show that (using that & 37, e?(*=¥)Ti = 5, show itl).

H= Zeo(nl¢+nz¢)+ >

j#io=1,1

t,]cjacjg = Zekckck with €, =g + — Zt e~ k(T =Tj)
Z#J

28



The Hubbard model U =0
We also have the change of basis for creation and annihilation operators:

1 : 1 .
T —ikT; R 1kT,
= cle Ci = —— cpe
/N ; k /N ; k
As a consequence, one can show that (using that & 37, e?(*=¥)Ti = 5, show itl).

H= Zeo(nm +n4y) + Z t,]cjacjg = Zekckck with €, =g + — Zt e~ k(T =Tj)
Jj#i,o="1,1 Z#J

In a simple case (one dimension and if ¢;; is non zero only for neighboring atoms), we have :

Ekzeo-"—*zt etk (Ti—T;)
i#]
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The Hubbard model U =0
We also have the change of basis for creation and annihilation operators:

1 : 1 .
T —ikT; R 1kT,
= cle Ci = —— cpe
/N ; k /N ; k
As a consequence, one can show that (using that & 37, e?(*=¥)Ti = 5, show itl).

H= Zeo(nm +n4y) + Z t,]cjacjg = Zekckck with €, =g + — Zt e~ k(T =Tj)
j#io=1,1 Z#J
In a simple case (one dimension and if ¢;; is non zero only for neighboring atoms), we have :

N
€ = €0+ — Zt e h(Ti—T5) — =€ + — Z[tiyprle*ik(*“) + ti,iflefima)] = €g + 2tcos(ka)
'L#g i=1
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Toward the 1D chain: H,

@ For hydrogen molecule, hopping ¢ induces a bonding state and an antibonding

states for the molecule.

0,~(a+b) 0,~(a-b)

an A a




The chain of atoms: ¢ = € + 2tcos(ka)

[
-T/a

t<0

a b c d e f
| | \ | \ | k=n/a
\ \ \ \ \ \
B e
wa
| - | | M k=m/da
—~
| | | | | | k=0
\ \ \ \ \ \
—ik(r—T;) .
p(r —T;) = * Oy (r)  [T; =id]
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Hubbard model with ¢ = 0

H = Z eo(nip +n4yp) +M+ Z Uiy
i it o=1,1 i
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Hubbard model with ¢ = 0

H = Z eo(nip +n4yp) +M+ Z Uiy
i it o=1,1 i

If t =0 then

H = Z 60<niT + nii) + Z U’fLiT’IAlj¢
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Hubbard model with ¢ = 0

H = Z eo(nip +n4yp) +M+ Z Uiy
i it o=1,1 i

If t =0 then
H = Z 60<niT + nii) + Z Uiy
Atoms are disconnected, one can study one single atom !

H = Z[Eo(nﬁ + nii) + Uﬁmﬁw] = Z H;tomic
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Hubbard model with ¢ = 0

The isolated atom limit: t =0
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Hubbard model with ¢ = 0

The isolated atom limit: t =0

H = Unyny + eo(ng +ny)
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How many electrons can we put in this system ?

32



Hubbard model with ¢ = 0

The isolated atom limit: ¢t =0
H = Unyny + eo(ng +ny)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?

32



Hubbard model with ¢ = 0

The isolated atom limit: ¢t =0
H = Unyny + eo(ng +ny)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?




Hubbard model with ¢ = 0

The isolated atom limit: ¢t =0
H = Unyny + eo(ng +ny)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?




Hubbard model with ¢ = 0

The isolated atom limit: ¢t =0
H = Unyny + eo(ng +ny)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?

++




Hubbard model with ¢ = 0

The isolated atom limit: ¢t =0
H = Unyny + eo(ng +ny)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?




Hubbard model with ¢ = 0

The isolated atom limit: ¢t =0
H = Unyny + eo(ng +ny)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?

%




Hubbard model with ¢ = 0

The isolated atom limit: ¢t =0
H = Unyny + eo(ng +ny)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?
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Hubbard model with ¢ = 0

The isolated atom limit: ¢t =0
H = Unyny + eo(ng +ny)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?

% 2¢0 + U % 2¢0 + U
++ — 0
— 0
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Hubbard model with ¢t = 0

The isolated atom limit: ¢t =0
H = Unyny + eo(ng +ny)

How many electrons can we put in this system ?
What is the size of the Hilbert space ?

% 2¢0 + U —_ 0 % 2¢0 + U
€

4+ 4 < o« — 0

— 0 :Hr 2¢0 + U

€0
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Direct photoemission




Direct photoemission




Direct photoemission

hv + En = Exin + En_1
One can measure Exy — En_1

cf also F. Bruneval lecture.
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Inverse photoemission




Inverse photoemission

Eyin + En = hv 4+ Enja

One can measure Eny1 — Ey
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Hubbard bands

The isolated atom limit: ¢ = 0

H =Unyn, +eo(ngy +ny) = Ungng + eo(ng +ny)

% 2¢0 + U
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Hubbard bands

The isolated atom limit: ¢ = 0

H =Unyn, +eo(ngy +ny) = Ungng + eo(ng +ny)

% 2¢0 + U
>EU+U

T
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Hubbard bands

The isolated atom limit: ¢t =0

H = Unﬁ”% +60(7’LT+TL¢) =Unyny +€0(”T +7’LJ’)

-/H/- 2€0+U
>60+U

T

1—2

0—1

e +U

€0
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Atomic case: Green’s function

@ We study the atomic problem with 1 electron.
@ Green’s function of the atom and Self-energy. Let's use ¢¢c = —U/2 and the Lehman representation of the
iG(r,r' t—t ’):{N,O|T[1P(rt)*lli+ (r'e’)||N,0)

|

. [
Closure relation |

ZM l|M’l,\'<M’ i
Lehman representat|0n f ( )
(r,r',w) z "
Green’s function (F. Bruneval Lecture): T w—eEin

1/2 1/2 w
G(w) = =
W= vn T ocun - o)
Equation of motion for the non interacting Green’s function.
1 1

(w—€0)Go(w) =1= Go(w) = P 175

@ The Dyson eq writes:

. E(w):go_l_G_l:w_i_U/Q_w:U/Q_i_M
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Dynamical Mean Field Theory

The Hubbard model physics can be mimicked by an Anderson model + Self-consistency
0-0-9-0-C
OMONOROYO!
@ @ 19 @ O
@ @ o% @ O
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Dynamical Mean Field Theory

The Hubbard model physics can be mimicked by an Anderson model + Self-consistency
0-0-9-0-0
ONONONONO!

8 i i
o-ofo-o

OMONONOMO!




Dynamical Mean Field Theory

The Hubbard model physics can be mimicked by an Anderson model + Self-consistency
09000
ORONONONO)
@ @ 19 @ O

@@@@@
1 I

W. Metzner and D. Vollhardt Phys. Rev. Lett. 62 (3) 324 (1989)
A. Georges and G.Kotliar Phys. Rev. B 45 (12) 6479 (1992)
Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J. Rozenberg Rev. Mod. Phys. 68, 13 (1996)

A

()
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Anderson Hamiltonian in the DMFT

WN =—
E role of U ?

