Time Dependent Density Functional Theory

Francesco Sottile

International summer School in electronic structure Theory: electron correlation in Physics and Chemistry (ISTPC)

27 June

NBOST

simpler basic quantity more complicate approximation

Time-Dependent Density-Functional Theory

Concepts and Applications

Carsten A. Ullrich

OXFORD GRADUATE TEXTS

Lecture Notes in Physics 837

Miguel A. L. Marques Neepa T. Maitra Fernando M. S. Noqueira Eberhard K. U. Gross Angel Rubio Editors

Fundamentals of Time-Dependent Density Functional Theory

Success of DFT

+ Machine Learning

J. Phys. Mater. **2** 032001 (2019)Ŧ

R. O. Jones Rev. Mod. Phys. 87, 897 (2015)

F

Serious applications

Ground-state total energy

Phys. Rev. Lett. **98**, 157404 (2007)

Phys. Rev. A **71**, 010501 (2004)

A. Castro - https://youtu.be/VixOLFubxBw

Optimal control theory

Phys. Rev. Lett. **98**, 157404 (2007)

Quantum plasmonics

ACS photonics, **7**, 2429 (2020)

TDDFT in linear response

Different (easier) theoretical approach

• Practical scheme for spectroscopy and excitation energies

$$
v_{ext}(\mathbf{r},t) = v_{ext}(\mathbf{r},0) + \delta v_{ext}(\mathbf{r},t)
$$

$$
n(\mathbf{r},t) = n(\mathbf{r},0) + \delta n(\mathbf{r},t) + \delta^{(2)}n(\mathbf{r},t) + \dots
$$

$$
\delta n(\mathbf{r},t) \leftarrow \mathbf{v}_{ext}(\mathbf{r}',t')
$$

$$
v_{ext}(\mathbf{r},t) = v_{ext}(\mathbf{r},0) + \delta v_{ext}(\mathbf{r},t)
$$

$$
n(\mathbf{r},t) = n(\mathbf{r},0) + \delta n(\mathbf{r},t) + \delta^{(2)}n(\mathbf{r},t) + \dots
$$

$$
\delta n(\mathbf{r},t) = \int d\mathbf{r}' dt' \underbrace{\mathbf{\hat{x}}(\mathbf{r},\mathbf{r}',t-t')} \mathbf{\hat{y}} v_{ext}(\mathbf{r}',t')
$$

polarizability

polarizability :: density-density response function

$$
\chi(\mathbf{r},\mathbf{r}',t-t')=i\left\langle\Psi_0|[\hat{n}(\mathbf{r},t),\hat{n}(\mathbf{r}',t')]\vert\Psi_0\right\rangle
$$

Exercise

$$
\hat{n}(\mathbf{r},t) = e^{iHt}\hat{n}(\mathbf{r})e^{-iHt} \qquad \qquad \hat{n}(\mathbf{r}) = \sum_{i} \delta(\mathbf{r} - \mathbf{r}_i)
$$

$$
\chi(\mathbf{r}, \mathbf{r}', \omega) = \sum_{I} \left[\frac{\langle \Psi_0 | \hat{n}(\mathbf{r}) | \Psi_I \rangle \langle \Psi_I | \hat{n}(\mathbf{r}') | \Psi_0 \rangle}{\omega - (E_I - E_0) + i\eta} - \frac{\langle \Psi_0 | \hat{n}(\mathbf{r}') | \Psi_I \rangle \langle \Psi_I | \hat{n}(\mathbf{r}) | \Psi_0 \rangle}{\omega + (E_I - E_0) + i\eta} \right]
$$

Q_I excitations energies

what about spectra (absorption,eels, x-ray, IXS,..)