Wk § —€p
w1 é

Hoyq Hoy

N
Handerson = Z Wkazgaka + €Q(HT + TL\L) +Unqyny
o,k=1

Hoyp

Hoa

°



Anderson Hamiltonian in the DMFT

WN =
% role of U ?
Wk § v_»|| —€0
= Vi
w1 =
Ho, Hy  Hp
N
Handerson = Z Wkazgaka + Z Vk’(az_’o.co' + C:akﬁ) + Eo(nT + TL\L) -+ UnTn¢
o,k=1 k,o

Hoyp

Hoa Hy
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Anderson Hamiltonian with V}, = 0: Hubbard bands

Handerson = Y wkat} gako +_ Vilaf ,co + cfanor+ co(ny +ny) + Unyn,

k.o
Ho. Hoyp

Hy

If Vi, =0,
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Anderson Hamiltonian with V}, = 0: Hubbard bands

Handerson = Zwkazaaka +Z Vk(a;(,cg + ¢f apoy+ €o(ny +ny) + Ungny

k.o
Hoq Hoyp

Hy

If Vi, =0, then H; = 0 thus:
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Anderson Hamiltonian with V}, = 0: Hubbard bands

Handerson = Zwkazgaka +Z Vk(az_)o-ca' + C;a o+ 60(”1* + ni) + U’/’LTni

k.o
Hoq Hoyp

Hy

If Vi, =0, then H; = 0 thus:

H Anderson = Z wkazgaka + €o (nT + TLJ,) —+ UnTni

Hou Hoyp
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Anderson Hamiltonian with V}, = 0: Hubbard bands

Handerson = Y wkat} gako +_ Vilaf ,co + cfanor+ co(ny +ny) + Unyn,

k.o
Hoq Hoyp

Hy

If Vi, =0, then H; = 0 thus:

HAndcrson = Z wkazgaka + €0 (nT + TLJ,) + UnTni

Hou Hoyp

Hy, and Hy, are not coupled. Solution is equivalent to Hubbard model with ¢ = 0: Hubbard
bands.
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Anderson hamiltonian U = 0

The hamiltonian writes:

HAnderson = Zwka;aako + Z Vk(a;:’g-cff + Cjak,a) + EO(nT + nJ,)

k,o
With only one bath state, H is:
e« Wi Vie . VN
Vi wi 0 0 0 0
0 ... 0 0 0
Vi 0 0 Wi 0 0
0 0 0 ... 0
VN 0 0 0 0 WN

Wk

w1

— €0
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Anderson hamiltonian U = 0

The hamiltonian writes:

HAnderson = Zwka;aako + Z Vk(a;:’g-cff + Cjak,a) + EO(nT + nJ,)

k,o
With only one bath state, H is:
e« Wi Vie . VN
Vi wi 0 0 0 0
0 ... 0 0 0
Vi 0 0 Wi 0 0
0 0 0 ... 0
VN 0 0 0 0 WN

€
2

€
B

>

\6

Vi
e

— €0

40



Anderson hamiltonian U = 0

The hamiltonian writes:

HAnderson = Zwka;aako + Z Vk(a;:’g-cff + Cja‘k,a) + EO(nT + nJ,)

k,o
With only one bath state, H is:

WN =
€0 V1 Vk VN E
Vi w 0 0 0 0 = Wy
e 0 0 0 0 =
Vi 0 0 W 0 0 W E Vi — €0
W 000 0 = y’
Vv 0 0 0 0 wy w =

This hamiltonian contains the hybridization of a single level ¢q to other levels. The level with move and will be
broadened by hybridization on other levels.
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Anderson hamiltonian U = 0

His:
e Wi Vi VN
Vi w 0 0 0 0
0 s 0 0
Vi 0 0 Wi 0 0
0 0 0 ... 0
VN 0 0 0 0 WN
His:

eo V1
Vi w

WN —
= W

wp = Vi —€o
£

w =

— €0
v
wp —

M



Anderson hamiltonian U = 0

€ — A i
Vi w1 — A
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Anderson hamiltonian U = 0

€ — A Vi

Vi w70

Eigenvalues are the \:

(0 = N(w1 —A) = V2 =0
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Anderson hamiltonian U = 0

€ — A Vi -0
Vi w1 — A |

Eigenvalues are the \:

(0 = N(w1 —A) = V2 =0

Let's now compute Green'’s function poles, using the following relation, which comes from the equation of motion
of the Green'’s function (which comes from the time Schrodinger eq (see lecture of P. Romaniello)).

G=(wl-H!
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Anderson hamiltonian U = 0

€ — A Vi -0
Vi w1 — A |

Eigenvalues are the \:

(0 = N(w1 —A) = V2 =0

Let's now compute Green'’s function poles, using the following relation, which comes from the equation of motion
of the Green'’s function (which comes from the time Schrodinger eq (see lecture of P. Romaniello)).

G=(wl-H!

G?(w—eo Vi )717 1 (w—el -Vi )
1% w—wi (w—€0)(w—w1) — V2 Vi w-—wo

The pole of G are indeed the eigenvalues of this two orbital model.

Let’s now focus on the element of the Greens function on the correlated orbitals Goo

G w — €1 1
00 = 5 = 3
(w—eo)lw—w) = Vi g - —L
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Spectral function

We can now compute the spectral function of this system by computing:

1 1 1
Alw) = —=ImGF(w +id) = —=Im : 5
m T w + 7/5 — €0 — m
€0 €0 €0
w1 w1 w1
A(w) Aw) Aw)
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Anderson Hamiltonian with U = 0.

His:
€0 1% Vi VN
Vi w 0 0 0 0
0 s 0 0 0
Vi 0 0 Wi 0 0
0 0 0 ... 0
VN O 0 0 0 wn

G=(wl—H)"!

We can inverse this matrix and compute the Green'’s function of the correlated orbital (Using

A~ = Com(A)T /det A to inverse I — H). We obtain as a generalisation of the previous result:

2
Vk

w— Wy

1
w—¢€y — Aw)

G(w) = with A(w) =)

k

Where A(w) is called the hybridization function.
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Anderson Hamiltonian with U = 0.

We can now compute the spectral function of this system by com-
puting:

1
w16 — eg — A(w + i6)

A(w) = f%ImGR(w +16) = f%Im
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Anderson Hamiltonian with U = 0.

We can now compute the spectral function of this system by com-
puting:

1
w16 — eg — A(w + i6)

Alw) = f%ImGR(w +i6) = f%Im

We need

Alw+id) =Y Vi
w+10) = _—
- w+ 10 — wy,

—5V;2
ReA = —_r ImA = _—
¢ Z(w—wk 24452 m Z(w—wk 2462

And with lim;s_,o L =4(x)

T z2+52

ImA = —WZ V2§ (w — wy) =~ —7|V[2p(w)
k
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Anderson Hamiltonian with U = 0.

We can now compute the spectral function of this system by com-
puting:

1
w16 — eg — A(w + i6)

Alw) = f%ImGR(w +i6) = f%Im

We need
V2 wNé
A i10) = k. =
(w +18) ;w—&-i&—wk E
—5V;2 wk%
ReA = —_— ImA = D =
e Z(w_wk ez Im Z(w_wk s =
W1E

And with lim;s_,o L =4(x)

T z2+52

ImA = —WZ V2§ (w — wy) =~ —7|V[2p(w)
k
ImA

Aw) = —flmc% i) = 0 — ReA)? 1 ImA?