Connection to spectroscopies :: inverse dielectric function

 $\delta v_{tot} = \varepsilon^{-1} \delta v_{ext}$

 ϵ dielectric function

Connection to spectroscopies :: optical absorption and X-ray

Connection to spectroscopies :: optical absorption

Connection to spectroscopies :: electron energy loss (EELS)

$$
\frac{d^2\sigma}{d\Omega d\omega} \propto \mathrm{Im}\left[\varepsilon^{-1}(\mathbf{q},\omega)\right]
$$
\n
$$
\frac{d^2\sigma}{\frac{E_f \mathbf{q}_f}{\mathbf{q}}}
$$

Connection to spectroscopies :: inelastic X-ray scattering (IXS)

$$
\frac{d^2\sigma}{d\Omega d\omega} \propto \text{Im}\left[\varepsilon^{-1}(\mathbf{q},\omega)\right]
$$

Polarizability of an independent-particle system

$$
\chi(\mathbf{r},\mathbf{r}',\omega) = \sum_{I} \left[\frac{\langle \Psi_0 | \hat{n}(\mathbf{r}) | \Psi_I \rangle \langle \Psi_I | \hat{n}(\mathbf{r}') | \Psi_0 \rangle}{\omega - (E_I - E_0) + i\eta} - \frac{\langle \Psi_0 | \hat{n}(\mathbf{r}') | \Psi_I \rangle \langle \Psi_I | \hat{n}(\mathbf{r}) | \Psi_0 \rangle}{\omega + (E_I - E_0) + i\eta} \right]
$$

 $\delta n = \chi^0 \delta v_{eff}$

 $\delta n = \chi \delta v_{ext}$

 $\chi \delta v_{ext} \stackrel{\text{\tiny{DFI}}}{=} \chi^0 \delta v_{eff}$

 $\delta v_{eff} = \delta v_{ext} + \delta v_H + \delta v_{xc}$

Dyson equation for the polarizability

$$
\chi = \chi^0 + \chi^0 \left[v + f_{xc} \right] \chi
$$

$$
\chi(\mathbf{r},\mathbf{r}',\omega)=\chi^0(\mathbf{r},\mathbf{r}',\omega)+
$$

+
$$
\int d\mathbf{r}_1 d\mathbf{r}_2 \chi^0(\mathbf{r}, \mathbf{r}_1, \omega) \left[v(\mathbf{r}_1, \mathbf{r}_2) + f_{xc}(\mathbf{r}_1, \mathbf{r}_2, \omega) \right] \chi(\mathbf{r}_2, \mathbf{r}', \omega)
$$

$$
f_{xc} = \frac{\delta v_{xc}}{\delta n}
$$
 exchange-correlation kernel

evaluation of χ knowing χ^0 (ground state calculation)

 \bigcirc f_{xc} functional of the ground-state density

 \bullet approximations for f_{xc}

$$
\begin{array}{c}\n\bullet f_{xc} = 0 & \text{RPA} \\
\bullet f_{xc} = \frac{\delta v_{xc}^{gs}}{\delta n} \\
\bullet \text{any other } f_{xc}\n\end{array}
$$

coherence vs freedom

Practical procedure for χ and ε^{-1}

Scaling (with N_{atoms})

 $o(N^{1\div 3})$

DFT-KS calculation ψ_i, ϵ_i (approx :: v_{xc}, V_{ion}^{ps})

$$
\text{creation of} \quad \chi^0 = \sum_{ij} \frac{\psi_i^*(\mathbf{r})\psi_j(\mathbf{r})\psi_i(\mathbf{r}')\psi_j^*(\mathbf{r}')}{\omega - (\epsilon_j - \epsilon_i) + i\eta} \qquad O(N^4)
$$

determination of $\chi = \chi^0 + \chi^0 \left[v + f_{xc} \right] \chi$ (approx :: f_{xc}) $o(N^{2\div 3})$

$$
\bullet \text{ evaluation of } \varepsilon^{-1} = 1 + v\chi
$$

Absorption spectrum Inelastic X-ray Scattering refraction index Surface differential reflectivityCompton Scattering Reflectivity Electron Energy Loss Reflectance Anisotropy spectroscopy

Dyson equation for the polarizability $\chi = \chi^{0} + \chi^{0} [v + f_{xc}] \chi$ local field effects exchange-correlation (local inhomogeneities) (quantum) effects

Marinopoulos *et al.* Phys. Rev. Lett. **89**, 076402 (2002) FÌ

IXS of Silicon

Weissker *et al.* Phys. Rev. Lett. **97**, 237602 (2006)

 \mathbf{E}

Absorption of Silicon

Albrecht *et al.* Phys. Rev. Lett. **80**, 4510 (1998)

冨

Benzene

Yabana and Bertsch Int.J.Mod.Phys.**75**, 55 (1999)

Absorption of simple molecules

EELS and IXS of solids

Absorption of solids

Transition energies of streptocyanine chains

Absorption of simple molecules EELS and IXS of solids Absorption of solids

$$
\bullet f_{xc} = 0
$$

$$
\bullet f_{xc} = \frac{\delta v_{xc}^{lda}}{\delta n}
$$

$$
\bullet f_{xc} = \frac{\delta v_{xc}^{gga}}{\delta n}
$$

$$
f_{xc}(\mathbf{q} \to 0) \neq \frac{1}{\mathbf{q}^2}
$$

 $f_{xc}(|\mathbf{r}-\mathbf{r}'|=r\rightarrow\infty)\neq\frac{1}{r}$

Absorption of cycloplatinated helicenes

F Shen *et al.* Chem. Sci. **5**, 1915 (2014)

$$
\chi(\mathbf{r}, \mathbf{r}', \omega) = \chi^{0}(\mathbf{r}, \mathbf{r}', \omega) +
$$

+
$$
\int d\mathbf{r}_{1} d\mathbf{r}_{2} \chi^{0}(\mathbf{r}, \mathbf{r}_{1}, \omega) \left[v(\mathbf{r}_{1}, \mathbf{r}_{2}) + f_{xc}(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega) \right] \chi(\mathbf{r}_{2}, \mathbf{r}', \omega)
$$

change of basis

$$
f_{ij}^{kl} = \iint \psi_i^*(\mathbf{r}) \psi_j(\mathbf{r}) \psi_k(\mathbf{r}') \psi_l^*(\mathbf{r}') f(\mathbf{r}, \mathbf{r}') \, d\mathbf{r} d\mathbf{r}'
$$

$$
\chi_{ij}^{kl} = \left[\chi^0\right]_{ij}^{kl} + \sum_{mnop} \left[\chi^0\right]_{ij}^{mn} \left[v_{mn}^{op} + \left[f_{xc}\right]_{mn}^{op}\right] \chi_{op}^{kl}
$$

choose $\psi_i(\mathbf{r})$

$$
\left[\chi^0\right]_{ij}^{kl} = \frac{\left(f_i - f_j\right)\delta_{ik}\delta_{jl}}{\omega - \left(\epsilon_j - \epsilon_i\right)}
$$

diagonal in
$$
ij, kl
$$

transition space

transition space

 $\left[\chi^0\right]^{kl}_{ij}$

 $\frac{\delta_{ik}\delta_{jl}}{\omega - (\epsilon_j - \epsilon_i) + i0}$

 $\chi = \chi^{0} + \chi^{0} [v + f_{xc}] \chi$ $E_{Xer_{\mathbf{C}i_{\mathbf{S}\mathbf{C}}}}$ $\chi = \left[\left(\chi^0 \right)^{-1} - \left(v + f_{xc} \right) \right]^{-1}$ $\chi = \left[\left(\chi^0 \right)^{-1} - K \right]^{-1}$

adiabatic approx.

1 $\chi=\frac{}{H^{\text{TDDFT}}-\omega}$

$H^{\rm TDDFT} =$

$$
kl \begin{bmatrix} ij \\ \overbrace{(\epsilon_j-\epsilon_i)\delta_{ik}\delta_{jl}} & K^{kl}_{ij} \\ \overbrace{(\epsilon_j-\epsilon_i)\delta_{ik}\delta_{jl}} & K^{kl}_{ij} \\ K^{kl}_{ij} & \overbrace{K^{kl}_{ij}} & K^{kl}_{ij} \\ K^{kl}_{ij} & \overbrace{(\epsilon_j-\epsilon_i)\delta_{ik}\delta_{jl}} \end{bmatrix}
$$

 $\chi = \frac{1}{H^{\text{TDDFT}} - \omega} = \sum_{\lambda \lambda'} \frac{|V_{\lambda} \rangle \, S^{\lambda'}_{\lambda} \, \langle V_{\lambda} |}{E_{\lambda} - \omega}$ $\lambda \lambda'$