\4N
Vi

i

— €

ImAi

| ReA
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Anderson Hamiltonian; Hubbard band with hybridization ?

U/2 | U/2

—U/2 —U/2

46



WN

=
=
D

Vn

V

1

w1 —_—

k

@ Size of the Hilbert space ?
@ If N=2 electrons ?
@ IfU=007?
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Anderson Hamiltonian: one orbital for the bath.

48



Anderson Hamiltonian: one orbital for the bath.

— €0
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Anderson Hamiltonian: one orbital for the bath.

+ €0 w1 + €o
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Anderson Hamiltonian: one orbital for the bath.

+ €0 w1 + €o
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Anderson Hamiltonian: one orbital for the bath.

=+ €0 w1 + €
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Anderson Hamiltonian: one orbital for the bath.

<
I
[en)

=+ €o (5=0,8=1) w1 + €9
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Anderson Hamiltonian: one orbital for the bath.

<
I
[en)

+ (5=0) 2wy

— €0 (5=0,8=1) w1 + €9
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Anderson Hamiltonian: one orbital for the bath.

<
I
[en)

— (5 =0) 2wy

3+ €o (5=0,8=1) w1 + €9

260
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Anderson Hamiltonian: one orbital for the bath.

# €o

2¢g+ U =0

(5 =0) 2wy

(5=0,8=1) w1 + €9

260

<
I
[en)
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Anderson Hamiltonian: one orbital for the bath.

— €0

2¢g+ U =0

(5=0) 2wy

(5=0,8=1) w1 + €9

<
I
[en)
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Anderson Hamiltonian: one orbital for the bath.

2¢g+ U =0

<
I
[en)

w1 —

(5 =0) 2w, =~
k
— €0 (5=0,8=1) w; + € ==



Anderson Hamiltonian: one orbital for the bath.

2¢g+ U =0

%oy + 2v?2

( ) 20J1 w1—€o
k
— € ( ,S=1) w1 +€ == e

2v2
w1+ € — wi—¢€o
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Anderson Hamiltonian: one orbital for the bath.

2¢g+ U =0

V=0

( ) 2w
‘&'
—¢0 ( ,S=1) w1 +€6 ==

Because of hybridization, the ground state is a many body problem

%oy + 2v?2

w1 —€p

2V
w1—€Q

w1+60—
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Anderson Hamiltonian: one orbital for the bath.

2¢g+ U =0

V=0 V#0

2v?
w1 — ( ) 20J1 2w1 + w1—¢€o
‘&'
— €0 ( ,S:1)UJ1+60 ] e 212
Wi € — wi—¢€o

Because of hybridization, the ground state is a many body problem
Because of U, the ground state is a many body problem
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Anderson Hamiltonian: one orbital for the bath.

2¢g+ U =0

V=0 V#0

2v?
w1 — ( ) 20J1 2w1 + w1—¢€o
‘&'
— €0 ( ,S=1) w; + € == e o172
Wi € — wi—¢€o

Because of hybridization, the ground state is a many body problem
Because of U, the ground state is a many body problem
Because of U and hybridization, the ground state is not magnetic.
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Anderson Hamiltonian: one orbital for the bath.

2¢g+ U =0

V=0 V#0

2v?
w1 — ( ) 20J1 2w1 + w1—¢€o
‘&'
— €0 ( ,S=1) w; + € == e o172
Wi € — wi—¢€o

Because of hybridization, the ground state is a many body problem
Because of U, the ground state is a many body problem

Because of U and hybridization, the ground state is not magnetic.
The formation of a singlet is the essence of the Kondo effect.
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Anderson Hamiltonian: one orbital for the bath.

2¢g+ U =0
V=0
) 2wy
1Szl)w1+€0 ]

Because of hybridization, the ground state is a many body problem
Because of U, the ground state is a many body problem
Because of U and hybridization, the ground state is not magnetic.
The formation of a singlet is the essence of the Kondo effect.

There is a low energy excitation ~
Fulde 1988

v2

w1 —€o

2v?
w1 —€p

2LL)1 +

2v?2

w1—€Q

w1+60—
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The Anderson model: 3 peak structure

Conduction Electrons Impurity States

U2 > L 4o

R S—— TP LD S st

Density of States

Hubbard bands are due to charge fluctuations (as in the atomic case)
Quasiparticle peak is linked to spin fluctuations (see Anderson molecule)
(from Georges et al RMP 1996)
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The Anderson Hamiltonian (solved by CTQMC)

—e+U
w
—¢€p
Hy, Hy,

E Gull, AJ Millis, Al Lichtenstein, AN Rubtsov, M Troyer, P Werner Reviews of Modern Physics 83 (2), 349 (2011)
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The Anderson Hamiltonian (solved by CTQMC)

—e+U

~_v|| —€0

Vi

Hy, H, Hy

E Gull, AJ Millis, Al Lichtenstein, AN Rubtsov, M Troyer, P Werner Reviews of Modern Physics 83 (2), 349 (2011)



The Anderson Hamiltonian (solved by CTQMC)

—e+ U

~_~|| —€0

Vi

Hy, H, Hy

Handerson = Zwkaz’o—ako +Z kaa;:’o-fﬂ' + Zeff;—fﬂ' + Unf’rnfi
—_—

k,o fed

Hoa

H; Hoy
E Gull, AJ Millis, Al Lichtenstein, AN Rubtsov, M Troyer, P Werner Reviews of Modern Physics 83 (2), 349 (2011)
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The Anderson Hamiltonian (solved by CTQMC)

—e+ U

Vi

Hy, H, Hy

Handerson = Zwkaz’o—ako +Z kaa;:’o-fﬂ' + Zeff;—fa' + Unanfi
—_—

k,o fed

Hoa

H; Hoy
Continuous Time Quantum Monte Carlo: Expansion as a function of H;

[P. Werner, A. Comanac, L. de medici, M. Troyer and A. J. Millis Phys. Rev. Lett. 97, 076405 (2006)] E Gull, AJ Millis, Al Lichtenstein, AN Rubtsov, M Troyer, P Werner Reviews of
Modern Physics 83 (2), 349 (2011)



The self consistency condition and the DMFT loop

The equation of Motion of the Green'’s function (see lecture from P. Romaniello) is
(w—H-2)G=1

It is an equation for operators and it directly comes from the time dependent Schrédinger Eq. for creation and
annihilation operators. One can insert the closure relation for Bloch states which is

D k) (| = 1
k/

We thus have:
(w=H=5)) |t ) (|G =1
k/
We can project on the left and right by v :
Wrllw—H = %)Y vopr) (i [Glypw) =1
k/
thus
[w— ex — Sk (w)]Gr(w)

the lattice Green'’s function for the Hubbard model is written:
1

Celw) = w—ex — Tk (w)
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Green’s function of the lattice

The Green’s function of the lattice in real space writes:
GZ"C&I w Zezk(T —T; )Gk w) ZGk