H^{TDDFT} $\qquad \qquad$

 $\ket{V_{\lambda}} = \left|\frac{\text{X}}{\text{Y}}\right|$

 $\chi = \frac{1}{H^{\text{TDDFT}} - \omega} = \sum_{\lambda} \frac{|V_{\lambda}\rangle \langle V_{\lambda}|}{E_{\lambda} - \omega}$

500 comp po \overline{O} u n d s TDDFT exci t a¹ ti ion ener r gies s

J. Chem. Theory Comput. 5, 2420 (2009)

Mean Absolute Error (eV)

Name of the game

Hohenberg-Kohn theorem

 $V_{\text{ext}} \leftrightarrow n$

 $\langle \Psi^0 | O | \Psi^0 \rangle = O[n]$

Runge-Gross theorem

 $V_{\text{ext}}(t) \leftrightarrow n(t)$

 $\langle \Psi(t) | O(t) | \Psi(t) \rangle = O[n, \Psi^0](t)$

Hohenberg and Kohn, Phys. Rev. 136, B864 (1964) Runge and Gross, Phys. Rev. Lett. 52, 997 (1984)

Name of the game is it true? TDDFT

 $V_{\text{ext}}(t) \leftrightarrow n(t)$

 $\langle \Psi(t) | O(t) | \Psi(t) \rangle = O[n, \Psi^0](t)$

Runge-Gross theorem **Demonstration**

but in practice? KS equations

Runge and Gross, Phys. Rev. Lett. **52**, 997 (1984)

Runge-Gross theorem

$$
V_{\rm ext}(t) \longleftrightarrow n(t)
$$

Demonstration

1) $V_{\text{ext}}(\mathbf{r},t) \neq V'_{\text{ext}}(\mathbf{r},t) + c(t) \longleftrightarrow \mathbf{j}(\mathbf{r},t) \neq \mathbf{j}'(\mathbf{r},t)$

2) $\mathbf{j}(\mathbf{r},t) \neq \mathbf{j}'(\mathbf{r},t) \longleftrightarrow n(\mathbf{r},t) \neq n'(\mathbf{r},t)$

Demonstration of the Runge Gross theorem

1)
$$
V_{ext}(\mathbf{r},t) \neq V'_{ext}(\mathbf{r},t) + c(t) \longleftrightarrow \mathbf{j}(\mathbf{r},t) \neq \mathbf{j}'(\mathbf{r},t)
$$

$$
i\frac{\partial \mathbf{j}(\mathbf{r},t)}{\partial t} = \langle \Psi(t) | [\mathbf{j}(\mathbf{r}), H(t)] | \Psi(t) \rangle
$$

$$
i\frac{\partial \mathbf{j}'(\mathbf{r},t)}{\partial t} = \langle \Psi'(t) | [\mathbf{j}(\mathbf{r}), H'(t)] | \Psi'(t) \rangle
$$

$$
\mathbf{i}(\mathbf{r}, t) - \mathbf{i}'(\mathbf{r}, t) | = \langle \Psi_0 | [\mathbf{i}(\mathbf{r}), H(0) - H'(0)] | \Psi(t) \rangle
$$

$$
i\frac{\partial}{\partial t}\left[\mathbf{j}(\mathbf{r},t) - \mathbf{j}'(\mathbf{r},t)\right]\Big|_{t=0} = \langle \Psi_0 | [\mathbf{j}(\mathbf{r}), H(0) - H'(0)] | \Psi_0 \rangle
$$

= $-i n_0(\mathbf{r}) \nabla \left[V_{\text{ext}}(\mathbf{r}, 0) - V'_{\text{ext}}(\mathbf{r}, 0)\right]$

if two potentials differ by more than a constant at t=0, they will generate two different current densities

$$
i\frac{\partial \langle |[\mathbf{j}(\mathbf{r}), H(t)]| \rangle}{\partial t} = \langle \Psi(t)| \big[[\mathbf{j}(\mathbf{r}), H(t)], H \big] | \Psi(t) \rangle
$$