The local Green’s function of the lattice is

G}é(;cal w Zezk(T —T; )Gk Z Gk

Gllw) =+ 30—

= w— ek — Sk(w)

52



Green’s function of the Anderson model

@ From the equation of motion:
G=(wl-H-%)"1

with H + X is:
e+X W Vi VN
i w1 0 0 0 0
0 ... 0 0 0
Vi 0 0 Wk 0 0
0 0 0 ... 0

VN 0 0 0 0 WN

we can show using exactly the same derivation as for U = 0:
1

w—ep — Alw) — X(w)

G Anderson (UJ) =
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Green’s function of the Anderson model

@ From the equation of motion:
G=(wl-H-%)"1

with H + X is:
e+X W Vi VN
i w1 0 0 0 0
0 ... 0 0 0
Vi 0 0 Wk 0 0
0 0 0 ... 0

VN 0 0 0 0 WN

we can show using exactly the same derivation as for U = 0:
1

w—ep — Alw) — X(w)

G Anderson (UJ) =

@ or equivalently using the Dyson equation using the expression of ggl
Gl=¢'-S=wlI-H-A-%

1
GAnderson (UJ)

:w—eo—A(w)—E(w)
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The self consistency condition and the DMFT loop

For one atom in the solid, the local Green’s function is

local _ i 1
G (W) = N g w— ek — Zi(w)

For the Anderson model, the correlated orbital Green’s function is:

1
w—e€ — Alw) — X(w)

GAnderson (W) =

What could be the self-consistency relation ?



The self consistency condition and the DMFT loop

For one atom in the solid, the local Green’s function is

1 1
qucal — = s
i W) N g w— ek — Zi(w)

For the Anderson model, the correlated orbital Green’s function is:

1
w—e — Alw) — X(w)

GAnderson (W) =

Identity of spectral functions for the lattice and for the Anderson model

1 local 1
——Im[G}; = ——Im[G nderson
p m[ [ (W)] T m[ And ]
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The self consistency condition and the DMFT loop

For one atom in the solid, the local Green’s function is

local _ i 1
G w) = N g w— ek — Zi(w)

For the Anderson model, the correlated orbital Green’s function is:

1
w—e— Aw) — X(w)

GAnderson (W) =

The DMFT idea is to identify the two Green’s function and the Self-energies:

1

local _ i 1 —
Gii™" (w) = Ganderson(w) = N ; w—e— 2w w—e —Aw)—2(w)




DMFT scheme

1 1
qucal = — PSRN
i (w) N Xk: w — €k — 2k("‘j)

1
w—e — Aw) — B(w)

GAnderson (w) =

Gh?cal (w) = GAnderson (w)
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The self consistency condition and the DMFT loop

1 1 1
ﬁzk:w—ek—Z(w) :w—eo—A(w)—E(w)

o Ift =0, then ¢, = ¢g and A = 0 thus, the self-consistency is always fulfilled. The
Anderson model can be solved only one time to give the exact solution.

1 1 1
Nzk:w—eo—E(w)iw—eo—Z(w)

@ If U = 0, then the lattice Green’s function and the local Green’s function are exact.

1 1 1
Nzk:w—ek_w—eo—A(w)

The Green’s function is exact in the two cases. The self-consistency has no effect.
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Phase diagram of Hubbard model in DMFT

l’ 0.6
0.12 1 m"’ 1 -
! 3
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<
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Watzenbdéck et al Scipost (2022)
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Phase diagram of Hubbard model in DMFT

Temperature

Phasediagram T, U

600

Temperature(K)
w
3

200

100

(localized 4 f)
¥

(delocalized 4 f)
o

U/t

0.5

1 1.5
Pressure (GPa)

2

25

Ficure: Phase diagram of the Hubbard model in DMFT compared to phase diagram of Cerium.
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Phase diagram of Hubbard model in DMFT

Phase diagram T, U A —r U=0
I I I N ‘
A\
F \ 4 0
\\\\ 1 UW=05
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Ficure: Phase diagram of the Hubbard model in DMFT and evolution of the spectral function
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Spectral function of Hubbard model in DMFT
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. [ E. Weschke, et al Phys. Rev. B 44, 8304 (1991)
[G.Kotliar et al Phys. Today, AIP, 57, 53-59 (2004)] M. Grioni, et al Phys. Rev. B 55, 2056 (1997)]
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DFT : The Kohn Sham Equations

The total energy expression as a function of ¢(r) is
V2
By [n(0)] = = / 7 (1) - ¢i(r)dr + / drvext (r)n(r) + EHartree [n(r)] + Exc[n(r)]

and can be minimized.
One obtains the one electron Kohn-Sham Equations

{,V; + VKS(r)i| $i(r) = eigi(r)

The effective Kohn Sham potential Vks(r) is defined as a the functional derivative of the last three terms of
the energy:

n(r’)

Vics (r) = vext (r) + / dr’ + e [n(®)](x)

v —r'|

The exchange and correlation potential vxc(r) is

0 Exc[n(r)]
on(r)

VUxe(r) =
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From DFT to DFT+DMFT

: 1
Glattlce —
k (w) W — €k — Ek(w)

oca. 1 attice
Gii l(w) =N E G}c e (w)
k

For the Anderson model, the correlated
orbital Green’s function is:

- 1
C w—¢ — Aw) - Z(w)

G Anderson (w)
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From DFT to DFT+DMFT

@ ¢,= Kohn Sham eigenvalues -
Glattice (i) — 1 double counting correction
W — €k — Ek(w)

oca. 1 attice
Gii l(w) =N E G}c e (w)
k

For the Anderson model, the correlated
orbital Green’s function is:

- 1
C w—¢ — Aw) - Z(w)

G Anderson (w)
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From DFT to DFT+DMFT

: 1
Glattlce —
k (w) W — €k — Ek(w)

oca. 1 attice
Gii l(w) =N E G}c e (w)
k

For the Anderson model, the correlated
orbital Green’s function is:

- 1
C w—¢ — Aw) - Z(w)

G Anderson (w)

DFT + DMFT

@ ¢,= Kohn Sham eigenvalues -
double counting correction

@ The local Green'’s function is
defined on correlated orbitals.
= (G and X are matrices
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From DFT to DFT+DMFT

: 1
Glattlce —
k (w) W — €k — Ek(w)

oca. 1 attice
Gii l(w) =N E G}c e (w)
k

For the Anderson model, the correlated
orbital Green’s function is:

- 1
C w—¢ — Aw) - Z(w)

G Anderson (w)

DFT + DMFT

@ ¢,= Kohn Sham eigenvalues -
double counting correction

@ The local Green'’s function is
defined on correlated orbitals.
= (G and X are matrices

@ Need a projection from Kohn
Sham states to correlated
orbitals. <\Ijnk|le>
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From DFT to DFT+DMFT

: 1
Glattlce —
k (w) W — €k — Ek(w)

oca. 1 attice
Gii l(w) =N E G}c e (w)
k

For the Anderson model, the correlated
orbital Green’s function is:

- 1
C w—¢ — Aw) - Z(w)

G Anderson (w)

DFT + DMFT

@ ¢,= Kohn Sham eigenvalues -
double counting correction

@ The local Green'’s function is
defined on correlated orbitals.
= (G and X are matrices

@ Need a projection from Kohn
Sham states to correlated
orbitals. <\Ijnk|le>

@ The Anderson model is
multiorbital, e.g. 10 (d) or 14
(f) orbitals.
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The DMFT Loop
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The DMFT Loop
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Reminder about Hubbard model

@ Local quantities are expressed in a basis of correlated orbitals.

Z IXT)Z(w) (x|

where y is the unique orbital on the atom at T and T are the lattice vectors.
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The DMFT Loop
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The DMFT Loop
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Reminder about Hubbard model

@ Lattice Green’s functions are expressed in Bloch eigenvectors of the non interacting
Hamiltonian (ex = Z t;jek(Ti=T3))

Hy = |y exc{ x|
with

’LkT

IXk) = \F Z IXT)

where T are lattice vectors.
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The DMFT Loop
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The DMFT Loop

DMET T
=0

DTIT ) |

Glocal (w)

©
Compute lattice Green’s function ]
Golw) = § Yk smarvw) )

A 4

S(w) [ Compute hybridization function ]

— (s 1
T—eA@=w =C "

Aw)

Y
Impurity Solver (CTQMC)]

Compute Self-energy
G

w—e—AW)—S(w@)

How to apply such idea for a real solid, with both strongly interacting orbitals, and
weakly interacting orbitals



DFT+DMFT scheme
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DFT+DMFT scheme

68



Correlated orbitals: what are they

For d orbitals (I=2), m € {—2,—1,0, 1,2}, a correlated atomic orbital writes:

Xm (r) = (r[xm) = R(r)Ym(0,¢)

@ The angular part Y,,, (0, ¢) is well defined.
@ The radial part R(r) is not defined in a solid.

In a first step, let's assume that we have found a good choice for R(r) and thus |x,,) is
defined.
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In a real system in DFT+DMFT

@ Local Quantity are expressed in a basis of correlated orbitals.

W= > W) (@) (|

m,m/, T

where m,m’ € —1,...,l and x& is an orbital whose angular part is Y;,,,. Note that
Ym,m’ Can be a matrix and have non diagonal elements.
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In a real system in DFT+DMFT

@ Local Quantity are expressed in a basis of correlated orbitals.

S@ =Y XF) S (@) (X |

m,m/, T

where m,m’ € —1,...,l and x& is an orbital whose angular part is Y;,,,. Note that
Ym,m’ Can be a matrix and have non diagonal elements.

[ for Hubbard model

S(w) =D xr) S(@){xrl
T

]
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DFT+DMFT scheme
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In a real system in DFT+DMFT

@ DFT Hamiltonian and thus lattice Green’s functions are more easily expressed in
Bloch eigenvectors of the DFT Kohn Sham Hamiltonian.

Hys = Vi) err (Vi |

Where ¥y, are one electron Kohn Sham wave function for the k-point k and band
number v.

Uy, contains both correlated atomic orbitals and other non correlated orbitals.
(Reminder: in the Hubbard model, the analogue of ¥y, was just the Bloch transform
of atomic orbitals.)
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In a real system in DFT+DMFT

@ Local quantities such as 3 can be computed in the Bloch basis:

Eok(w) = <‘I]k1/|§(w)|\1/ku’> = Z <‘I]kV|X¥m>Emm’ (w><X¥m’|\I’ku’>

m,m’,T
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In a real system in DFT+DMFT

@ Local quantities such as 3 can be computed in the Bloch basis:

Eok(w) = <‘I]k1/|§(w)|\1/ku’> = Z <‘I]kV|X¥m>Emm’ (w><X¥m’|\I’ku’>

m,m’,T

Using [xF.) = 7 2k IXiem)e ™™, one arrive to

i) = 3 (Wieo ) S (@) O [ Wi

m,m’

Note that now, the self-energy is a k dependent quantity, because of weight of orbitals
over Kohn Sham states depends on the k-point.
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In a real system in DFT+DMFT

@ Local quantities such as 3 can be computed in the Bloch basis:

Eok(w) = <‘I]k1/|§(w)|\1/ku’> = Z <‘I]kV|X¥m>Emm’ (w><X¥m’|\I’ku’>

m,m’,T

Using [xF.) = 7 2k IXiem)e ™™, one arrive to

Srac(@) = D (Wi [Xitn) S (@) (s | Prer)

Note that now, the self-energy is a k dependent quantity, because of weight of orbitals
over Kohn Sham states depends on the k-point.

[ for Hubbard model ¥y (w) = X(w) ]
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In a real system in DFT+DMFT

@ Local quantities such as 3 can be computed in the Bloch basis:
Eok(w) = <‘I]k1/|§(w)|\1/ku’> = Z <‘I]kV|X¥m>Emm’ (w><X¥m’|\I’ku’>

m,m’,T

Using [xF.) = 7 2k IXiem)e ™™, one arrive to
Soe(@) = D (Vi [Xaon) s (@) (X | Vi)

Note that now, the self-energy is a k dependent quantity, because of weight of orbitals
over Kohn Sham states depends on the k-point.
[ for Hubbard model ¥y (w) = X(w) ]

@ From the Self energy, the full lattice Green’s function in the Kohn Sham basis

Gl (w) = Gis(Ww) = AB(w) = (w — Hys)T — AD(w)

ny/k(w) = [OJ — €ky — AZVV/k(w)];Vl’k
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In a real system in DFT+DMFT

Local quantities such as S can be computed in the Bloch basis:

Eok(w) = <\I]k1/|§(w)|\1/ku’> = Z <\I]kV|X¥m>Emm’ (w><X¥m’|\I’ku’>

m,m’,T

Using [xF.) = 7 2k IXiem)e ™™, one arrive to

Zook@) = D (Vi [Xqon) Erame (@) (i W)

m,m’

Note that now, the self-energy is a k dependent quantity, because of weight of orbitals
over Kohn Sham states depends on the k-point.

[ for Hubbard model ¥y (w) = X(w) ]

From the Self energy, the full lattice Green’s function in the Kohn Sham basis

Gl (w) = Gis(Ww) = AB(w) = (w — Hys)T — AD(w)

GVIJ/k(w) = [w — kv — Azyu'k(w)];yl/k
[ for Hubbard model Gy (w) = —15— ]

er —2(w



In a real system in DFT+DMFT

@ Using the operator expression of the lattice Green’s function

Gw) = Z Vi) Grwrie (W) (Vi |

vr'k
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In a real system in DFT+DMFT

@ Using the operator expression of the lattice Green’s function

Gw) = Z Vi) Grwrie (W) (Vi |

vr'k

@ One can write the local Green’s function as:

Grmm (W) = Z<X¥m|qjkV>GW’k(W)<\Ijku’|X¥m’>

vv'k

for Hubbard model G(w) = » _ Gi(w)
k
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From DFT to DFT+DMFT

1 1

G = Crmie () =

W — €pk — Enn/k(W)

1 . local _
local _ - lattice G (w) = Z (Xem Y ien) Grns (K, W) (Wien/ [ Xiem? )

GoHW) = 5 Zk: G (w) et
For the Anderson model, the correlated orbital Green’s
function is:

For the Anderson model, the correlated

. ) . . Anderson _ —1
orbital Green’s function is: GADAFTSON () = [w] — Bg — Alw) = S(w)] 7Y,

1
GAnderSOH(w) - w— €y — A(w) — Z(UJ)

.