$$
i\frac{\partial \langle |[\mathbf{j}'(\mathbf{r}), H'(t)]| \rangle}{\partial t} = \langle \Psi(t)| \big[[\mathbf{j}'(\mathbf{r}), H'(t)], H'(t) \big] | \Psi(t) \rangle
$$

$$
\left. \frac{\partial^2}{\partial t^2} \left[\mathbf{j}(\mathbf{r}, t) - \mathbf{j}'(\mathbf{r}, t) \right] \right|_{t=t_0} = -n_0(\mathbf{r}) \nabla \left. \frac{\partial}{\partial t} \left[V_{\text{ext}}(\mathbf{r}, t) - V'_{\text{ext}}(\mathbf{r}, t) \right] \right|_{t=0}
$$

two different potentials will generate two different current densities

Runge-Gross theorem

$$
V_{\rm ext}(t) \ \longleftrightarrow \ n(t)
$$

Demonstration

$V_{\text{ext}}(\mathbf{r},t) \neq V'_{\text{ext}}(\mathbf{r},t) + c(t) \longleftrightarrow \mathbf{j}(\mathbf{r},t) \neq \mathbf{j}'(\mathbf{r},t)$

2) $\mathbf{j}(\mathbf{r},t) \neq \mathbf{j}'(\mathbf{r},t) \longleftrightarrow n(\mathbf{r},t) \neq n'(\mathbf{r},t)$

Demonstration of the Runge Gross theorem

2)
$$
\mathbf{j}(\mathbf{r},t) \neq \mathbf{j}'(\mathbf{r},t) \longleftrightarrow n(\mathbf{r},t) \neq n'(\mathbf{r},t)
$$

$$
\frac{\partial n({\bf r},t)}{\partial t} = -\nabla \cdot {\bf j}({\bf r},t)
$$

$$
\frac{\partial n'(\mathbf{r},t)}{\partial t} = -\nabla \cdot \mathbf{j}'(\mathbf{r},t) \begin{bmatrix} \frac{\partial}{\partial t} [\mathbf{j}(\mathbf{r},t) - \mathbf{j}'(\mathbf{r},t)] \Big|_{t=0} = \langle \Psi_0 | [\mathbf{j}(\mathbf{r}),H(0) - H'(0)] | \Psi_0 \rangle \\ = n_0(\mathbf{r}) \nabla \left[v_{\text{ext}}(\mathbf{r},0) - v'_{\text{ext}}(\mathbf{r},0) \right] \end{bmatrix}
$$

$$
i\frac{\partial^2}{\partial t^2} \left[n(\mathbf{r},t) - n'(\mathbf{r},t) \right]_{t=0} = \nabla \cdot \left. \frac{\partial}{\partial t} \left[\mathbf{j}(\mathbf{r},t) - \mathbf{j}'(\mathbf{r},t) \right] \right|_{t=0}
$$

 $= \nabla \cdot \left[n_0(\mathbf{r}) \nabla \left[v_{\text{ext}}(\mathbf{r},0) - v'_{\text{ext}}(\mathbf{r},0) \right] \right]$

Demonstration of the Runge Gross theorem

2)
$$
\mathbf{j}(\mathbf{r},t) \neq \mathbf{j}'(\mathbf{r},t) \longleftrightarrow n(\mathbf{r},t) \neq n'(\mathbf{r},t)
$$

$$
i\frac{\partial^{k+2}}{\partial t^{k+2}}\left[n(\mathbf{r},t)-n'(\mathbf{r},t)\right]\bigg|_{t=0} = \boldsymbol{\nabla}\bullet \left[n_0(\mathbf{r})\nabla\left.\frac{\partial^k}{\partial t^k}\left[V_{\text{ext}}(\mathbf{r},t)-V_{\text{ext}}(\mathbf{r},t)\right]\right]\right|_{t=0}
$$

two different potentials will generate two different densities provided that the divergence does not vanish

Runge-Gross Theorem

$$
V_{\text{ext}}(t) \leftrightarrow n(t)
$$

$$
\langle \Psi(t) | O(t) | \Psi(t) \rangle = O[n, \Psi^0](t)
$$

Functional of the TD density $n(\mathbf{r},t)$ **and** of the initial state Ψ^0

 \bigcirc V_{ext} Taylor expandable

 $\bigcirc \nabla \cdot \left[n_0(\mathbf{r}) \nabla V_k \right] \neq 0$ non-vanishing divergence