Definition of correlated orbitals: example of SrVOs;.

Need a projection from Kohn Sham states to correlated orbitals. (¥,,x|xm)
A possible choice for correlation orbitals is Wannier functions.
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Definition of correlated orbitals: example of SrVOs;.

Need a projection from Kohn Sham states to correlated orbitals. (¥,,x|xm)
A possible choice for correlation orbitals is Wannier functions.
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Definition of correlated orbitals: example of SrVOs;.

Need a projection from Kohn Sham states to correlated orbitals. (¥,,x|xm)
A possible choice for correlation orbitals is Wannier functions.

O-p V—tzg V»eg

A RIA KA

KU QYA QU o
A= 364
E Eé% Ztéi Extended W(::nierfuncﬂon

Wannier orbitals are made from Vdt, bands so, they are not pure dts, orbitals because of the
hybridization



Definition of correlated orbitals: example of SrVOs;.

Need a projection from Kohn Sham states to correlated orbitals. (¥,,x|xm)
A possible choice for correlation orbitals is Wannier functions.

O-p

V—tzg V-e,

Y
7

/

NN
A\ ﬁzf- N - opg%g@

2 S
I S
/

(eV)
o ™ & 19 S W & o o
; T .
/.

\
R T'XM

T

R XM T R rX™M T

Wannier orbitals are made from Vdt,, bands and O p bands so, they are closer to dts, orbitals
because more t2, character is taken into account.

76



Double counting of interactions

Double counting corrections: Atomic limit (or Full localized limit) [Lichtenstein(1995), Anisimov (1991)]:

FLL __ U J o o
Eqe —;(;N(Nfl)*ggfv (N7 —1))
Around mean field version [Czyzyk(1994)] (delocalized limit):
EAME — N3N N2 = (U -
Z(U Ny + o ( T+ ¢) 1 U —-J)

(Made to correct the delocalized limit.)

1
G Anderson (w) = (

w—¢€ —Aw) — [E(w) — Zge(w)]
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DFT+DMFT scheme
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DFT+DMFT scheme

DFT
Di ize HKS ‘ o Define correlated or-
;“_J U bitals and Hamiltonian
[ Kohn-Sham Hamiltonian H*® ] S ; DMFT Loop
[ ) Compute lattice Green’s function
Glocal(y) = % S m

New electronic density| 4

essssssssssssssssssnnns S(w) [r PUTBIHYBHEST - ]
1 — @local

Aw)

Compute Self-energy
=€

Impurity Solver (CTQMC)

1
e AW Tw

More generally, DFT+DMFT can be expressed as functional of the local Green’s function
@ and the electronic density = Internal and free energies can be computed.



A functional of the density and the local Green’s function

Theory DFT Green’s fct Functional Theory
Interaction functional Eatxc[n(r)] Dy [G]
Interaction potential UHa+xc Self energy

Equivalent system

non interacting system
with a effective potential

non interacting system
with a frequency dependent potential
(self energy)

Approximation
Reference system

LDA
Homogeneous electron gas

DMFT
Anderson Impurity model
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DFT+U

Introduction to correlations.

Dynamical Mean Field Theory (DMFT).

Density Functional Theory and DMFT
Calculation of effective interaction U.
DFT+U.
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How to compute the effective interaction ?



How to compute the effective interaction ?




How to compute the effective interaction ?




How to compute the effective interaction ?




How to compute the effective interaction ?

Screening
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Methods to compute U

U is the screened interaction between electrons:
@ Direct calculation of interactions in LDA by constraint LDA !
e The coupling between d electrons and others is removed for the calculation.
@ Direct approach by linear response theory 3

o The d local potential is modified, the number of correlated electrons changes, and the
rearrangement of electrons around the atom describes the screening

@ Calculation using the screening from LDA (cRPA formalism 2)
e Frequency dependent interaction.
@ Empirical determination.

(1) Anisimov and Gunnarsson PRB 43 7570 (1991)
(2) Aryasetiawan, et al PRB 70 195104 (2004)

(3) Cococcioni and de Gironcoli PRB 71 035105 (2006)
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The cRPA approach.

Polarisation: P=Pd + Pr

b
@--F----»

m

ol
@----F----»

®l--1-1-1--f»

@ In cRPA, all excitations are taken into account except the one belonging to the
correlated subshell.

er(w) =1—vP.(w).
and P, is the cRPA non interacting polarisability (see lectures of F. Bruneval) which
describes transitions between occupied and empty states.

Picture from F. Aryasetiawan, The LDA+DMFT approach to strongly correlated materials E. Pavarini, E. Koch, D. Vollhardt, A. Lichtenstein (Eds.), Forschungszentrum Jf\i\ich

(2011). 83
F. Aryasetiawan, Imada, Georges, Kotliar, Biermann et Lichtenstein PRB 2004.



The cRPA approach.

We call here g the non interacting (Kohn-Sham) polarizability of the system. Let’s now
separate the correlated states (They could be d states but the method is more general and
correlated orbitals could gather several orbitals from e.g different atoms) from the rest (r).
We thus have:

correl

X0 = Xo + XS
thus, we can rewrite the inverse dielectric matrix as:

L 1

€
1— U(X(éorrel + XS)

We now define the dielectric function due to correlated electrons as
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The cRPA approach.

. 1

€correl = 1— Wrxgorrel ’

the dielectric function of the other electrons as
1. L

1—wxh’

I>

€r

and the interaction screened only by the other (r) electrons as:

v

r

C1-wxg
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The cRPA approach.

With these definitions, one shows that

—1 -1 _ o 1 1 1

€correl€r

T 1— UXS _ ,ngorrel = 1— VX0

Thus, we have

Wﬁe_lv = 6(;)1”616;1’0

We can interpret this result: The fully screened RPA interaction is the combination of two
screening processes. First, the bare interaction is screened by non-correlated electrons
(r), and it gives rises to a screened interaction W,.. Secondly the screening of this
interaction by correlated electrons recovers the fully screened interaction.
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Definition of correlated orbitals: example of SrVO .
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Definition of correlated orbitals: example of SrVO .
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Definition of correlated orbitals: example of SrVO .

V-lzg

iiiﬁ
2 721/
Zé\

! A
© N

VAJVAR
)

R rxXM T R rxXM T R rXxXmM r

O-

Wannier d

%
7
7

(eV)

Wannier dp

TN SED

Pl BN NS N

Bare interaction can be computed as:

v = (xx| [xx)

L — T2

Wannier function  bare interaction v (eV)

Wannier d 15.3

Wannier dp 19.4
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Definition of correlated orbitals: example of SrVO .

e
RA N Y -

Effective interaction can be computed as:

U = (xxlecrpavlxx)

Wannier function  bare interaction v (eV) effective interaction U (eV)

Name of the model

Wannier d 15.3

2.8

d—d

Wannier dp 19.4

10.8

dp — dp
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Definition of correlated orbitals: example of SrVO .

e
RA N Y -

Effective interaction can be computed as:

U = (xxlecrpavlxx)

Wannier function  bare interaction v (eV) effective interaction U (eV)

Name of the model

Wannier d 15.3

2.8

d—d

Wannier dp 19.4

10.8

dp — dp
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DFT+U

Introduction to correlations.

Dynamical Mean Field Theory (DMFT).

Density Functional Theory and DMFT
Calculation of effective interaction U.
DFT+U.
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Rotationnaly invariant DFT+U [Lichtenstein et al (1995)]

The interaction part corresponds to :

st = 13 [ ) [ 6,660

Expand the wavefunctions on a new basis: the basis of Vanadium d orbitals and Oxygen p orbitals:

920



Rotationnaly invariant DFT+U [Lichtenstein et al (1995)]

The interaction part corresponds to :

st = 13 [ ) [ 6,660

Expand the wavefunctions on a new basis: the basis of Vanadium d orbitals and Oxygen p orbitals:

|pi) = Z (Xd,m|®i)[xam) + ( Z (Xp.m|®i) [ Xp.m)) + oo

dm=—2...2 pm=—1...1

neglected
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Rotationnaly invariant DFT+U [Lichtenstein et al (1995)]

The interaction part corresponds to :
oulom 1 ’ 1 ,
B = 157 | [ 00,0 006 = [ 6o oo
i

Expand the wavefunctions on a new basis: the basis of Vanadium d orbitals and Oxygen p orbitals:

|pi) = Z (Xd,m|®i)xam) + ( Z (Xp.m| i) [Xp.m)) + -onn.

dm=—2...2 pm=—1...1

neglected

and show that (blackboard or exercice):

Coulomb 1 1 1
Exr 2 Z |:<Xm1 sz|W‘XW3XW4>nm4ym2nm3ym1 = (Xm1 Xm2|\r—7 Xoma Xma ) Tmg,m:

r'| |
my,m2,m3,Mmyq

Nvd,my,my = Z<¢i|xd7m1><XVd7m2 |¢l>

In the cubic symmetry, density matrices are diagonal and thus

1
=5 D [xmaXma |V xms Xoma ) ma o T g = (Xoma Xoma [V [ Xema Xona )T ma Tony s

mi,ma2

Coulomb
EHF
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DFT+U

Thus , in the simplest case (restoring spin):

U _ E
EHF - Uml’m2 mo m1

ml,mg o

(on (o
+ E (Uml,mz - Jml,mz)nmgnml

mi1,Mmo2,0
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DFT+U

Thus , in the simplest case (restoring spin):

TYL1 ,ma,0

EgF = Z Uml’m2 mo m1 I J

(on (o
+ E (Uml,mz - Jml,mz)nmgnml

mi1,Mmo2,0

Let’s simplify even more, neglecting J and using a constant U.

ESF:% Z Unpynm, = Z Unmynom,

mi,m2 mi>ma

v+ +

v-1 4+
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DFT+U

Thus , in the simplest case (restoring spin):

EII{jF = Z Um1,m2 mo m1 I J v % $
ml,mg o
+ Z (Um1;m2 - Jml,mz)n;‘ngnfrfnl = Uu-J 4* %

mi1,Mmo2,0
Let’s simplify even more, neglecting J and using a constant U.

ESF:% Z Unponam, = Z Unppy o,

mi,ma mi>mao

If we have 20 + 1 orbitals, the number of interactions is 2{(2] + 1). The interaction is taken

into account twice | One in E,., one in ECulomb | We need to cancel the DFT contribution,

a proposition is:

N(N —1)

dc(=double counting)
B - U=

with N = Tr[n,,]
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Basic effects of the static mean field approximation (DFT+U)

EY = Z Unpmynin,

mi>mse
1.0
@ U favors integer occupation of Ey=0x1U=0 + —
orbitals
@ It penalizes non integer values. 05 05
EY =0.5 x 0.5U = 0.125U -+
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Basic effects of the static mean field approximation (DFT+U)

N(N —1) L
# Z NNy =V = Vppp — Z |Xm ”m - §><Xm|

m;ém’

E = FEppr —U

(do it in exercice !)
] anO,VZVDFT—F%
@ n,=1,V=Vpr—Y
= A gap is opened among correlated orbitals.



Charge transfert insulators and Mott Hubbard insulators

ABrous — 5

ABious —>

[A=I€4-€] interaction U

—.EF
Fermi level

U
charge gap

p-band

(a) Mott-Hubbard Insulator

charge gap

Fermi level

interaction U

A\
p-band

U

(b) Charge Transfer Insulator

Mott insulators: Gap excitations
are d-d (or f-f)
ie between Hubbard bands.

Charge Transfert insulators:
Gap excitations are Op-d (Or
Op-f)

Correlation opens the gap in the
two cases !

Imada RMP (1998)

Zaanen, Sawatzky, and Allen PRL (1985)
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Main effects of Mean Field approximation (DFT+U)

_____ Fe d states (ajority |spin) GGA
60 Fe d states (finority|spin)

50 | — Fe s states
— Op states

DOS (states/oVicell)

Energy (eV)

LDA+U

DOS (states/oV/cell)
©
°

5.0
Energy (eV)

@ FeO (d®): insulator in DFT+U

Cococcioniet al PRB 71 2005

LDA LDA+U
20 . ™ 20
U 5f states U 5f states
10 M e J 10
> Ty i P P M /LA k-
3 t y .
8 .| Usdstates U 6d states. 2
K
LI FOUN (S0 Y7L ' g
© 3F O2pstates 02p states 1
Z 3
g’ 2
£ I i
" ‘ ALk it 0
total DOS total DOS 1%
20 )'J 5
; /JJU s d .
-5 -0 -8 [ 5 1o -15 -0 -5 0 5 10
E-E, (eV) E-E, (eV)

UO, (2): antiferromagnetic, insulator

Gapexp=2.1 eV

electrons localization: volume increases in DFT+U

Dudarev et al Micron 31 2000
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~ cerium (paramagnetic)

@ Spectral functions: basic features are reproduced.

Experiment (Wuilloud et al 1983, Wieliczka et al 1984) Theory (LDA+U)

(LDA)

Dy

3 3 3 0 3 0 5 10
(eV) ® (eV) ® (eV)
@ Structural daEtla t sion ind )
eclron repulsion Inquces a weaken-
ﬁg of the bonging. Exp  DFT+U'  DFT
1) Shick. Pickett. Lichtenstein 2000 alat (au) 9.76  9.83/9.54 8.54
(1) Shiek, Picket, Lichtenstein 2000, By (GPa) 19  296/34 55

Amadon, Jollet, Torrent PRB 2008.

@ But: The « phase is not correctly described, magnetism is incorrect (except for the 3
phase), no transitions.



Some limitations of the DFT+U method

Mean Field solution : Fixed (frozen) occupancies.
@ Magnetic order: Paramagnetic insulators cannot be described.
@ V503, v Cerium.
@ Orbital order and anisotropy are overestimated
o Electrons are frozen.

@ Metallic and correlated phase are out of reach (o Cerium, SrVO3).