Runge and Gross, Phys. Rev. Lett. **52**, 997 (1984)

Name of the game TDDFT

 $V_{\text{ext}}(t) \leftrightarrow n(t)$

 $\langle \Psi(t) | O(t) | \Psi(t) \rangle = O[n, \Psi^0](t)$

is it true? Runge-Gross theorem **Demonstration**

> but in practice? KS equations

Runge and Gross, Phys. Rev. Lett. **52**, 997 (1984)

 $V_{ext}(\mathbf{r},t) \leftrightarrow n(\mathbf{r},t)$ given $\Psi^0(\mathbf{r}_1,\mathbf{r}_2,..,\mathbf{r}_N,t=0)$ $V_{ee} = \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$

$$
V_{\text{ext}}(\mathbf{r},t) \leftrightarrow n(\mathbf{r},t) \quad \text{given } \Psi^0(\mathbf{r}_1,\mathbf{r}_2,..,\mathbf{r}_N,t=0)
$$

$$
V_{\text{KS}}([n, \Phi^0], \mathbf{r}, t) \longleftrightarrow n(\mathbf{r}, t) \text{ given } \Phi^0(\{\mathbf{r}_i\}, t = 0) = \frac{1}{\sqrt{N}} \begin{vmatrix} \psi_1(\mathbf{r}_1) & \psi_1(\mathbf{r}_2) & \dots & \psi_1(\mathbf{r}_N) \\ \psi_2(\mathbf{r}_1) & \psi_2(\mathbf{r}_2) & \dots & \psi_2(\mathbf{r}_N) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_N(\mathbf{r}_1) & \psi_N(\mathbf{r}_2) & \dots & \psi_N(\mathbf{r}_N) \end{vmatrix}
$$

$$
n(\mathbf{r}, t) = \sum_{\text{occ}} |\psi_i(\mathbf{r}, t)|^2
$$

$$
V_{\rm KS}[n, \Phi^0](\mathbf{r}, t) = V_{\rm ext}[n, \Psi^0](\mathbf{r}, t) + \int \frac{n(\mathbf{r}', t)}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + V_{\rm xc}[n, \Psi^0, \Phi^0](\mathbf{r}, t)
$$
 Kohn-Sham potential

$$
\left[-\frac{\nabla^2}{2} + V_{\rm KS}[n, \Phi^0](\mathbf{r}, t)\right] \psi_i(\mathbf{r}, t) = i \frac{\partial \psi_i(\mathbf{r}, t)}{\partial t}
$$

Kohn-Sham equations

Kohn-Sham Equations

$$
\left[-\frac{\nabla^2}{2} + v_{\rm KS}[n; \Phi^0](\mathbf{r}, t)\right] \psi_i(\mathbf{r}, t) = i \frac{\partial \psi_i(\mathbf{r}, t)}{\partial t}
$$

$$
n(\mathbf{r}, t) = \sum_{\rm occ} |\psi_i(\mathbf{r}, t)|^2
$$

No self-consistency

No variational principle

 $\bigcirc V_{\text{xc}}[n, \Psi^0, \Phi^0](\mathbf{r}, t)$

(local in spaceand time) functionally non-local non-interacting v-representability

non-interacting v-representability

van Leeuwen theorem

conditions for the existence of $V_{\text{xc}}[n, \Psi^0, \Phi^0](\mathbf{r}, t)$

Name of the game TDDFT

 $V_{\text{ext}}(t) \leftrightarrow n(t)$

 $\langle \Psi(t) | O(t) | \Psi(t) \rangle = O[n, \Psi^0](t)$

is it true? Runge-Gross theorem **Demonstration**

> but in practice? KS equations

Runge and Gross, Phys. Rev. Lett. **52**, 997 (1984)
approximate

solve the TD Kohn-Sham equations

look at some observables C

Approximations

 $V_{\text{xc}}[n(\mathbf{r}', t \times t), \mathbf{X}', \mathbf{X}'](\mathbf{r}, t)$

Live in the present or no grudge approximation

Approximations

Adiabatic $V_{\rm xc}^A[n({\bf r}',t)]({\bf r},t)$

• **ALDA**
$$
v_{xc}^{\text{ALDA}}[n](\mathbf{r},t) = v_{xc}^{\text{heg}}(n(\mathbf{r},t)) = \frac{d}{dn} [ne_{xc}^{\text{heg}}(n)]\Big|_{n=n(\mathbf{r},t)}
$$

AGGA

Orbital dependent

approximate $V_{\text{xc}}[n, \Psi^0, \Phi^0](\mathbf{r}, t)$

solve the TD Kohn-Sham equations 2

look at some observables C

$$
\left[-\frac{\nabla^2}{2} + V_{\text{KS}}[n](\mathbf{r})\right]\psi_i(\mathbf{r}) = \varepsilon_i\psi_i(\mathbf{r}) \Rightarrow n(\mathbf{r}) \qquad \text{KS equations}
$$

$$
\left[-\frac{\nabla^2}{2} + V_{\text{KS}}[n, \Phi^0](\mathbf{r}, t)\right] \psi_i(\mathbf{r}, t) = i \frac{\partial \psi_i(\mathbf{r}, t)}{\partial t} \qquad \text{TD KS equations}
$$

$$
i\frac{\partial \psi(t)}{\partial t} = H(t)\psi(t) \qquad \Longrightarrow \qquad \psi(t) = U(t,t_0)\psi(t_0)
$$

$$
i\frac{dU(t,t_0)}{dt} = H(t)U(t,t_0)
$$

$$
U(t,t_0) = 1 - i \int_{t_0}^t d\tau_1 H(\tau_1) U(\tau_1,t_0) = 1 - i \int_{t_0}^t d\tau_1 H(\tau_1) + (-i)^2 \int_{t_0}^t d\tau_1 \int_{t_0}^{\tau_1} d\tau_2 H(\tau_2) U(\tau_2,t_0)
$$

$$
U(t,t_0) = 1 - i \int_{t_0}^t d\tau_1 H(\tau_1) + (-i)^2 \int_{t_0}^t d\tau_1 \int_{t_0}^{\tau_1} d\tau_2 H(\tau_1) H(\tau_2) +
$$

$$
(-i)^3 \int_{t_0}^t d\tau_1 \int_{t_0}^{\tau_1} d\tau_2 \int_{t_0}^{\tau_2} d\tau_3 H(\tau_1) H(\tau_2) H(\tau_3) + \cdots
$$

$$
i\frac{\partial \psi(t)}{\partial t} = H(t)\psi(t) \qquad \Longrightarrow \qquad \psi(t) = U(t,t_0)\psi(t_0)
$$

$$
i\frac{dU(t,t_0)}{dt} = H(t)U(t,t_0)
$$

$$
U(t,t_0) = 1 - i \int_{t_0}^t d\tau_1 H(\tau_1) U(\tau_1,t_0) = 1 - i \int_{t_0}^t d\tau_1 H(\tau_1) + (-i)^2 \int_{t_0}^t d\tau_1 \int_{t_0}^{\tau_1} d\tau_2 H(\tau_2) U(\tau_2,t_0)
$$

$$
U(t,t_0) = 1 + \sum_{n=1}^{\infty} (-i)^n \int_{t_0}^t d\tau_1 \int_{t_0}^{\tau_1} d\tau_2 \cdot \cdot \int_{t_0}^{\tau_{n-1}} d\tau_n H(\tau_1) H(\tau_2) \cdot \cdot H(\tau_n)
$$

$$
i\frac{\partial \psi(t)}{\partial t} = H(t)\psi(t) \qquad \Longrightarrow \qquad \psi(t) = U(t,t_0)\psi(t_0)
$$

$$
i\frac{dU(t,t_0)}{dt} = H(t)U(t,t_0)
$$

$$
U(t,t_0) = 1 - i \int_{t_0}^t d\tau_1 H(\tau_1) U(\tau_1,t_0) = 1 - i \int_{t_0}^t d\tau_1 H(\tau_1) + (-i)^2 \int_{t_0}^t d\tau_1 \int_{t_0}^{\tau_1} d\tau_2 H(\tau_2) U(\tau_2,t_0)
$$