@ Transition induced by localization cannot be described.
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Spectral functions of cerium

Q Amadon et al PRB 2015

Theoretical spectral functions compared to photoemission spectra

T T
DFT+DMFT

DFT/LDA
—a
/ ;
| i
DFT/LDA+U Experimy
A I e/ [
0 5 10-5 5
w(eV) w(eV)

10
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Conclusion

@ Strong correlations

Localized orbitals induce strong electronic Coulomb interaction.

This repulsion can induce strong localization of electrons and creates Mott insulator.
Hubbard bands and Kondo effects are signatures of strong interaction.

DMFT can describe both localized and delocalized electron and metal insulator transition.
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Conclusion

@ Strong correlations
o Localized orbitals induce strong electronic Coulomb interaction.
e This repulsion can induce strong localization of electrons and creates Mott insulator.
e Hubbard bands and Kondo effects are signatures of strong interaction.

o DMFT can describe both localized and delocalized electron and metal insulator transition.

@ DMFT

DMFT is exact in infinite dimensions, at U = 0 and ¢t = 0.

It can describe Kondo-like features in photoemission

Structural properties can also be computed (phase transition, elastic properties)
CTQMC, ED, DMRG, can be used as solvers.
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Conclusion

@ Strong correlations
o Localized orbitals induce strong electronic Coulomb interaction.
e This repulsion can induce strong localization of electrons and creates Mott insulator.
e Hubbard bands and Kondo effects are signatures of strong interaction.

o DMFT can describe both localized and delocalized electron and metal insulator transition.

@ DMFT
o DMFT is exact in infinite dimensions, at U = 0 and t = 0.
@ It can describe Kondo-like features in photoemission
e Structural properties can also be computed (phase transition, elastic properties)
e CTQMC, ED, DMRG, can be used as solvers.
@ Some quantities that can be obtained:
Photoemission spectra and various core spectroscopies.
Total and free energy.
Phonons and elastic properties.
Magnetic susceptibility (Curie, Pauli), Curie temperature.
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Conclusion

@ Strong correlations
o Localized orbitals induce strong electronic Coulomb interaction.
e This repulsion can induce strong localization of electrons and creates Mott insulator.
e Hubbard bands and Kondo effects are signatures of strong interaction.

o DMFT can describe both localized and delocalized electron and metal insulator transition.

@ DMFT
o DMFT is exact in infinite dimensions, at U = 0 and ¢t = 0.
@ It can describe Kondo-like features in photoemission
e Structural properties can also be computed (phase transition, elastic properties)
e CTQMC, ED, DMRG, can be used as solvers.
@ Some quantities that can be obtained:
e Photoemission spectra and various core spectroscopies.
o Total and free energy.
e Phonons and elastic properties.
e Magnetic susceptibility (Curie, Pauli), Curie temperature.
@ Perspectives
@ Include non local interactions and correlations: Cluster-DMFT
o Treat also weak correlation effects and more ab-initio (no parameters): GW+DMFT
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Pauli paramagnetism




Pauli paramagnetism




Pauli paramagnetism




Pauli paramagnetism

N(E) N(E) N(E)

@ Small magnetic moment, linear with B.

@ Pauli paramagnetism (temperature independent)

@ For simple metals (Na,Al): Pauli paramagnetism

@ Exercice : Derive the susceptibility and show that it is independent of temperature.
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Curie Weiss paramagnetism and ferromagnetism

e T=0 large magnetic
@ Ferromagnetism moment

My/M..

T T T
03 - T T/T. T T T
Ronds vides: fer
Ronds pleins: cobalt et nickel
T T T



Curie Weiss paramagnetism and ferromagnetism

@ Ferromagnetism

My/M..

0.2

0.2 1 1/T,

Ronds vides: fer
Ronds pleins: cobalt et nickel

e T=0 large magnetic
moment

o T increases, magnetic
moment lowers (thermal
effect).
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Curie Weiss paramagnetism and ferromagnetism

@ Ferromagnetism

My/M..

0,2

Ronds vides: fer
Ronds pleins: cobalt et nickel

o T=0 large magnetic
moment

o T increases, magnetic
moment lowers (thermal
effect).

o Curie temperature
(disordered fluctuating
moments)

T + T 1



Curie Weiss paramagnetism and ferromagnetism

@ Ferromagnetism

My/M..

0,2

Ronds vides: fer
Ronds pleins: cobalt et nickel

@ What happens at large temperature ?

o T=0 large magnetic
moment

o T increases, magnetic
moment lowers (thermal
effect).

o Curie temperature
(disordered fluctuating
moments)

T + T 1



Susceptibility in cerium

T7F 1 T T T =
AGPa) cooling heating
6 -0 0 ] -
o= ° °° 0.4 L 4
=4 - ° 0.7 o L] _
E 5 % 1.0 ° .
£ 4l %, 12 x + |
[ %4
°? ‘s °°o
o 3 s, b, B
3.‘(_ 2F 'ﬂﬂﬂnunu‘iun ° o°°°
<
8 ""-m ,Afiiiiiszxx;g
1
Z:&:!iim:z*!!humu ()
ob 1 ] 1 | |
100 200 300 400 50

@ Naka et al (1995)

Temperature(K)
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)
o
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An oversimplified derivation

O—o Uy = B0 —ady <K
€2.—.
v O—
" =0 ¢o

C\If1=a¢o+5¢v f<La

Two windows of energy are possible to compute

)= (Tilgv)|Ts)

%%

@ If W = {e2}, the correlated wavefunction is |Y) = |¥2) = Bldo) — a|dy ). No
renormalization is necessary thus |w) = |x). It contains an Oxygen contribution

o If W = {eq, ¢4}, the correlated wavefunction is
IX) = > (¥;|ov)|¥;) = |oyv) and is much more localized. 104



Calculation of (myms|V'|mamy)

k 4 rk
One uses i =D 00 Dmek ﬁﬁ}/,ﬂm(eh $1)Y,™* (02, ¢2) and after some
manipulations: (mims|Vee|mamy) contains an angular and a radial part.

F +k
(mmlVeshmama) =4 3 gy 3 (ki) msfmima)
k=0,2,4,6 m=—k
v 1 Y (mima|Veelmims) = Fy coulomb ¢
T @2f1? mam myms) = Fy coulomb term
(21 +1)2 4 VTR lT] RO
1 Fy + F.
! 20(20 4 1) ; (mima|Vee|mama) = 2;2 % exchange term
mi#me
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The DFT+U method

Epc E..o

NN-1) T )
Eprriv = Eppr —U——7F7F+ 5 Z N Nyn? = UZ(nm —n2)

Total energy

2

m#m/ m

In the atom (ny=1,0) Ee = Epc = UW

—— LDA
---- exact
—— LDA+U correction

@ Atom (integer nb of e~ )=The DFT+U
correction disappears.

= Self-interaction correction.

From Cococcioni et al PRB 71 (2005)

N-1 N N+1 N+2 see also Solovyev et al PRB 50 16861 (1994)

Number of electrons

FIG. 1. (Color online) Sketch of the total energy profile as a
function of number of electrons in a generic atomic system in con-
tact with a reservoir. The bottom curve is simply the difference
between the other two (the LDA energy and the “exact” result for
an onen svstem).
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