$$
U(t,t_0) = 1 + \sum_{n=1}^{\infty} \frac{(-i)^n}{n!} \int_{t_0}^t d\tau_1 \int_{t_0}^t d\tau_2 \cdot \cdot \int_{t_0}^t d\tau_n \mathcal{T}[H(\tau_1)H(\tau_2) \cdot \cdot H(\tau_n)]
$$

$$
U(t,t_0) = \mathcal{T}e^{-i\int_{t_0}^t d\tau H(\tau)}
$$

C look at some observables

$$
\left[-\frac{\nabla^2}{2} + V_{\rm KS}[n,\Phi^0](\mathbf{r},t)\right]\psi_i(\mathbf{r},t) = i\frac{\partial \psi_i(\mathbf{r},t)}{\partial t}
$$

$$
n(\mathbf{r},t)=\sum |\boldsymbol{\psi_i}(\mathbf{r},t)|^2
$$

 $\overline{O}CC$

Time Dependent ELF

$$
ELF(\mathbf{r},t) = \left[1 + D^0 \left(\sum_i |\nabla \psi_i(\mathbf{r},t)| - \frac{1}{4} \frac{[\nabla n(\mathbf{r},t)]^2}{n(\mathbf{r},t)} - \frac{1}{2} \frac{j^2(\mathbf{r},t)}{n(\mathbf{r},t)}\right)^2\right]^{-1}
$$

 \mathbb{F}

T. Burnus, M. A. L. Marques, and E. K. U. Gross, Phys. Rev. A **71**, 010501(R) (2005)

One-particle operator

$$
\langle \Psi(t) | \hat{O} | \Psi(t) \rangle = \int O(\mathbf{r}) \, n(\mathbf{r}, t) d\mathbf{r}
$$

Some observables

$$
\alpha(t) = \int \mathbf{r} \, n(\mathbf{r}, t) d\mathbf{r}
$$
Photo-absorption cross section

$$
\sigma(\omega) = \frac{4\pi\omega}{c} \alpha(\omega)
$$

$$
M_{lm}(t) = \int r^l Y_{lm}(r) n(\mathbf{r}, t) dr
$$
 Multipoles

$$
L_z(t) = \sum_i \int \psi_i(\mathbf{r}, t) i(\mathbf{r} \times \nabla)_z \psi_i(\mathbf{r}, t) d\mathbf{r}
$$
 Angular Momentum

Photo-absorption cross section

$$
\alpha(t) = \int \mathbf{r} n(\mathbf{r}, t) d\mathbf{r} \qquad \qquad \left[-\frac{\nabla^2}{2} + V_H(\mathbf{r}, t) + V_{\text{xc}}^{ALDA}(\mathbf{r}, t) + V_{\text{ext}}(\mathbf{r}, t) \right] \psi_i(\mathbf{r}, t) = i \frac{\partial \psi_i(\mathbf{r}, t)}{\partial t}
$$
\n
$$
\sigma(\omega) = \frac{4\pi\omega}{c} \alpha(\omega) \qquad \qquad V_{\text{ext}}(\mathbf{r}, t) = V_{\text{ext}}^{nucl}(\mathbf{r}) + \delta(t = 0)\eta
$$

Linear response approach access to excitations energies build the spectrum ω by ω

analysis

dar
*** frequency range KS excitations contribution singlet/triplet
| dark excitations

Full Time Dependent KS eqs.

access to full spectrum at once non-linear effects automatically included better scaling

TDDFT applications

- Absorption spectra of simple molecules
- Loss function of metalsand semiconductors
- Excitations energies
- Qualitatively first step

 \rightarrow

- \rightarrow strong field phenomena
- \rightarrow open quantum systems
- \rightarrow superconductivity
- \rightarrow quantum optimal control
- beyond BO dynamics
- \rightarrow quantum transport

Miquel A. L. Marques Neepa T. Maitra Fernando M. S. Noqueira **Eberhard K. U. Gross** Angel Rubio Editors

Fundamentals of Time-Dependent Density Functional Theory